Decentralised Dynamic Code Management for OSGi

Holger Schmidt, Jon H. Yip,
Franz J. Hauck
Institute of Distributed Systems
Ulm University
Germany

{holger.schmidt,franz.hauck}@uni-
ulm.de

ABSTRACT

Originally designed for the management of network-attached
devices OSGi builds a de-facto standard to modularise all
kinds of complex Java applications. It enables deployment
and updating of components, which are called bundles, by
supporting automatic resolution of inter-component depen-
dencies. Despite these benefits the OSGi specification omits
dedicated support for discovery, selection and loading of lo-
cally unavailable bundles. However, this is a key require-
ment for large distributed applications especially in dynamic
and heterogeneous environments. Current solutions are
server-based and provide a central bundle repository thereby
representing a single point of failure. Furthermore, these ap-
proaches lack support for automatic bundle selection based
on non-functional properties such as resource demand or
performance.

We introduce the D*CM infrastructure accounting these
issues and enabling automatic discovery, selection and load-
ing of bundles in a distributed system on basis of the peer-
to-peer platform JXTA. By providing extended bundle de-
scriptions, non-functional properties can be automatically
evaluated for bundle selection and dependency resolution.

Categories and Subject Descriptors

D.2.11 [Software Engineering)]: Software Architectures—
Domain-specific architectures; C.2.4 [Computer Commu-
nication Networks]: Distributed Systems—Distributed
applications

General Terms
Design

Keywords

OSGi, Dynamic Loading of Code, Dependency Resolution,
Automatic Code Selection, Non-functional Properties

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

MINEMA’08, April 1, 2008 Glasgow, Scotland

Copyright 2008 ACM 978-1-60558-122-4/08/04 ...$5.00.

10

Radiger Kapitza
Dept. of Comp. Sciences
Informatik 4
University of Erlangen-NUrnberg
Germany

rrkapitz@cs.fau.de

1. INTRODUCTION

Originally, OSGi [1] was designed to provide a lean Java-
based component system for the management of network-
attached, resource-restricted devices, such as gateways and
set-top boxes. Until now, OSGi emerged to a de-facto stan-
dard for modularising and managing Java-based software,
such as car infotainment systems, integrated development
environments (IDEs, e.g., Eclipse) and application servers
(e.g., WebSphere). OSGi is successful because of its dy-
namic component updating and dependency resolution sup-
port. It makes few assumptions on components enabling
almost all-purpose use.

Whereas the instantiation and updating of OSGi compo-
nents is easy and well-supported, dynamic loading and de-
ployment of locally unavailable components is not. This is
not part of the OSGi specification. Recent implementations
try to solve this issue by providing custom services that con-
nect to a bundle repository, such as the OSGi Bundle Repos-
itory (OBR), or an update site (e.g., for Eclipse plug-ins).
However, this is a very restrictive server-based approach as
it relies on central services representing a single point of fail-
ure. Furthermore, such solutions lack support for dynamic
selection among multiple functionally equivalent bundles on
the basis of non-functional properties such as resource de-
mand or performance. This is not an issue if a developer
selects an IDE extension bundle that has only one available
implementation. In contrast to this, support for automatic
selection is needed to install and update bundles compos-
ing an infotainment system that runs on different hardware
and that can be connected to a variety of different devices.
This issue becomes even more serious if OSGi is used to
implement large distributed applications in a heterogeneous
environment, which is the case for our own research work on
self-adaptive mobile processes [2]. There, complex tasks are
dynamically distributed as applications over multiple nodes.

Accounting the lack for dynamic selection and deployment
in OSGi, this paper proposes support for on-demand bun-
dle selection and integration using the peer-to-peer platform
JXTA. The proposed decentralised dynamic code manage-
ment (D?CM) platform supports the generic and automatic
selection among functionally-equivalent components. In this
work, we present tailored support for OSGi. Additionally,
our extended discovery service for JXTA provides optimised
discovery and selection.

