
Efficient State Transfer
for Hypervisor-Based Proactive Recovery∗

Tobias Distler, Rüdiger Kapitza
Dept. of Comp. Sciences, Informatik 4

University of Erlangen-Nürnberg
Germany

{distler,rrkapitz}@cs.fau.de

Hans P. Reiser
LaSIGE, Departamento de Informática

University of Lisboa
Portugal

hans@di.fc.ul.pt

ABSTRACT
Proactive recovery of replicated services is a novel approach
that allows tolerating a potentially unlimited number of ma-
licious faults during system lifetime by periodically restart-
ing replicas from a correct state. Recovering a stateful
replica requires a time-consuming transfer and verification of
the state. During this time, the replica usually is unable to
handle client requests. Our VM-FIT architecture harnesses
virtualization to significantly reduce this service unavailabil-
ity. Our approach allows recovery in parallel with service
execution, and uses copy-on-write techniques and provides
efficient state transfer support between virtual replicas on a
host.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance of
Systems; D.4.5 [Operating Systems]: Reliability; C.2.4
[Computer-Communication Networks]: Distributed
Systems

Keywords
Intrusion Tolerance, Proactive Recovery, State Transfer

1. INTRODUCTION
Replication is a popular mechanism for architecting de-

pendable distributed applications. Byzantine state machine
replication [1] allows tolerating arbitrary malicious faults.
However, the correctness of the algorithms used in such sys-
tems depends on tight bounds on the number of faults. Typi-
cally, a system with n replicas can tolerate up to f Byzantine
faults only if n > 3f . Proactive recovery [2] is a technique
to periodically refresh replicas and thus to eliminate faults.

∗This work was partially supported by the EU through NoE
IST-4-026764-NOE (RESIST/FOREVER) and project IST-
4-027513-STP (CRUTIAL), and by the FCT through the
Multiannual Programme.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WRAITS’08, April 1, 2008 Glasgow, Scotland
Copyright 2008 ACM 978-1-59593-986-9 ...$5.00.

Systems with proactive recovery can tolerate an unlimited
number of faults during system lifetime as long as the num-
ber of faults remains bounded within the recovery period.

In previous work [3,4] we have presented VM-FIT, a repli-
cation architecture based on virtualization technology. In
VM-FIT, the replication logic is provided in an isolated sys-
tem domain, while application replicas are executed in sep-
arated virtual machines. The architecture supports Byzan-
tine fault tolerance and offers support for proactive recovery.

In this paper we discuss state transfer in a proactive re-
covery system. In practice, most distributed applications
will have state, and proactive recovery requires transferring
the state from existing replicas to a newly recovered one. To
minimize the time needed for recovery, optimized strategies
for state transfer are necessary. We have implemented such
efficient strategies in an extended VM-FIT prototype. An
abstract state representation allows state transfer between
heterogeneous replicas. Virtualization allows parallelizing
the state transfer with service execution, and thus minimizes
the unavailability during recovery. We compare early results
of a stream-based and a disk-remapping-based approach for
state transfer between replicas in virtual machines of the
same host and show that both approaches perform similarly.

In the next section, we give a short overview of the VM-
FIT architecture. In Section 3 we provide a classification
of application state variants, and illustrate our optimized
approach. Section 4 presents an experimental evaluation of
our current prototype. Section 5 discusses related work, and
Section 6 concludes.

2. THE VM-FIT ARCHITECTURE
The VM-FIT prototype implements a generic architecture

for intrusion-tolerant replication of network-based services
using virtualization technology. In previous publications [3,
4] we have presented the basic architecture and discussed the
advantages for doing proactive recovery, without focussing
on the efficiency of state transfer.

2.1 System and Threat Model
The VM-FIT architecture makes the following assump-

tions on system model and threat model:

• All client–service interaction is intercepted at the net-
work level. Clients exclusively interact with a remote
service on the basis of request/reply network messages.

• The remote service can be modelled as a deterministic
state machine. This property allows replication using
standard state machine replication techniques.



Figure 1: VM-FIT basic replication architecture

• Service replicas, including their operating system and
execution environment, may fail in arbitrary (Byzan-
tine) ways. At most f < bn−1

2
c replicas may fail within

a single recovery round.

