DETERMINISTIC MULTITHREADING FOR JAVA-BASED REPLICATED
OBJECTS

Jorg Domaschka, Franz J. Hauck, Hans P. Reiser
Distributed Systems Lab
University of Ulm, Germany
{joerg.domaschka,franz.hauck,hans.reiser } @uni-ulm.de

Abstract

This paper describes a novel approach to deterministic
multithreading for active replication of Java objects.
Unlike other existing approaches, the presented
deterministic thread scheduler fully supports the native
Java synchronisation mechanisms, including reentrant
locks, condition variables, and time bounds on wait
operations. Furthermore, this paper proposes source-code
transformation as a novel approach for intercepting Java
synchronisation statements. This allows the reuse of
existing object implementations and simplifies application
development.

Keywords

Determinism, Consistency, Multithreading, Object Repli-
cation, Fault Tolerance

1 Introduction

Object replication is an important mechanism to implement
reliable distributed applications. With active replication,
deterministic replica behaviour is mandatory for replica
consistency. Multithreaded execution of object methods
is a source of nondeterminism that is difficult to handle.
The use of a single-threaded execution model, however, is
inherently deadlock-prone and results in poor performance.
Existing code that potentially uses multithreading cannot
be re-used without modification and the developer of repli-
cated objects needs to be aware of such restrictions.

Some previous research has addressed multithreading
in replicated objects [1-5]. The common model in these
approaches is that replicas access shared data protected
by mutex locks. Two significant drawbacks exist in these
systems. First, they only allow limited synchronisation
mechanisms. Most systems are restricted to binary mutexes
and do not consider support for other kinds of semaphores
or condition variables. Second, they assume that replica
code uses specific methods of the replication infrastructure
to obtain and release mutex locks, or that interactions with
existing threading libraries can be intercepted. Forcing the
explicit use of synchronisation functions of the replication
infrastructure breaks existing code. Transparent intercep-

Riidiger Kapitza

Department of Distributed Systems and Operating Systems

University of Erlangen-Niirnberg, Germany
kapitza@infomatik.uni-erlangen.de

tion is hardly feasible if synchronisation is tightly inte-
grated in a programming language like it is in Java.

The solution that we present in this paper addresses
both limitations in the context of a Java-based fault-tolerant
CORBA environment. Our ADETS-SAT thread scheduling
algorithm not only provides reentrant mutexes for shared
access to common data, but also supports condition vari-
ables and timebounds on blocking wait operations. Fur-
thermore, we allow the use of native Java synchronisation
mechanisms in replica code. For this purpose, we use a
code-transformation tool that transforms replica code with
native synchronisation mechanisms into code that interacts
with the replication infrastructure. This approach avoids
the necessity to modify the native execution environment
(e.g., the JVM or the underlying operating system), it sim-
plifies development, as developers can use established syn-
chronisation techniques that they are familiar with, and it
also facilitates the reuse of existing source code.

This paper is structured as follows. The next sec-
tion discusses related work. Section 3 describes our code-
transformation approach. Section 4 presents our determin-
istic thread-scheduling algorithm. Section 5 evaluates our
implementation with performance measurements. Finally,
Section 6 concludes.

2 Related Work

Many object replication systems (e.g., GroupPac [6]) ex-
ecute all invocation requests strictly sequentially in total
order. Such a single-threaded execution model avoids non-
determinism that would be caused by multithreading, but
it also has serious disadvantages. Deadlocks can be caused
by circular nested invocations: if the execution of a method
of an object A causes the invocation of another method
of object A via a chain of nested remote invocations, the
second invocation at A cannot be processed, resulting in
a deadlock. Mutual nested invocations cause a similar
deadlock problem: if two methods m 4, mp of objects A, B
concurrently invoke a remote method at each other object,
these nested invocations cannot be processed in a single-
threaded model, resulting again in a deadlock. Besides
these two problems, condition variables cannot be used
in a single-threaded model. Condition variables are an
important synchronisation concept that allows a thread to
suspend until it is notified by another thread (which obvi-

ously requires more than one thread). Finally, if a method
m4 at some object A issues a nested remote invocation,
the thread that executes m 4 has to wait until the nested
invocation returns. In a single-threaded model, this idle
time cannot be used for processing new requests, resulting
in sub-optimal performance.

