
Mobile-Process-based Ubiquitous Computing Platform:
A Blueprint

Holger Schmidt
Institute of Distributed

Systems
Ulm University

Germany

holger.schmidt@uni-
ulm.de

Rüdiger Kapitza
Dept. of Comp. Sciences

Informatik 4
University of

Erlangen-Nürnberg
Germany

rrkapitz@cs.fau.de

Franz J. Hauck
Institute of Distributed

Systems
Ulm University

Germany

franz.hauck@uni-ulm.de

ABSTRACT
Mobile objects and agents are used for implementing dis-
tributed applications. Both concepts allow efficient use of
local resources, volatile network connectivity and more effi-
cient communication due to appropriate migration, espe-
cially in dynamic ubiquitous environments. Mobile pro-
cesses enable specifying the complete life cycle of complex
mobile applications.
In this paper, we propose a mobile-process-based platform
that turns ubiquitous application development into a man-
ageable task. We advocate the use of Web services for imple-
menting mobile processes in a heterogeneous environment.
Based on previous work, we sketch a novel approach for real-
ising mobile context-aware Web services, which implement
process steps. We use a separation of state, functionality
and implementation code, which enables a reduction, ex-
pansion and transformation of the service state and func-
tionality during migration.

Categories and Subject Descriptors
H.3.5 [Information Storage and Retrieval]: On-line In-
formation Services—Web-based services; D.2.11 [Software
Engineering]: Software Architectures—Domain-specific
architectures; C.2.4 [Computer Communication Net-
works]: Distributed Systems—Distributed applications

General Terms
Design

Keywords
Web Services, Mobile Processes, Mobility, Ubiquitous Com-
puting, Middleware

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MAI’07, March 20, 2007, Lisbon, Portugal
Copyright 2007 ACM 978-1-59593-696-7/07/0003 ...$5.00.

1. INTRODUCTION
There is a trend to integrate intelligence and connectivity

into small devices. This is enforced by the idea of ubiquitous
computing [1] that envisions a future in which people are un-
noticeably supported by small, surrounding devices. These
devices are able to interact by creating dynamic ad-hoc net-
works as well as by using a static network infrastructure.
The result is a highly dynamic and heterogeneous environ-
ment with big cooperation potential.

Designing and implementing distributed applications for
such dynamic environments is a complex task. Concepts
such as mobile objects and mobile agents have been a step
into the right direction. However, these technologies are
not sufficient for implementing complex scenarios, as sys-
tem dynamics has to be handled by the application logic.
We think managing ubiquitous computing scenarios among
other things requires support for heterogeneity, mobility and
context-awareness. Additionally, there is a need for dynamic
code deployment, basic security and support for complex ap-
plication development using custom code generation.

In this paper, we outline an infrastructure for supporting
ubiquitous mobile applications using mobile process descrip-
tions. This simplifies the creation of an application’s ab-
stract design of behaviour and interactions with other appli-
cations. We briefly sketch a possible code generation process
that is able to map these descriptions to concrete implemen-
tations of mobile context-aware Web services. These Web
services implement the mobile process. As Web services are
already an established technology in many areas, we expect
them to become accepted in ubiquitous computing as well.
Thus, interoperability among ubiquitous devices based on
Web services can be achieved, which is especially important
within a highly dynamic and heterogeneous environment.

In contrast to previous work [2], we introduce mobile,
context-aware Web services, which are able to migrate and
to adapt their functionality, state and implementation code
with respect to the current run-time environment. This is
achieved by a separation of the service’s functionality (aka
interface), state and implementation code, which allows to
reduce, expand and transform a service’s state and func-
tionality at runtime according to the environment’s require-
ments. As code cannot be assumed to be locally available
at any node within a dynamic environment, hints for a dy-
namic deployment infrastructure are given in this paper.

The remainder of the paper is structured as follows. In the



next section, we give basic background information on object
migration, dynamic loading of code and Web services. Then,
in Section 3 our concept of mobile processes based on Web
services is presented. In Section 4, we apply our concept to
an exemplary application. After discussing related work in
Section 5, Section 6 concludes.

2. BACKGROUND
This section first gives basic background information on

object migration, especially on our CORBA-based solution.
Then, as object migration might require dynamic loading
of locally non-existent code, we describe our approach for
dynamic code loading. Last, basic information on Web ser-
vices, which are the basis of our concept for building appli-
cations in a ubiquitous environment, is presented.