• The remaining components of the system (which in-
clude the hypervisor and a trusted system domain) fail
only by crashing.

2.2 Prototype
The VM-FIT prototype is based on the Xen 3.1 hypervi-

sor. In the basic system architecture (see Figure 1), a replica
manager is running within the privileged Domain 0, while
service replicas are being executed in completely separated
application domains (Guest OS).

The trusted replica manager includes a group communi-
cation system for consistently distributing client requests to
replicas, a voter, and the logic for proactive recovery. The
placement of the group communication system in the trusted
domain implies that we must rely on the correctness of this
part of the system. This might seem to be strong assump-
tion, but the alternative of implementing this functional-
ity in the untrusted domain using BFT algorithms suffers
from similar problems: It would require additional means
to avoid that a vulnerability in the BFT group communi-
cation can be exploited simultaneously in multiple replicas.
Formal verification techniques can more easily be used for
group communication in the benign trusted domain than for
more complex systems in the Byzantine domain.

Service replicas, which include an operating system, a
middleware infrastructure, and a service implementation,
are placed in isolated application domains and can be
fully heterogeneous. Diversity of replicas is essential in an
intrusion-tolerant system to maintain fault-independence of
the replicas. This diversity has an important impact on state
transfer: It is not sufficient to simply capture the on-disk or
in-memory state of a replica for transferring it to another
replica. Rather, an additional conversation between diverse
state representations of different replicas is required. VM-
FIT simplifies the provision of diversity, as the replication
logic is deployed completely separated from the replicas in
an isolated domain. The replicas itself therefore do not need
to implement replication mechanisms.

Another advantage of the VM-FIT architecture is its sup-
port for a hybrid fault model. The fault model for the ap-

plication domain and for the Domain 0 with the replication
logic can be defined independently. Assuming a Byzantine
model for both domains results in a traditional BFT replica-
tion scenario. The typical configuration of VM-FIT assumes
crash-stop behaviour of the replication logic and Byzantine
faults in replica domains. This configuration allows coping
with any kind of failure in application domains, including
random non-crash faults and intentional malicious faults.
On the other hand, only 2f + 1 replicas are needed to toler-
ate f malicious faults with in application domains.

The previous VM-FIT prototype already supported proac-
tive recovery by periodically triggering the replacement of
the current replica with a new replica in a new virtual ma-
chine. Creating a new domain in parallel with the service
execution allows a reduction of the time of unavailability
during the transition from “old” to “new” replica instance.

3. STATE TRANSFER

3.1 System Model: Classification of State
An efficient state transfer mechanism has to cope with the

heterogeneity of replicas and the irrelevance of large parts of
internal replica state. For example, many internal variables
of operating system and middleware are irrelevant for the
logical state of a replicated service. We capture this situ-
ation with a system model that distinguishes system state,
volatile application state, and persistent application state.

The system state includes all internal configuration data
of operating system and middleware, while the application
state pertains to the replica implementation. The system
state requires no consistent replication mechanisms. Our
architecture assumes the existence of a secure code storage
from which each replica can restore a correct system state.
The application state is the only relevant state that needs
to be kept consistent across replicas.

We divide the application state into volatile state and per-
sistent state. Volatile state refers to all kind of data stored
in memory. Usually, only small parts of the volatile state
have to be considered for state transfer after the application
has reached a consistent state (e.g., no requests are currently
being processed). Persistent state represents all data that
is stored on disk and usually builds the main part of the
application state.

The internal representation of volatile and persistent state
may differ between replicas. In fact, the desired replica di-
versity makes it unlikely that two replica instances use iden-
tical state representations. However, it is assumed that the
state is kept consistent from a logical point of view, and
that all replicas are able to convert the internal application-
specific state into an external representation of the logical
state, in the following referred to as abstract state, and vice
versa. Such an approach requires explicit support in the
replica implementations to transform their state.

The separation of system state and application state helps
to reduce the amount of state data that needs to be trans-
ferred. The complex transfer of real state can be limited
to the minimally necessary application state, while the ba-
sically static system state can be transferred directly from a
single code base. The secure code base can be available lo-
cally on each replica host, and thus transferring the system
state does not require any network communication.