Some previous work addresses the removal of non-
determinism caused by multithreading with low-level ap-
proaches at the hardware, operating system, or virtual ma-
chine level. For example, Napper et al. [7] and Friedman et
al. [8] use a modified Java virtual machine to obtain deter-
ministic thread scheduling. Other systems, such as MARS
[9], ensure determinism even at a lower system level. In
contrast, our work enforces determinism of multithreaded
replicated services purely at the middleware level, without
requiring special low-level support.

Only few approaches have previously been proposed
that allow deterministic multithreading in replicated
objects at the middleware level. All approaches assume
that access to shared data is protected by mutexes; locking
and unlocking a mutex are the only thread synchronisation
mechanisms. One of the first proposals to deterministic
execution of multithreaded replicas suggested a single
logical thread (SLT) model [4]. This restricted model
allows only the parallel execution of requests that belong
to the same logical thread of execution, which is identified
by context information passed with all invocations. This
avoids deadlocks with circular nested invocations, but does
not solve the other aforementioned problems.

A generalisation of this approach is a single active
thread (SAT) execution model. Only a single determinis-
tically chosen thread can be active at a time; a thread is
created or resumed as soon as the active thread suspends or
terminates. The selection of the next active thread is made
deterministically based on incoming messages received in
total order (client requests and nested-invocation replies).
Such a variant of this approach has been proposed for repli-
cated CORBA objects [5]. In [3], a similar approach is
presented for a transactional programming model. These
two variants are similar to the solution that we present
in this paper. The main differences, however, is that we
support a more flexible synchronisation model that includes
reentrant locks, condition variables, and time bounds on
blocking wait operations. Furthermore, we propose code
transformation as a novel approach for intercepting syn-
chronisation operations.

A single-active thread model is sufficient for solv-
ing all aforementioned problems, but it is non-preemptive
and does not permit the truly parallel execution of threads,
which can improve the performance on multi-core CPUs
or multi-CPU nodes. Such parallel execution is enabled by
two algorithms suggested by Basile et al. [1,2]. The Loose
Synchronisation Algorithm (LSA) uses a leader-follower
model [2]. One replica is allowed to immediately execute
each request. The order in which locks are granted to
threads is broadcasted to all other replicas, which use this
information to grant locks to threads in the same order.

The Preemptive Deterministic Scheduling (PDS) algorithm
avoids any communication for scheduling [1]. However,
it assumes that the execution of parallel requests can be
divided into sequential rounds in which all threads request
a mutex lock, and it makes strict assumptions on the cre-
ation of new threads. Our ADETS-SAT algorithm does not
consider preemptive parallel execution. Instead, the focus
of this paper is put on the interception of synchronisation
statements based on code transformation and on the exten-
sion of deterministic thread scheduling to a system model
that includes reentrant mutexes, condition variables, and
time bounds on wait operations. In [10], we describe an
extension to ADETS-SAT that supports parallel execution.

3 Intercepting Synchronisation Primitives

Our approach aims at allowing the use of existing servant
implementations in a multithreaded execution model, with-
out requiring the developer to re-implement all synchroni-
sation mechanisms in the servant code. In the Java pro-
gramming language, mechanisms for multithreading and
thread synchronisation are part of the programming lan-
guage [11]. This differs from, for example, the approach
used in C++ programs, where external libraries like the
POSIX thread library (pthreads [12]) are used for this pur-
pose!. For the application developer, the Java approach
simplifies the development of multithreaded applications,
as synchronisation is directly included in the language syn-
tax, and the native synchronisation mechanisms are gener-
ally accepted as a universal standard.