The paper is structured as follows: Section 2 gives a
brief introduction in OSGi and JXTA. The following sec-

tion shows related work and Section 4 describes our D?*CM
platform with an accompanying basic example application.
We conclude and present future work in Section 5.

2. FUNDAMENTALS

In this section, we present technologies that are the basis
for our D°CM service. First, we give an introduction to
OSGi and then we provide information on JXTA.

2.1 OSGi

OSGi is an open, standardised and component-based ser-
vice platform defined by the OSGi Alliance [1]. It allows
the installation, update and uninstallation of components at
runtime. Such components, which are plain Java archives
(JAR) with a special manifest with metadata, are called
bundle and can contain libraries or applications. Bundles
are able to share functionality on the basis of Java packages
that can be exported and imported. The OSGi framework
manages the coordination of such bundle dependencies.

2.2 JXTA

JXTA is an open platform providing a general basis for
peer-to-peer (P2P) applications [3]. Therefore, JXTA spec-
ifies protocols to implement fundamental P2P functions [4].

JXTA nodes are called peers. There exist different types
of peers for implementing a super peer infrastructure; stan-
dard peers are called edge peers and super peers are called
rendezvous peers managing a set of edge peers. Peers form
peer groups for restricting message propagation. Each JXTA
resource (e.g., peers and peer groups) is uniquely identified
and represented by an advertisement. Advertisements are an
XML metadata structure describing resources that are used
for resource publication and discovery. In order to provide
an abstraction from the underlying network infrastructure,
JXTA introduces pipes as communication channels.

JXTA provides a generic module framework for support-
ing dynamic service integration using code loading. For
this purpose, the following advertisements are introduced.
A module class advertisement announces the existence of
a module and thus provides an abstraction for the class
of provided functionality. This advertisement is referenced
by a module specification advertisement specifying different
module versions following a specific protocol, which is it-
self referenced by a module implementation advertisement
providing implementation-specific details such as the code
location. However, support for dynamic loading of code in
JXTA is insufficient, because real implementations require
further conventions [5]. These lead to platform-specific im-
plementations that are not interoperable with each other.

3. RELATED WORK

There are a number of systems that are server-based and
rely on a central repository exposing a single point of failure.

Java Web Start [6] is a software deployment system using
the Java Network Launching Protocol and describing the
code and the requirements of a Java application in XML.
This results in a self-contained application that is installed
over the Internet via a special Java Web Start client. How-
ever, there is no support for non-functional properties or
automatic dependency resolution as it is required for OSGi.

In previous work [7] we investigated dynamic loading of
code in context of CORBA by proposing the Dynamic Load-
ing Service (DLS). The DLS allows applications to request

11

locally unavailable functionality by just passing the fully-
qualified name of an IDL interface. The local DLS instance
requests information from a remote repository that prese-
lects suitable implementations. Finally, the best fitting im-
plementation of the demanded functionality is loaded and
instantiated. In contrary to the approach proposed in this
paper the DLS uses a classic client-server model and does
not provide support for automatic implementation selection
based on non-functional properties. These cases have to be
manually resolved by an application-specific handler.

Paal et al. [8, 9] developed a proprietary code loading
infrastructure on basis of multiple application repositories.
These are queried at runtime by a custom application loader.
In contrast to our D?CM platform, their infrastructure does
not provide compatibility to OSGi, is not able to consider
non-functional properties and application repositories have
to be preconfigured before runtime.

The OSGi Bundle Repository (OBR) offers a central
repository for OSGi bundles. This is a straightforward solu-
tion that is neither scalable nor fault-tolerant. Furthermore,
it misses support for automatic bundle implementation se-
lection based on non-functional properties.

Frenot et al. [10] partially solved these issues by distribut-
ing the OBR in a peer-to-peer network. However, they only
support selection and loading of bundles based on Java pack-
age dependencies but omit support for the selection based
on service dependencies with non-functional properties.