In our architecture, the replicated application is respon-
sible for distinguishing between these state categories and



transforming from and to abstract state. In practice, a wrap-
per approach as proposed by BASE [5] could be used for sep-
arating the transformation code from the application logic
itself. This strategy would also simplify the reuse of exist-
ing code; for example, a wrapper could request a standard
SQL dump from a database application and then convert the
dump into a normalized format. In the scope of this paper,
we only assume that the replication manager can trigger that
the application transforms its state to the abstract format
and back.

3.2 Basic State Transfer Techniques
Most systems supporting proactive recovery require re-

booting the entire machine and relying on a secure read-only
image (e.g., a cdrom). In this case, the recovering replica is
unavailable during reboot and application state transfer.

The use of a hypervisor allows the coexistence of mul-
tiple replicas in separate virtual machines on a single ma-
chine. This helps to reduce the downtime of a node, as the
currently active replica (“senior replica”) can remain avail-
able while the new replica (“shadow replica”) is being booted
from a secure code base. It also simplifies the state trans-
fer, as the state can be passed directly from the senior to
the shadow replica. The validity of the state can be verified
with identical state checksums from at least f + 1 replicas.
Furthermore, the hypervisor-based approach enables the si-
multaneous recovery of all replicas. Conventionally, only
parts of the replicas should be restarted at a time, in order
to avoid complete unavailability [6].

Independently from using a hypervisor, the request pro-
cessing during recovery can be handled in different ways:
One approach is to block all replicas for the whole recovery
time. Alternatively, the request processing is only blocked
while creating a snapshot of the application’s current state,
which later on serves as a basis to initialize the newly in-
stantiated replica. In the latter case, as service delivery is
resumed after capturing the state, requests processed after-
wards have to be re-executed by the new replica before it
becomes fully functional. VM-FIT supports the latter vari-
ant for minimizing the time of unavailability, and is able to
recover all replicas simultaneously.

3.3 Conceptual Phases of a State Transfer
The state transfer between a senior application replica

and a shadow replica can be structured in several steps, as
illustrated by Figure 2:

Capture: First, the state of the senior replica has to be cap-
tured into a snapshot of all application-relevant volatile and
persistent state. Before creating the snapshot, the replica
has to finish processing all requests in execution.

Conversion: Next, the senior replica converts the snapshot
an application-specific format to an abstract format that all
replica instances can interpret.

Transmission: The replica manager coordinates a direct
transmission of abstract state from the senior replica to the
shadow replica.

Verification: Before initializing the shadow replica with
the new state, it is necessary to verify that the state is not
corrupted and identical to the abstract state of all other
correct replicas. Therefore, the shadow replica generates
checksums over all parts of the state and forwards them
to the replica manager, which broadcasts the checksums to
all other replica managers. After receiving f + 1 identical

!"#$%&'("#

!)*+,&%

-%&(.(/)+("#

0%'+"&)+("#

12"*+("#

!"#$%&'(")*$+,

!-,.%/'(")*$+,

0&123".

4%5,$#

3&)#'4(''("#

5&&"&6!"&&%/+("#

Figure 2: Conceptual phases of a state transfer

checksums, the replica manager compares the value with
the locally generated checksum. If identical, it informs the
shadow replica about the correctness of the checkpoint.

Error correction: In case of wrong checksums, the replica
manager has to ask another replica manager with a valid
checksum for the correct state data. The correct data is
then passed to the shadow replica.

Restoration: The shadow replica in turn converts each ver-
ified part of the abstract state to the implementation-specific
representation.

Adoption: Finally, the shadow replica can start executing
on the basis of the received state.

There are two important points to note. First, the state
conversion from application-specific format to the abstract
one takes place in the senior replica. This operation might
be complex and intruders might try to exploit the conver-
sion routines so this should not be handled by the replica
manager or the shadow replica. Second, the abstract state is
directly forwarded to the shadow replica before validation.
The rational behind this is to reduce data transfer, as it is
cheaper to send only the checksums to the replica manager
instead of the whole data and then generate them.

3.4 Preparing the State Transfer
Before the state transfer, the application state has to be

captured by generating a consistent checkpoint. For this
purpose, VM-FIT delays all subsequent client requests in
the replica manager and sends a take-snapshot message to an
application-specific replica wrapper, which conceptionally is
part of the VM-FIT architecture. The wrapper instructs
the application to write all replication-relevant volatile and
persistent state after pending requests are finished.