The thread synchronisation mechanisms of Java con-
sist of mutexes and condition variables. In Java, every
object also provides a mutex. The synchronized keyword
can be used in three ways to lock and unlock such mutexes.
First, a synchronised instance method of an object will lock
the mutex of the object at method entry and unlock it when
leaving. Second, a synchronised static method of a class
will lock the mutex of the class meta object at method
entry and unlock it when leaving. Third, a synchronised
block explicitly specifies an object that will be locked at the
beginning of the block and released at the end of the block.
Java mutexes are reentrant, i.e. a thread can acquire a
mutex multiple times; it must be released the same number
of times before another thread can obtain the mutex.

To implement condition variables in Java, all objects
inherit the final methods wait, notify, and notifyAll.
They may only be called after obtaining the object’s mutex.
The wait method releases the mutex and blocks until it is
woken up either by a notification or a timeout. The notify
method notifies one out of all threads blocked in a wait
operation, and notifyAll unblocks all waiting threads. In

Tt is also possible to use external packages with custom synchroni-
sation code in Java. Our prototype implementation currently assumes
traditional Java synchronisation mechanisms as described in this section.
By extending the presented code-generation tool and providing the
necessary synchronisation primitives in the scheduler, our prototype is
easily extended to cover such custom synchronisation.

public class Queue extends ... {
public synchronized String remove() {
while(data . size ()==0) wait();
return data.remove(0);

public synchronized void append(String x) {
data.add(x); notify();

}
3
public class Queue extends ... {
public String remove() {
_scheduler().lock(this);
try {
while(data. size ()==0) _scheduler().mtwait(this);
return data.remove(0);
} finally {
_scheduler().unlock(this);
public void append(String x) {
_scheduler().lock(this);
try {
data.add(x); _scheduler().mtnotify(this);
} finally {
_scheduler().unlock(this);
}
}
}

Figure 1. Code transformation example

both notification operations (notify and notifyAll), one
cannot predict or specify the order in which waiting threads
wake up and execute.

Replicating an existing servant implementation that
uses Java’s native synchronisation mechanisms should not
require the developer to change the synchronisation of the
implementation. Therefore, the fault-tolerance infrastruc-
ture must remove the aforementioned sources of nondeter-
minism that can arise from having multiple threads. Such
a support from the infrastructure requires that the infras-
tructure is able to intercept all synchronisation interactions
of the replicated service implementation. In programming
languages like C++, it is possible to intercept local library
calls to, e.g., the POSIX thread library [12], like it is used
in the Eternal system [4]. In Java, the thread synchronisa-
tion primitives are directly integrated in the programming
language, which makes this approach less feasible.

As an alternative, we use a code-transformation ap-
proach. A software transformation tool of our middleware
converts native Java synchronisation primitives into syn-
chronisation calls that interact with the deterministic thread
scheduling infrastructure. This approach is fully trans-
parent to the application developer, as he can implement
the application synchronisation with native Java primitives,
and without considering the transformation process. For
application deployment, the code is first passed through our

code transformation tool.

The effect of the code transformation is illustrated by
the example in Figure 1. A synchronised method is con-
verted to a 1ock call at the beginning and an unlock call at
the end of the method, passing this as lock object. A try/-
finally construct needs to be used to make sure that unlock
is always called, even if the method prematurely exits via
an exception or a return statement. Calls to the native
wait, notify and notifyAll methods are transformed to
corresponding calls to the deterministic scheduler instance
of the middleware.