2.1 Object Migration
There exists a lot of work regarding object migration, in

particular in the area of mobile agents (objects with an au-
tonomous activity). However, as MOA [3], Mole [4] or Aglets
[5], these rely on native Java serialisation and are therefore
restricted to a homogeneous environment. There exist solu-
tions for heterogeneous environments, but these do not rely
on standards and therefore are not interoperable among each
other and do not support the development process, such as
Agent Factory [6] and the approach of Peter and Guyen-
net [7].

In previous work, we presented a platform- and language-
independent service for object migration [8]. By building
on the CORBA middleware [9] and the CORBA Life-Cycle
Service (LCS) specification [10], interoperability among dif-
ferent LCS-capable implementations is achieved. The LCS
specification defines interfaces of mobile objects and re-
quired entities.

For migration, a mobile object has to support a defined
LifeCycleObject interface that declares a move method.
The developer has to provide the actual implementation of
this method as the LCS only specifies interfaces. For deter-
mining the target location during a migration, the developer
can use the factory finder, which maintains a repository of
generic factories. These factories enable the (remote) cre-
ation of objects at the migration target location.

In order to migrate a mobile object, the current state
and the implementation code have to be transferred to the
new location. In a heterogeneous environment, different
programming languages may use different implementations.
For this reason, only implementation-independent state has
to be transferred, such as a list of key-value pairs for a
hash table object. Otherwise, the target implementation
might not be able to interpret the transferred state. There-
fore, value types are used, which are special CORBA ob-
jects that are transferred by value and allow the specifi-
cation of the implementation-independent state using the
standard CORBA interface definition language (IDL). Ad-
ditionally, this results in less error-prone implementations
as value types are marshalled and demarshalled transpar-
ently and the developer does not have to write methods for
externalisation and internalisation. As code cannot be as-
sumed to be locally available in a dynamic environment,
code loading is an essential part of our LCS implementation
(cf. Section 2.2).

On the basis of the LCS implementation, we developed
a context-aware LCS implementation [11]. There, we intro-

duced a separation of state, functionality and implementa-
tion code for mobile objects. A concrete instance of such a
context-aware mobile object has a specific state, functional-
ity (interface), and implementation code. We call this con-
figuration a facet of the mobile object, which is specified
using standard IDL. Whenever such an object migrates, it
is able to adapt to the current target location context by
changing its available state, functionality and implementa-
tion code. This allows, for example, a migration from a fully-
fledged facet on a powerful machine to a restricted facet on
a resource-limited device. At the same time, the object can
migrate from an object facet implemented in Java to a C++
object facet on the target location.

For enabling an adaptation of state to the current context,
we introduce a separation of active and passive state. Ac-
tive state is available within the current mobile object facet,
whereas passive state is not. Passive state has to be stored
as it might be used again within another facet. For storing
passive state, we introduce a state store entity.

We have a working prototype implementation that enables
context-aware migration from C++ to Java and vice versa.

2.2 Dynamic Loading of Code
Dynamic code loading is an essential part of object mi-

gration, especially in a dynamic environment without guar-
antee of local existence of required code. Therefore, we de-
veloped a dynamic loading service (DLS) for CORBA [12].
This service enables an ORB-independent dynamic load-
ing of platform-dependent code on demand for arbitrary
functionalities based on standardised compatibility require-
ments. The DLS follows the client/server paradigm and
uses dedicated servers to host the program code and to offer
specific information about available code.

Based on this work, we developed a decentralised type of
the DLS (P2P-DLS) [13, 14]. This service allows any par-
ticipating peer to offer and to obtain platform-specific code
in a dynamic and heterogeneous environment. We propose
a generic decentralised dynamic loading infrastructure that
is independent from the peer-to-peer infrastructure in use.
The peer-to-peer infrastructure only has to support keyword
search. By building on our generic concept, we developed a
JXTA-based [15] service for dynamic code loading [14].

For supporting dynamic code loading within our LCS im-
plementation, we integrated the DLS, as well as the P2P-
DLS, into the generic factory, which resides on the target
location (cf. Section 2.1). There, the (P2P-) DLS is queried
for appropriate location-dependent implementations. It is
able to discover and to load code on demand for instanti-
ating object-specific factories. However, as the (P2P-) DLS
is a self-contained generic service concept for dynamic code
loading, it can be used for other middleware infrastructures
and applications as well.