The completion of this operation is announced to the
replica manager, which in turn reacts by detaching the disk
volume with the application data from the replica domain.
Immediately after that it reattaches the volume twice to the
same senior domain: one time as a read-only volume and
another as a copy-on-write volume. The read-only volume
contains the snapshot and is used for the state transfer. The
copy-on-write (cow) volume on the other hand is used as a
basis for further service execution.

Thus the senior replica can take over request processing
and change the state of the cow volume without affecting
the snapshot. When the senior replica starts processing re-
quests, the replica manager logs these requests in order to
re-execute them at the shadow replica. This way the actual
duration of replica unavailability can be reduced to the tasks
of taking the snapshot and reattaching the disk.



3.5 Stream-based State Transfer
In the stream-based state transfer approach, the senior

replica reads the application-specific state from the snap-
shot volume and converts the state to the abstract format.
The converted state is transferred to the shadow replica in
parallel to its generation. At the shadow replica, the replica
wrapper reads the stream block-wise and builds a checksum
over each received block. The checksum is then transmitted
to the local replica manager, which sends the checksum to all
other replica managers using group communication. As soon
as f remote checksums have been received that match the
local checksum (f + 1 identical values), the shadow replica
is signalled that it can safely convert the block from the ab-
stract format to the application-specific representation. The
reception of f + 1 identical remote values, not matching the
local value, indicates a state corruption. In this case the
shadow replica has to be initialized by requesting all subse-
quent state blocks from a remote replica manager that sup-
plied the correct checksum. As the trusted remote manager
has already verified the checksum, no further verification of
the received remote blocks is necessary.

3.6 Disk-based State Transfer
The disk-based state transfer approach uses the support

of the hypervisor not only for the fast generation of a snap-
shot, but also for the actual state transfer using a dedicated
transfer disk volume.

After the snapshot volume has been attached as described
in Section 3.4, the senior replica generates the abstract state
and writes it to the transfer volume. After completing this
operation, the replica manager is informed and detaches this
volume. This way, the senior replica is no longer able to
modify the volume. The replica manager then maps the
disk volume into the shadow replica. The shadow replica
generates checksums on a per-file basis and forwards them
to the replica manager, which in turn uses group commu-
nication to verify the checksum similar to the stream-based
approach. As soon as a file is verified it can be converted
into the service-specific representation. If the verification
fails, the replica manager requests the file from a remote
manager that has a valid checksum.

3.7 Finishing the State Transfer
After converting abstract state to local application-

specific state, the shadow replica is ready to execute client
requests. First, it has to re-execute all requests executed by
the senior replica after the snapshot has been taken, discard-
ing all client replies, until becoming up-to-date. After that,
the replica manager can safely shut down the senior replica
and integrate the shadow replica into the replica group as
the new senior replica.

4. EXPERIMENTAL EVALUATION
In a previous publication [3] we have evaluated the ba-

sic advantage of hypervisor-based proactive recovery with-
out considering the impact of state transfer: The VM-FIT
architecture allows remaining available during proactive re-
covery of a node without requiring additional replicas. In
a sample scenario, a traditional shutdown/reboot recovery
caused downtimes of up to 40s, while downtime with the
VM-FIT approach never exceeded 1s. Unavailability during
recovery can also be avoided by adding additional replicas,
but this not only increases hardware cost, but also makes it

Domain Operating System Kernel

Dom0 Linux (Ubuntu) 2.6.18-xen

Linux (Debain) 2.6.19-4-generic
DomU Net BSD NetBSD 4.0 RC4

Open Solaris SunOS 5.11

Table 1: Testbed Setting

more difficult to achieve diversity of the replicas, which is a
critical prerequisite for building intrusion-tolerant systems.
In this paper, we focus on evaluating approaches for opti-
mizing the transfer of large system states in the VM-FIT
architecture.