The issues of a client-server solution, i.e. fault-tolerance
and scalability, have also been solved by our JXTA based
code loading service [5, 11]. However, in addition to this
work, the proposed system provides support for automatic
code selection on basis of non-functional properties and a
special JXTA discovery service that is optimised for search-
ing and selecting suitable implementations. Additionally,
D?CM provides means for automatic dependency resolution
and is integrated into the OSGi framework.

A JXTA-based infrastructure for remote loading of Java
classes is presented in [12]. The approach is implemented
as an alternative to the standard Java class loader mech-
anism. However, in contrast to our approach it does not
provide means to automatically describe, search and select
code fulfilling particular non-functional properties.

R-OSGi [13] enables addressing remote OSGi services in a
transparent way comparable to Java RMI. Instead of loading
code on demand into the local OSGi framework, remote ser-
vices are used. Thus, the support of R-OSGi is orthogonal
to D*CM and both frameworks can be used in conjunction.

4. DECENTRALISED DYNAMIC CODE
MANAGEMENT PLATFORM

In this section we present the design of our D°CM plat-
form for OSGi using JXTA as underlying P2P technology.
As a basic accompanying example application we introduce
a printer driver service for OSGi-enabled devices. When-
ever a printer is connected to such a device, an appropri-
ate printer driver bundle can be automatically searched, se-
lected, loaded and finally installed with our D? CM platform.

4.1 Requirements

OSGi bundles represent the loadable units within D*CM.
For being manageable these have to be describable (see Fig-
ure 1). Interfaces define the component’s functionality and

Functional .
Properties Compatibility
-

Non-functional
Properties
<
. i -
'~ 4 .
Interfaces Ny L Dependencies
-

~.. -
~q D=’

4(

[y

O— Component

Figure 1: Description of OSGi bundles

Resolve

™ Dependencies

Selection Transfer |

.—> Discovery (—|
Start ‘\

)

End

Figure 2: OSGi bundle discovery and loading

can be represented by a platform- and language-independent
description, such as IDL or WSDL. For OSGi, it is sufficient
to use plain Java interfaces for that purpose. Compatibil-
ity information describes the runtime environment like the
needed platform, operating system and programming lan-
guage. Functional properties represent actual component
functionality (e.g., printer driver bundle providing colour
printouts), while non-functional properties describe qualita-
tive aspects such as performance and resource demand (e.g.,
fully-fledged or restricted printer driver bundle). Compo-
nents may have dependencies on other components.

D?CM should provide automatic dynamic bundle loading.
For this purpose, our platform has to provide several func-
tions (see Figure 2). Bundles should be automatically dis-
covered according to our bundle descriptions. Then, appro-
priate bundles should be automatically selected and trans-
ferred to the local machine. Last, dependencies on other
bundles should be automatically resolved.

In order to avoid the shortcomings of server-based sys-
tems, D?°CM should rely on a P2P infrastructure potentially
providing bundle code replication. Such an approach allows
each peer to publish bundles and additionally enables easy
deployment, especially in mobile and ad-hoc networks.

In general, the dynamic loading support of D*CM should
be generic and portable. Thus, it should work for any stan-
dard component system but in this work we focus on OSGi.

4.2 Architecture

This section describes the D*CM architecture implement-
ing the specified requirements (see Figure 3).

4.2.1 JXTA Services

D?CM provides special JXTA Services for efficient bun-
dle discovery. A code sharing service supports loading and
sharing resources, while a code discovery service supports
discovery and publishing resources.

To support these services, bundle resources are published
with three specific advertisements in a JXTA CodePeer-

JXTA Services

Bundle Definition

Platform Services

Figure 3: D*CM architecture

12

Interface Description ! Code Description ! n Resource
Advertisement Advertisement Advertisement

[I

1 n

Figure 4: D*CM advertisements

Group (see Figure 4). These advertisements have a glob-
ally unique identifier and therefore can reference each other.
A resource advertisement (RA) represents an arbitrary re-
source such as the code of a printer driver bundle. It contains
metadata on loading the resource as well as implementation
properties, such as size, filename and checksum. The RA
references a code description advertisement (CDA) identify-
ing an implementation of an interface for a specific program-
ming language’. It allows the specification of non-functional
properties of the implementation, such as the needed plat-
form and implementation’s resource demand (e.g., restricted
printer driver bundle for Linux with low resource demand),
and references an interface description advertisement (IDA),
which is used to announce only the existence of an interface
(e.g., printer driver interface). The interface description is
not part of the IDA; it is rather part of a RA that is bound
to the IDA. The IDA can be searched using its fully-qualified
interface name or based on keywords.