A synchronised instance method is transformed in a
similar way, passing the class meta-object instead of this.
Synchronised blocks inside a method are replaced corre-
spondingly, passing the custom mutex object instead of the
this pointer. In addition, a copy of the mutex reference
has to be stored in a temporary variable to make sure that
the same object is passed to the lock and unlock operations,
even if the synchronised block changes the reference, like
in this example: synchronized(x) {x=y;}

4 The ADETS-SAT Scheduling Algorithm

The non-preemptive ADETS-SAT (Aspectix DEterministic
Thread Scheduling — Single Active Thread) algorithm is
our approach to enabling multithreaded execution of ac-
tively replicated CORBA applications. Our prototype is
implemented as an extension to the fault-tolerance support
in the Java-based Aspectix ORB [13].

In the following, we assume that each instance of a
replica group is independent from other instances. Each
instance accesses only internal data directly, and interacts
with other instances via remote invocations. Objects use
an active replication style, in which all replicas execute the
same methods. Each replication group has its own totally
ordered group communication facility to receive client re-
quests and replies from nested invocations. In this model,
the unit of thread synchronisation is the replica group in-
stance. Internally, this is implemented by each replica hav-
ing its own instance of the ADETS-SAT implementation.

Threads executing methods of a replica group can be
in one of the states runnable, suspended, or terminated. A
thread is ferminated if it has stopped executing and will
never resume. A terminated thread may later be cleaned up
by the garbage collector. A thread is suspended if it is (a)
waiting for a new request, (b) waiting for a mutex lock, (c)
waiting on a condition variable, or (d) waiting for the reply
of a nested invocation. A thread is runnable if it is neither
terminated nor suspended.

Our ADETS-SAT algorithm makes sure that only one
deterministically chosen thread is in state runnable. The
algorithm is non-preemptive, and no explicit ready state is
used. Instead, only after the currently runnable thread ter-
minates or suspends, a new thread is created or moved from
suspended to runnable state. The decision about which
thread to resume or create is fully deterministic under the
control of our ADETS-SAT scheduler.

1 | function schedule ():

2 find obj in keys(MutexWaitMap)\keys(LockedMap)
3 if obj exists :

4 tid := MutexWaitMap(obj).removeFirst()
5 LockedMap(obj) := [tid ,1]

6 tid .resume()

7 return

8 if inQueue.isEmpty()

9 idle := true; return

10 msg := inQueue.removeFirst ()

11 if msgis CLIENT_REQUEST:

12 start new request handler thread

13 if msg is TIMEOUT(tid,id):

14 find obj with CondWaitMap(obj).contains(] tid ,id])
15 if obj exists :

16 CondWaitMap(obj).remove([tid,id])
17 Mutex WaitMap(obj).append(tid)

18 schedule ()

19 if msg is NESTED_REPLY (tid,value):

20 tid . deliver (value); tid .resume()

21

22 | function receive(Message msg):
23 inQueue.append(msg)
24 if msgis TIMEOUT(tid,id):

25 Timer.cancel ([tid ,id])
26 if idle == true:
27 idle := false ; schedule ()

29 | On termination of thread tid:
30 schedule ()

32 | Onnested invocation (Request r) of thread tid:
33 schedule ()
34 r.invoke (); tid .suspend()

36 |On Timer.alarm for [tid, id]:
37 broadcast TIMEOUT(tid,id)

// intercepted synchronisation functions
function lock(obj) called by thread tid:
[locktid ,i] := LockedMap(obj)

if tid == nil: LockedMap(obj) := [tid ,1]
else if locktid == tid: LockedMap(obj) := [tid,i+1]
else :

MutexWaitMap(obj).append(tid)

schedule ()

tid . suspend ()

function unlock(obj) called by thread tid:
[tid,i] := LockedMap(obj)
if i==1: LockedLockedMap.remove(obj)
else LockedMap(obj) := [tid ,i—1]

function wait(obj, timeout) called by thread tid:
[tid ,n] := LockedMap.remove(obj) / fully release lock
id := new unique ID
CondWaitMap(obj).append([tid, id])
schedule ()
if timeout > 0:
Timer.schedule (timeout, [tid, id])
tid .suspend (); // until moved to LockedMap by schedule
LockedMap(obj) := [tid ,n]

function notify(obj) called by thread tid:
if CondWaitMap(obj) # nil:
[tid,id] := CondWaitMap(obj).removeFirst()
Timer.cancel ([tid, id])
Mutex WaitMap(obj).append(tid)

function notifyAll(obj) called by thread tid:
for all elements [tid;, id;] in CondWaitMap(obj)
Timer.cancel (tid ;,id;)
Mutex WaitMap(obj).append(tid;)
CondWaitMap.delete(obj)