4.1 Environment
All simulations presented here use four equally equipped

machines (Intel Core 2 CPU with 2.4 GHz, 2 GB RAM)
linked with switched 1Gb/s Ethernet. One host simulates
500 client applications using individual threads. At the be-
ginning of a test run, each client establishes a single con-
nection to one of the VM-FIT hosts, keeping it open from
then on. After that, each client repeatedly sends service re-
quests, waiting for a reply before sending the next request.
Three hosts run the VM-FIT prototype with identical Do-
main 0 configurations (Table 1) using the Spread toolkit to
perform group communication. Different operating systems
(Debian Linux, NetBSD, and OpenSolaris) are deployed in
the replica domains, in order to create a heterogeneous en-
vironment. The service component is a Java application
capable of managing a trivial data base, i.e. delivering and
modifying specific record sets on request. No heterogeneity
is used at the application level, but in order to simulate the
work load during the conversion and restoration step, the
whole state is copied each time.

4.2 Transmission Alternatives
The first experiment provides a comparison of the two

transmission alternatives mentioned above. A state of size
150 MB (purely persistent) is transferred twice, using a) the
stream-based and b) the disk-based approach.

The measurements attained from this evaluation are pre-
sented in Figure 3. Both graphs are synchronized at the
beginning of state capturing. The results show that for
medium sized states the stream-based transmission is supe-
rior to the disk-based variant: In the first case, state trans-
fer is done in 40 seconds, while in the second case it takes
about twice the time (77 seconds). Both approaches add no
additional service unavailability to the 3 seconds necessary
during state capture. However, transmitting the state via
stream affects the throughput to a greater extend as fur-
ther direct inter-domain communication operations are per-
formed. Using a transfer volume, on the other hand, only
includes local disk access and therefore achieves an enhanced
average performance during state transfer.

In the measurements we observed significant performance
differences between Debian, BSD, and Solaris. Due to this
heterogeneity, different replicas advance at different speeds,
and some complete the recovery process earlier than others.
In the stream-based simulation, the nodes running Debian
and BSD finish recovery after 22 seconds, resulting in a vis-
ible increase in throughput. The ongoing recovery at the
Solaris host causes performance degradation until t = 40s.



0 11077403
time in s

0

500

1000

1500

2000

2500
th

ro
ug

hp
ut

 in
 r

eq
ue

st
s/

s

by stream
by disk

Figure 3: Comparison of state transfer approaches

4.3 Transfer Phases
A second simulation further investigates the disk-based

transmission approach with a large, purely persistent state
(1 GB). The results of the simulation (Figure 4) show that
the recovery process can be divided into six stages regarding
the influence on the service’s throughput.

During the first stage (I) each node sets up a shadow do-
main. The booting of a Xen guest domain consumes local
resources, decreasing the remaining system’s throughput by
approximately 20%. With all shadow domains being set
up after nearly 2.5 minutes, the state transfer process it-
self can be initiated. At first, the processing of client re-
quests by application replicas is suspended during the stage
of state capturing (II), causing a temporary service down-
time. The copy-on-write approach used for state capturing
in VM-FIT minimizes this period of system unavailability to
an interval of about 3-4 seconds. After checkpoint creation
the replicas can resume their service, and thus no additional
downtime is necessary during the following stages of system
recovery. The next step of state transfer is the conversion
into a common abstract representation (III). This work con-
sumes CPU and disk resources in parallel to the execution of
client requests, and thus reduces service throughput. Hav-
ing passed the conversion stage, all further steps, including
the state’s verification, restoration, and adoption, can be
executed without significant influence on the senior replicas
(IV). As soon as a shadow replica has been updated with the
transferred state, the local replica manager starts the update
procedure, i.e., it forwards the buffered client requests. This
action marks the beginning of a period of high system load,
as the replica manager has to cope with message traffic from
two replicas processing requests in parallel. As a result, the
achievable request throughput temporarily drops to about
half the base level (V). After finishing the update step, the
shadow replicas replace the senior replicas and the service
can again be provided at full efficiency. The shutdown of the
previous senior replica is visible as a short-term decrease of
the global throughput (VI).