The code discovery service is an extension of the JXTA
discovery service, which allows searching for arbitrary adver-
tisements. The JXTA discovery service supports only simple
key-value search requests for one attribute. It is not possi-
ble to search for advertisements with multiple functional and
non-functional properties. This leads to higher processing
load at the requesting peer as well as to higher resource
usage within the network due to the fact that even adver-
tisements not fulfilling all of the requesting peer’s functional
requirements are returned and have to be sorted out. Thus,
we provide an extended discovery mechanism considering
multiple properties, which already sorts out incompatible
advertisements on the resource-providing peers.

The code sharing service is responsible for resource load-
ing as well as for resource provisioning. For resource provi-
sioning the service automatically creates the corresponding
RA with a concrete loading address, which is published us-
ing the code discovery service. Peers pass discovered RAs
to the code sharing service for loading the required bundle
code. The service supports dynamic selection of the transfer
method by providing a diverse set of transfer handlers (e.g.,
HTTP-based), which can be loaded on demand.

4.2.2 Bundle Definition

Beside the standard OSGi bundle manifest (see Sec-
tion 2.1), we added manifests to describe OSGi bundles with
respect to our D°CM platform. These manifests provide a
basis for automatic D°CM advertisement generation (i.e.,
IDA and CDA) and bundle dependency specification.

An interface description manifest describes the interface
and is used for IDA generation and a code description man-
ifest contains information for CDA generation. Figure 5
shows an exemplary CDA that describes a printer service
bundle for Linux version greater equal 2.4 and smaller 2.6
providing duplex colour printouts. For specifying dependen-

10SGi uses only Java, but our service design is generic and
thus can be transferred to other platforms as well.

1 | Name: de.uulm.impl.printer
2 | Version: 1.3

3 | Interface: de.uulm.Printer
4 | InterfaceVersion: 1.0

5 | InternalName: uulmp_1_3

6

7 | compatibility {

8 os.name::linux

9 o0s. version: version :[2.4;2.6)
10

11 | properties {

12 mode::duplex

13 color :boolean:true

14 |}

Figure 5: Exemplary code description manifest

Resolver
Service

Repository
Service

Loading
Service

Figure 6: D*CM OSGi services

cies on other bundles we introduce a resolve descriptor (see
Figure 9 and Figure 10). Dependencies can be described ei-
ther on basis of IDAs or CDAs. While an IDA dependency
defines a dependency to an interface, a CDA dependency
describes a dependency to a specific interface implementa-
tion. For this purpose the resolve descriptor specifies the
requirements to the CDA and IDA, respectively.

4.2.3 Platform Services

For providing our D? CM platform for OSGi, we developed
three OSGi services (see Figure 6). The loading service pro-
vides automatic code selection and loading for the OSGi
platform and the repository service unloads the loading ser-
vice by managing already loaded and locally available bun-
dles. The resolver service builds up on these services and is
responsible for automatic resolution of bundle dependencies.