2.3 Web Services and BPEL
Web services are a well-known XML-based application-

to-application communication technology that is built upon
standard internet protocols [16]. It follows the service-
oriented architecture (SOA) approach; functionality is only
provided by services [17]. These services are addressed using
standard communication protocols, provide a standardised
interface/description and can be composed of available ser-
vices.

Web services are identified by uniform resource identifiers



(URI) and allow remote invocation of methods. The service
interface and protocol bindings are specified using the Web
services description language (WSDL) [18]. There, the inter-
face is bound to a particular message protocol that is used
for accessing the Web service. Common Web services use
the simple object access protocol (SOAP) [19], a transport-
protocol-independent XML application.

By building on XML, Web services are independent from
platform and programming language, which enables their
use in a heterogeneous environment. Dynamic environments
are supported, as discovery and binding of Web services are
handled at run-time. For supporting the discovery, universal
description, discovery and integration (UDDI) [20] can be
used. UDDI offers a generic interface to XML-metadata-
based discovery of Web services for a specific domain.

According to the SOA notion, Web services can be com-
posed of Web services. However, this composition can have a
complex internal structure. For easing application develop-
ment, the business process execution language (BPEL) [21]
allows to describe Web service interaction (orchestration).
The BPEL description is a standard-WSDL-compliant de-
scription of a Web service with an interface. This description
can be executed by a BPEL engine that is able to execute the
internal interactions with other Web services (implementa-
tion of a business process). For example, BPEL defines the
order of Web service method invocations and the exception
handling. The BPEL process is externally offered as stan-
dard Web service.

3. PLATFORM FOR MOBILE PROCESSES
BASED ON WEB SERVICES

In this section, we sketch an approach for a mobile-
process-based platform for supporting ubiquitous comput-
ing applications. Such a mobile process allows specifying
the behaviour and interactions of an application that is able
to dynamically change its execution context as well as to
adapt itself to the current environment. Within our plat-
form, the execution context is characterised by key-value
pair metadata (e.g., location data, locally available resources
and interfaces). Mobile processes are implemented as mo-
bile context-aware Web services, which are introduced in
the next subsection. Then, an approach to dynamic code
deployment is presented, as migration requires such a mech-
anism (cf. Section 2.2). After this, we present mobile pro-
cess descriptions on the basis of BPEL and an automatic
code generation approach that is able to map the BPEL
description to concrete mobile context-aware web services.
As security is a crucial part of dynamic ubiquitous environ-
ments, we give information on security within our system.

3.1 Context-aware Web Service Migration
We propose a generic concept for context-aware Web ser-

vice migration on the basis of context-aware object migra-
tion (cf. Section 2.1). For this purpose, we introduce stateful
Web services that have a globally unique identifier (GUID)
that does not change for the whole life time (cf. Figure 2,
line 9). These Web services can be adapted to the current
context by changing the interface, the state and the imple-
mentation code. We call the current triple of interface, state
and implementation code the mobile Web service facet and
specify several entities within our architecture by their ser-
vice interfaces and behaviour:

• The mobile Web service has to implement our defined
MService interface. This interface provides methods
for migrating, copying and removing the Web service
(methods move, copy, remove).

• A manager service is responsible for handling the mi-
gration on the source location. This service provides
methods for initiating a migration. A mobile Web ser-
vice only has to provide a reference to itself and meta-
data about the desired target location to the manager
service, which is able to handle migration afterwards.

• Migration targets are represented by factory services.
They enable the creation and deployment of Web ser-
vices on a remote server. In case of locally non-
existent code, the factory service is able to dynamically
load code on demand (cf. Section 3.2). Additionally,
the factory sets the appropriate active state to ensure
stateful migration (cf. Section 2.1).

• The factory finder service is able to locate appropriate
factories at target locations. It implements a reposi-
tory of factory services for a specific domain and stores
information about creatable service interfaces and the
factory context (e.g., physical location). Thus, the
functionality of the factory finder service is compara-
ble to UDDI [20]. However, the factory finder service
eases implementing user-tailored query processing and
ordering of results (e.g., best-fitting results first). Nev-
ertheless, we are able to substitute our factory finder
service with a basic UDDI service.