The development of the service’s performance during the
state update phase (V) illustrates another example of how
heterogeneity of replicas affects the recovery process: In this
case, the Debian as well as the BSD shadow domain start up-
dating their states while the node running the Solaris domUs
is still transferring the data. Therefore, the throughput does
not reach its minimum immediately but stays temporarily
on an intermediate level. An even greater impact of imple-
mentation diversity is visible at the end of the state update

-240 0 3 600-148 174     507 521 68
time

0

500

1000

1500

2000

2500

th
ro

ug
hp

ut

II III IV V VII

Figure 4: Transfer phases

phase as each replica completes the process at a certain point
in time. Subsequently, the throughput is not rising in one
but three steps: The first improvement follows the switch-
ing of service delivery to the shadow replica on the node
running the Debian domUs at t = 338s. The next one to
finish updating is the BSD shadow replica at t = 427s. Fi-
nally, transferring the state between Solaris replicas in this
experiment finishes at t = 507s.

4.4 Conclusions
Our measurements show that even for large system

state, a hypervisor-based recovery approach achieves a small
recovery-induced downtime with a minimal number of repli-
cas. Suspending a service for 3 seconds on each recovery is
acceptable for many types of applications, e.g. web servers.
Assuming a recovery period of, for example, 10 minutes it
guarantees an availability of over 99%.

For some services such a delay might not be acceptable. In
this case, our approach could be combined with the addition
of new replicas, which would allow completely hiding the ser-
vice downtime from clients. Alternatively, the current proto-
type offers potential for optimizations. The state-capturing
process can be improved by enhancing the performance of
system-inherent operations like attaching and detaching a
block device to a Xen domain or reconfiguring a logical vol-
ume for copy-on-write usage. Besides that, well-known tech-
niques for Xen migration [7, 8] could be integrated into our
approach to create a service mirror within milliseconds, with
the original image immediately continuing to serve requests
and the mirror handling the state transformation.

5. RELATED WORK
Silva et al. [9] propose a proactive recovery approach sim-

ilar to VM-FIT for software rejuvenation, but mainly fo-
cus on recovering from error situations caused by “software
ageing”. Ramasamy and Schunter [10] use combinatorial
modelling to analyse how the use of virtualization can af-
fect system dependability. Such a careful analysis allows
a better judgement on the conditions that are necessary
to make virtualization-based replication more reliable than
non-replicated one.

Several authors have previously used proactive recovery in
Byzantine fault tolerant systems [2, 11–13]. Sousa et al. [6]
define requirements on the number of replicas that avoid po-
tential periods of unavailability given maximum numbers of
simultaneously faulty and recovering replicas. Our approach
instead reduces unavailability during recovery by performing



most of the recovery in parallel to normal system operation
in the basis of virtualization technology.

To avoid long service interruptions during state transfer,
group communication systems such as Eternal [14] and work
by Birman [15] provide solutions in which the system or
parts of the system are blocked only for the time of the
state acquisition. However, both approaches do not consider
Byzantine faults.

The problem of state transfer has previously been ad-
dressed by the BFT protocol of Castro and Liskov [2].
They recognize that efficiency of state transfer is essential in
proactive recovery systems and propose a solution that cre-
ates a hierarchical partition of the state in order to minimize
the amount of data to transfer. BASE [5] proposes abstrac-
tion for state transfer in a heterogeneous, Byzantine fault
tolerant system. In addition, BASE provides wrapper func-
tions for handling non-determinism, a technique that could
also be added to our architecture. VM-FIT uses a similar
abstraction approach, but also parallelizes state transfer and
recovery with normal operation, as well as exploits virtual-
ization for minimizing state transfer time.

Clark et al. [7] describe a technique for migrating Xen-
based virtual machines between hosts. Their pre-copy ap-
proach is very efficient (full migration of virtual machine
on LAN within milliseconds), but only transfers the mem-
ory image, not the persistent on-disk state. Bradford et
al. [8] extend this approach to transfer persistent disk state
as well. Both approaches assume homogeneous nodes and
do not consider state verification. It might be feasible to add
state verification to these approaches and thus apply them
to BFT replication. However, the main advantage of the
VM-FIT approach is its support for heterogeneous systems,
which not only includes heterogeneous hardware, but also
diversity at the software level.

6. SUMMARY
In this paper we have presented approaches for effi-

cient state transfer between heterogeneous replicas in an
intrusion-tolerant replication system with proactive recov-
ery. Our approach creates a new replica instance using vir-
tualization technologies and creates atomic state checkpoints
using hypervisor-based copy-on-write techniques. Replicas
continue to handle client requests while state is transferred
to a new replica instance, thus maintaining system availabil-
ity during state transfer. For the moment, measurements
attained from evaluations conducted with our prototype al-
low no final conclusions whether the stream-based or the
disk-based state transfer alternative is more efficient.