Figure 2. ADETS-SAT: Aspectix DEterministic Thread Scheduling algorithm

Figure 2 shows a specification of the ADETS-SAT
algorithm in pseudo-code. The schedule function handles
the deterministic selection of the active thread. In addition,
the algorithm provides methods for locking and unlocking
reentrant mutexes as well as for wait and notify oper-
ations on conditional variables. Furthermore, it contains
functionality for interrupting wait operations by timeouts.
Messages that arrive from group communication are passed
to ADETS-SAT via the receive method.

The algorithm uses the following data structures:

LockedMap maps object references to threads that
hold the object’s mutex lock. As we want to simulate
the reentrant behaviour of Java monitors, a single thread
may acquire the mutex lock multiple times. The lock-
count of the lock is stored in the map together with the
thread ID. On unlock operations, the lock-count is decre-
mented, and when it reaches zero the object is removed
from LockedMap.

MutexWaitMap maps object references to an ordered

list of threads that want to acquire that object’s mutex lock.
Threads are added to MutexWaitMap if they try to lock
an object’s mutex that is currently held by another thread
(indicated by an entry in LockedMap). Threads are also
added to MutexWaitMap if they were suspended in a wait
operation and subsequently woken up by a notify opera-
tion or timeout.

CondWaitMap maps object references to an ordered
list of threads that use this object to wait on a condition
variable. A unique ID of the wait operation is stored in
the map together with the thread ID. The unique ID is re-
quired to unambiguously map timeout messages to waiting
threads.

The internal schedule method (lines 1-20) is used to
create or resume other threads. A call to schedule is made
when the currently running thread blocks or terminates.
This happens when the current thread blocks in a lock
operation (line 46), when it blocks in a wait operation (line
58), when it makes a nested invocation (line 33), and when

it terminates (line 30). It is also called when the messages
processed by schedule is a TIMEOUT message (as this
message does not directly cause a thread to be created or
resumed, line 18), and if the object is idle and a new request
arrives (line 27).

Unlocking a mutex only causes a local modification
to LockedMap (lines 49-52); other threads that might have
been waiting for the released lock are not resumed imme-
diately. This only happens later in schedule, which is in-
voked as soon as the current thread terminates or suspends.

The schedule method deterministically chooses the
next thread to be created or resumed. First, it checks if
a thread can be resumed without processing any incoming
messages. This may happen if a thread waiting on a lock
or wait operation can continue due to a previous unlock,
notify, or timeout. In this case, there is an object entry
in MutexWaitMap that is not in LockedMap. Otherwise,
schedule handles the next message from the incoming
message queue that may be processed.

If the replicated application issues a time-bounded
wait operation, an internal timer is scheduled (line 60).
As soon as this timer expires, the replicas send TIME-
OUT messages to all group members (lines 36/37). All
replicas potentially send identical TIMEOUT messages for
the same timer. Such identical messages are identified by
a unique ID, which is used to suppress the duplicates at
reception time. In addition, the arrival of the first TIME-
OUT message cancels the local timer if it is still active, and
thus may suppress the emission of an identical TIMEOUT
message. The waiting thread is not resumed immediately,
as this could result in nondeterministic behaviour. Instead,
TIMEOUT messages are processed by schedule only if
all threads are suspended or terminated. In this situation,
the thread may either still be waiting in all replicas, result-
ing in a deterministic resumption by the TIMEOUT, or it
may have been resumed by a notification operation. In the
latter case, the corresponding entry has been removed from
CondWaitMap (lines 66 and 74), and TIMEOUT messages
belonging to this wait operation have no effect (line 14).