The loading service expects an interface name and non-
functional properties as input. These properties specify
the requirements of the bundle to be loaded. We differ-
entiate mandatory (e.g., system requirements) and optional
properties (e.g., performance and resource demand). While
mandatory properties have to be accounted for selection, op-
tional properties build the basis for evaluation in order to fi-
nally obtain a bundle ranking. Figure 7 shows an exemplary
loading process for a printer bundle running in Java and
Windows with optional colour and duplex printouts. Only
bundle descriptions containing the mandatory requirements
are searched for (1) and finally returned to the requesting
peer (2, 3). For evaluation, optional properties have a quan-
tifier (defined by the bundle developer). If a bundle descrip-
tion contains an optional property it gets a score according
to the quantifier. Scores are added if further optional prop-
erties are met (4). All appropriate bundles are ranked and
the best-ranked advertisement is selected for loading (5).
Bundle discovery is realised by searching for advertisements
with the code discovery service (see Section 4.2.1). An issue
with automatic bundle selection is to determine the duration
of the time period the loading service waits for incoming ad-

13

Bundle—SymbolicName: de.uulm.impl.printer

Bundle—Version: 1.0.2

Bundle—Name: printer driver bundle

Bundle—Activator: de.uulm.impl.printer.Activatr

Require—Bundle: org.eclipse.swt

Import—Package: org.eclipse.swt,org. eclipse .swt
.events

O TR W N =

Figure 8: Bundle manifest with SWT dependency

byCDA:org.eclipse.swt: {
compatibility {
m:lang.name::java

properties {
0:50: native.lang :: german

}

00~ O UL W

}

Figure 9: Resolve descriptor with CDA dependency

vertisements. This is highly application- and environment-
dependent. Thus, we allow the specification of a timeout as
well as a threshold for incoming advertisements after which
the selection process can start. Last, code is transferred
using the selected bundle’s RA metadata.

The repository service is a local service managing already
loaded and locally available bundles. This allows applica-
tions to first search for bundles at the repository service in
order to save time and network resources. Then, the loading
service is used for searching for remote bundles using JXTA.

The resolver service uses the loading service and the
repository service to resolve bundle dependencies. There-
fore, it reads the dependencies from the bundle manifest
headers Require-Bundle and Import-Service. A specific
Require-Bundle header results in searching for a specific im-
plementation described by a CDA (see Figure 8 for a bundle
manifest describing a dependency on an SWT bundle). The
requirements for the selection process are described within
a specific resolve descriptor, which contains the implemen-
tation name (prefixed by byCDA) as well as mandatory and
optional properties (see Figure 9). A dependent service is
specified in the bundle manifest’s Import-Service header,
which maps to the service interface name in the resolve de-
scriptor’s byIDA section (see Figure 10). On basis of the
given properties in the resolve descriptor, first the resolver
service is queried for appropriate local bundles. If none are
found, the loading service is able to automatically search for
the best-fitting bundles according to the resolve descriptor’s
requirements. In case of a byCDA description, the loading
service starts with searching for CDAs with an appropriate
implementation name, in case of a byIDA description, IDAs
with an appropriate interface name are searched.

4.3 Integration into OSGi Console

OSGi framework implementations such as Apache Fe-
lix [14] and Eclipse Equinox [15] provide an OSGi manage-
ment console (e.g., for bundle installation, starting and stop-
ping). For a seamless integration of our D*CM platform we
integrated it into the OSGi console of Equinox and Felix.
In order to automatically resolve an installed bundle’s de-
pendencies the command dcm_resolve <bundle_id> is used
(bundle_id is the identifier of the bundle to be resolved). In-
ternally, our resolver service is used for bundle dependency

Requesting Peer | Serving Peer CDA1

m:0s.name::windows —
m:lang.name::java
0:50:color:boolean:true lang.name:;java
0:40:mode::duplex \
~

@ 0s.name::windows

lang.name::java
CDA 2 color:boolean:true
os.name::linux mode::simplex
lang.name::java

0:50:color:boolean:true
0:40:mode::duplex

color:boolean:true CDA3
mode::simplex 0s.name::windows
lang.name::java
color:boolean:true
mode::duplex

Figure 7: D*CM loading process

byIDA:de.uulm.printer: {
compatibility {
m:os.name::windows
m:lang.name::java

properties {
0:50: color : boolean:true
0:40: mode::duplex

O OO0 Uk WN =

—

Figure 10: Resolve descriptor with IDA dependency

resolution (see Section 4.2.3). For automatically resolving
bundle dependencies during installation dcm_install <url>
is used (url specifies the bundle’s location).