We would like to thank the anonymous reviewers for their
encouraging comments that helped to improve the final ver-
sion of this paper.

7. REFERENCES
[1] M. Castro and B. Liskov. Practical Byzantine fault

tolerance. In OSDI ’99: Proc. of the third Symp. on
Operating Systems Design and Implementation, pages
173–186. USENIX Association, 1999.

[2] M. Castro and B. Liskov. Proactive recovery in a
Byzantine-fault-tolerant system. In Fourth Symp. on
Operating Systems Design and Implementation
(OSDI), San Diego, USA, October 2000.

[3] H. P. Reiser and R. Kapitza. Hypervisor-based
efficient proactive recovery. In Proc. of the 26th IEEE

Symp. on Reliable Distributed Systems - SRDS’07
(Oct 10-12, 2007, Beijing, China), pages 83–92, 2007.

[4] H. P. Reiser and R. Kapitza. VM-FIT: supporting
intrusion tolerance with virtualisation technology. In
Proc. of the 1st Workshop on Recent Advances on
Intrusion-Tolerant Systems (Lisbon, Portugal, March
23, 2007), pages 18–22, 2007.

[5] R. Rodrigues, M. Castro, and B. Liskov. BASE: Using
abstraction to improve fault tolerance. In Proc. of the
18th ACM Symp. on Operating System Principles,
pages 15–28, Banff, Canada, October 2001.

[6] P. Sousa, N. F. Neves, P. Verissimo, and W. H.
Sanders. Proactive resilience revisited: The delicate
balance between resisting intrusions and remaining
available. In SRDS ’06: Proc. of the 25th IEEE Symp.
on Reliable Distributed Systems (SRDS’06), pages
71–82, 2006.

[7] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield. Live migration
of virtual machines. In Proc. of the 2nd
ACM/USENIX Symposium on Networked Systems
Design and Implementation (NSDI), pages 273–286,
May 2005.

[8] R. Bradford, E. Kotsovinos, A. Feldmann, and
H. Schiöberg. Live wide-area migration of virtual
machines including local persistent state. In VEE ’07:
Proc. of the 3rd Int. Conf. on Virtual Execution
Environments, pages 169–179. ACM, 2007.

[9] L. M. Silva, J. Alonso, P. Silva, J. Torres, and
A. Andrzejak. Using virtualization to improve
software rejuvenation. In Proc. of the 6th IEEE Int.
Symp. on Network Computing and Applications (NCA
2007), pages 33–44, 2007.

[10] H. V. Ramasamy and M. Schunter. Architecting
dependable systems using virtualization. In Workshop
on Architecting Dependable Systems: Supplemental
Volume of the 2007 International Conference on
Dependable Systems and Networks (DSN-2007), 2007.

[11] B. Barak, A. Herzberg, D. Naor, and E. Shai. The
proactive security toolkit and applications. In CCS
’99: Proc. of the 6th ACM conference on Computer
and communications security, pages 18–27, New York,
NY, USA, 1999. ACM Press.

[12] C. Cachin, K. Kursawe, A. Lysyanskaya, and
R. Strobl. Asynchronous verifiable secret sharing and
proactive cryptosystems. In CCS ’02: Proc. of the 9th
ACM conf. on Computer and communications
security, pages 88–97, New York, NY, USA, 2002.
ACM Press.

[13] R. Ostrovsky and M. Yung. How to withstand mobile
virus attacks (extended abstract). In PODC ’91: Proc.
of the 10h annual ACM Symp. on Principles of
Distributed Computing, pages 51–59, 1991.

[14] P. Narasimhan, L. Moser, and P. M. Melliar-Smith.
State synchronization and recovery for strongly
consistent replicated CORBA objects. In DSN ’01:
Proc. of the 2001 Int. Conf. on Dependable Systems
and Networks, pages 261–270. IEEE Computer
Society, 2001.

[15] K. P. Birman. Building secure and reliable network
applications. Manning Publications Co., Greenwich,
CT, USA, May 1997.