S Experimental Evaluation

We provide two different examples to evaluate our schedul-
ing algorithm in comparison to a non-multithreaded ap-
proach. All measurements have been performed on a com-
puter pool of 16 AMD Opteron 2.2 GHz servers running
Linux 2.6.15 connected via a switched 100 Mbit/s Eth-
ernet. We used the Java-based Aspectix ORB [13] with
JGroups 2.2.9.1 [14] as group communication framework.
The JGroups stack was configured to use TCP connections
and TOTAL ordering. All measurements were done with
the Java server VM SDK-1.5 from SUN.

In the first scenario, two replica groups A and B
are created with each consisting of 3 replicas. A varying
number of clients call a method at group A, which in turn
calls a method at group B. Internally, both requests and
the reply from group B to group A are delivered via group

70 T T T T

65" [z msingle threaded (2ms) .

601" | o @ multi threaded (2ms) e

S5 |e-esingle threaded ol
‘250 |44 multi threaded a’ 7
A

5 6 7
number of clients

Figure 3. Nested invocation example

110

100

90F [mwmulti (wait/notify)
+-esingle (poll)

time/invocation (ms)

number of consumers

Figure 4. Producer/Consumer Buffer

communication. All clients are started simultaneously, and
a total of 10,000 invocations is made at A (and, in turn, at
B). Figure 3 shows the average invocation time measured
by the clients; to minimise JIT compilation effects, the
first 200 invocations of each client are not included in the
average. The solid lines (diamond and triangle symbols)
refer to measurements in which the nested invocation re-
turns immediately. Even in this situation, multithreading is
increasingly better with a rising number of clients. In a sec-
ond measurement (dashed lines with circles and squares),
the method called at B suspends for 2 ms before it returns
to simulate computation time. In this case, the benefit from
our multithreaded approach (which allows to accept new
requests at A while the invocation to B is in progress) is
enormous compared to a single-threaded execution.

The second example shows the possible speedup ob-
tained by using condition variables in a simple replicated
buffer example. A producer client can add elements to
the buffer by calling an add method, and a consumer can
remove elements with a remove method. With our multi-
threading support, the example can be implemented using a

condition variable, which is used to block a consumer if the
buffer is empty, until a producer adds an element. This im-
plementation cannot be used in a single-threaded execution
model. An alternative implementation aborts the remove
method with a failure indication, and the client repeatedly
has to call remove until it succeeds. For the measurement,
five replicas of the buffer are created in different hosts.
One client acts as a producer and a variable number of
clients act as consumers, each on a separate node. In the
experiment, the clients wait 1 ms between consecutive calls
to the remove method. The measurements in Figure 4 show
the invocation time of the remove method for an individ-
ual consumer, averaged over 500 invocations. The graph
shows that our deterministic multithreading approach out-
performs the single-threaded execution approach by 2%—
119%. The single-threaded approach shows moderate per-
formance penalties with only a small number of clients.
The delay of the producer thread due to failing remove
calls gets more significant as the number of clients rises. As
expected, our multithreaded approach scales linearly with
the number of clients, since blocked clients will only wake
up if the counter is increased.

6 Conclusions

We have presented a novel approach to deterministic thread
scheduling for replicated objects. Our contribution consists
of the use of source-code transformation for the intercep-
tion of synchronisation statements and the specification of
a scheduling algorithm that fully support the native Java
synchronisation model, including reentrant mutexes, con-
dition variables, and time bounds on wait operations.