5. CONCLUSION AND FUTURE WORK

In this paper we presented our novel D?CM infrastructure
for decentralised dynamic management of code for OSGi.
Our platform provides means for describing and publish-
ing bundle code with JXTA, which avoids the shortcomings
of server-based systems. It allows automatic discovery, se-
lection and loading of platform-specific code on demand. In
contrast to related work, functional as well as non-functional
properties are considered during the discovery and selection
process with a bundle ranking based on quantifiers. D*CM
allows automatic resolution of bundle dependencies based
on functional and non-functional properties. A basic exam-
ple application of a printer driver service for OSGi-enabled
devices shows the general feasibility of our approach. Our
D?CM platform is compatible to OSGi R4 frameworks.

At the moment, our platform does not allow the publi-
cation of more than one interface per bundle. However, as
bundles may provide more than one interface, we plan an ex-
tension of our bundle publication mechanism. Additionally,
we would like to enhance the evaluation mechanism of our
platform. Currently, D?CM only supports the evaluation of
each non-functional property according to Boolean opera-
tors (see Figure 7), but some non-functional properties such
as performance may require stepless quantification. More-
over, we will evaluate the OSGi built-in security mechanisms
with respect to suitability in our D*CM platform.

We are investigating more complex scenarios for our
D?CM platform. For instance, we would like to support
our infrastructure for adaptive Web service migration [2].
This would allow having node-tailored Web service contain-
ers that can be loaded on demand. Even parts of the Web

14

service containers, such as the Web server and the SOAP en-
gine can be provided as bundles and configured at runtime.
We plan an extensive evaluation of such scenarios.

6. REFERENCES

[1] OSGi Alliance. OSGi service platform: Core
specification, release 4. Technical report, 2005.

[2] H. Schmidt and F. J. Hauck. SAMProc: Middleware

for Self-adaptive Mobile Processes in Heterogeneous

Ubiquitous Environments. In MDS ’07. ACM Press,

2007. Accepted for publication.

L. Gong. JXTA: A network programming

environment. IEEE Internet Computing, 5(3), 2001.

[4] JXTA Project. JXTA v2.0 protocols specification.
Technical report, Sun Microsystems, 2001.

[5] R. Kapitza, H. Schmidt, U. Bartlang, and F. J. Hauck.
A Generic Infrastructure for Decentralised Dynamic
Loading of Platform-Specific Code. In DAIS ’07, 2007.

(6] Inc. Sun Microsystems. Java Web Start overview.
White paper, Sun Microsystems Inc., 2005.

[7] R. Kapitza and F.J. Hauck. DLS: a CORBA service
for dynamic loading of code. In OTM ’03, 2003.

[8] S. Paal, R. Kammiiller, and B. Freisleben. Dynamic
software deployment with distributed application
repositories. In KiVS ’05. Springer, 2005.

[9] S. Paal, R. Kammiiller, and B. Freisleben.
Self-managing application composition for
cross-platform operating environments. In ICAS “06.
IEEE, 2006.

[10] S. Frenot and Y. Royon. Component deployment
using a peer-to-peer overlay. In Component
Deployment, volume 3798 of LNCS, 2005.

[11] R. Kapitza, U. Bartlang, H. Schmidt, and F. J.
Hauck. Dynamic Integration of Peer-to-Peer Services
into a CORBA-Compliant Middleware. In OTM 06
Workshops, volume 4277 of LNCS, pages 28-29, 2006.

[12] D. Parker and D. Cleary. A P2P approach to
classloading in Java. In AP2PC ’03, 2003.

[13] J. S. Rellermeyer, G. Alonso, and T. Roscoe. R-OSGi:
Distributed Applications Through Software
Modularization. In Middleware ’07, volume 4834 of
LNCS. Springer, 2007.

[14] Apache Software Foundation. Apache Felix.
http://felix.apache.org/, 2008.

[15] Eclipse Foundation. Equinox.
http://www.eclipse.org/equinox/, 2008.

(3