Our code transformation tool converts native Java
synchronisation mechanisms into interactions with
our deterministic thread scheduler. Developers can
transparently use Java’s native synchronisation primitives,
and the reuse of existing servant implementations for
replicated services is simplified. The presented ADETS-
SAT algorithm has been implemented as part of the
fault-tolerance support in our CORBA-based Aspectix
middleware. Compared to strictly single-threaded
execution, the algorithm improves performance by using
idle time during nested invocations, it avoids deadlocks in
case of circular or mutual nested invocations, and it permits
the use of condition variables in servant implementations.

References

[1] C. Basile, Z. Kalbarczyk, and R. Iyer, “Preemptive
deterministic scheduling algorithm for multithreaded
replicas,” in Proc. Int’l Conf. on Dependable Sys. and
Networks (DSN), 2003., 2003.

[2] C. Basile, K. Whisnant, Z. Kalbarczyk, and R. Iyer,
“Loose synchronization of multithreaded replicas,” in
Proc. of the 21st IEEE Symp. on Reliable Distributed
Sys. (SRDS’02). 1EEE Comp Soc, 2002.

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

R. Jiménez-Peris, M. Patino-Martinez, and
S. Arévalo, “Deterministic scheduling for
transactional multithreaded replicas,” in SRDS
’00: Proc. of the 19th IEEE Symp. on Reliable
Distributed Sys. (SRDS’00). 1EEE Comp Soc, 2000.

P. Narasimhan, L. E. Moser, and P. M. Melliar-Smith,
“Enforcing determinism for the consistent replication
of multithreaded CORBA applications,” in Proc. of
the 18th IEEE Symp. on Reliable Distributed Sys.
(SRDS’99). IEEE Comp Soc, 1999.

W. Zhao, L. E. Moser, and P. M. Melliar-Smith, “De-
terministic scheduling for multithreaded replicas,” in
WORDS ’05: Proc. of the 10th IEEE Int. Workshop on
Object-Oriented Real-Time Dependable Sys. 1EEE
Comp Soc, 2005.

J. Fraga, C. Maziero, L. C. Lung, and O. G. L. Filho,
“Implementing replicated services in open systems
using a reflective approach,” in ISADS ’97: Proc. of
the 3rd Int. Symp. on Autonomous Decentralized Sys.
IEEE Comp Soc, 1997.

J. Napper, L. Alvisi, and H. Vin, “A fault-tolerant
Java virtual machine,” in Proc. of the Int. Conf. on
Dependable Sys. and Networks (DSN 2003), DCC
Symp., June 2003.

R. Friedman and R. van Renesse, “Transparent fault
tolerant Java virtual machine,” in Proc. of the 22nd
IEEE Symp. on Reliable Distributed Sys. (SRDS’03).
IEEE Comp Soc, 2003.

H. Kopetz, A. Damm, C. Koza, M. Mulazzani,
W. Schwabl, C. Senft, and R. Zainlinger, “Dis-
tributed fault-tolerant real-time systems — the Mars
approach,” IEEE Micro, vol. 9, no. 1, Feb. 1989.

H. P. Reiser, F. J. Hauck, J. Domaschka, R. Kapitza,
and W. Schroder-Preikschat, “Consistent replication
of multithreaded distributed objects,” in Proc. of
the 25st IEEE Symp. on Reliable Distributed Sys.
(SRDS’06), 2006.

J. Gosling, B. Joy, G. Steele, and G. Bracha, Java
Language Specification, Third Edition. Addison-
Wesley Longman Publishing Co., Inc., 2005.

S. Kleiman, D. Shah, and B. Smaalders, Program-
ming with threads. — Mountain View, CA: SunSoft
Press, 1996.

F. J. Hauck, R. Kapitza, H. P. Reiser, and A. L
Schmied, “A flexible and extensible object middle-
ware: CORBA and beyond,” in Proc. of the 5th Int.
Workshop on Software Eng. and Middleware. ACM
Digital Library, 2005.

B. Ban, “Design and implementation of a reliable
group communication toolkit for Java,” Dept. of
Comp. Science, Cornell Univ., Tech. Rep., 1998.