• A state store service allows storing passive state (cf.
Section 2.1). It provides methods for storing and re-
trieving state for a specific Web service that is identi-
fied by a GUID. This service is responsible for a specific
set of mobile Web services. In principle, the state store
service can be implemented as a mobile service, which
enables to take along the complete state with the mo-
bile Web service. This allows local adaptation without
communication for state retrieving and storing.

• For retrieving information about the current context,
we specify a context service that provides this data.
The data is used by different components, e.g., the
mobile Web service is able to monitor the context for
changes which might trigger migration. Additionally,
the factory service is able to use the context for pro-
viding up-to-date information to the factory finder ser-
vice. For better interoperability, we would like to spec-
ify minimal context that should be provided. However,
the concrete classification and specification is subject
to future work.

Web service migration is realised according to Figure 1.
For migrating a mobile Web service, a move method is called
(1). Within this method, the move method of the manager
service has to be invoked with parameters for specifying
the desired target location using non-functional properties
and the actual Web service that has to be migrated (2).
These non-functional properties have either been passed to
the mobile service or have to be determined within the mo-
bile service’s move method, which has to be implemented
by the developer. The manager service first stores the ac-
tive state for later use to the state store service (2.1). For



Figure 1: Context-aware Web service migration

introspecting the state of the Web service, a description
of implementation-independent state has to be provided.
For that purpose, we introduce a states-tag within the
WSDL description (cf. Figure 2, line 10-12). Then, the fac-
tory finder service is queried for appropriate factory services
(2.2). The manager service chooses the best-fitting factory
service (2.3) and calls the creation method with the desired
interface (2.4). The factory may load locally unavailable
code by creating a Web-service-specific factory (3), which is
able to create the desired Web service (3.2). For deploying
the Web service, the state is first loaded from the state store
service (3.1). In a last step, the Web service at the original
location is removed.

We support different types of Web service migration:

• Context-based : Migration of a Web service caused by
new requirements to the service context, for example,
operation at another location with a specific IP ad-
dress or on a specific device that has certain capabil-
ities such as being a powerful machine. Additionally,
a Web service might migrate onto a node because of
there provided Web services for reducing communica-
tion costs.

• Functionality-based : Requirements to specific func-
tionality can also cause migration. This allows im-
plementing mobile Web services that are able to pro-
vide tailored functionality, e.g., a fully-fledged facet
and a functionality-restricted facet. This enables an
implementation of simple workflows [11]: The mobile
Web service facets implement different roles, which can
change during the workflow process.

These migration types are supported by our factory finder
service. As already described, this service allows searching
for migration targets using metadata information. For sup-
porting both types of migration, the factory finder service
has to offer the search for factories that provide specific con-
text and for factories that enable the creation of facets with
specific functionality.

For continuously addressing the mobile Web service, we
introduce only an interface for integrating a location service,
as the realisation is application-specific. On the client-side,
Web service invocations are intercepted and forwarded to
the current location using the location service interface. A
simple implementation forwards calls to the particular mi-
gration target, which—in case of several migrations—results
in a forwarding chain that could easily be broken by crashed
nodes. Therefore, a central location service that is able to

1 <wsdl:definitions xmlns:wsdl=”...”>
2 <wsdl:types>...</wsdl:types>
3 <wsdl:portType name=”Test”>
4 <wsdl:operation name=”getX”>
5 ...
6 </wsdl:operation>
7 <wsdl:service name=”TestService”>
8 <wsdl:port>...</wsdl:port>
9 <asm:serviceID value=”1329345329” />

10 <asm:states xmlns:asm=”...”>
11 <state>x</state>
12 </asm:states>
13 </wsdl:service>
14 </wsdl:definitions>

Figure 2: WSDL description with specification of
implementation-independent state

manage current locations of a defined set of mobile Web ser-
vices can be introduced as well. Web services initially have
to register their contact address at the location service and
identify themselves using their GUID. Whenever a Web ser-
vice changes its location, it has to notify the location service
about the new location. This concept can be enhanced by a
peer-to-peer approach, in which information about current
Web service locations is published using JXTA for example.

3.2 Dynamic Code Deployment
For supporting dynamic environments, code loading is an

essential part of our concept. This enables a migration of
Web services on machines where the service code has not
even been known before. We propose an integration of
our previously presented decentralised dynamic code loading
service (cf. Section 2.2). For a seamless integration of code
loading, factory services should be enabled to use our code
loading service. These factory services are able to identify
the required code by the interface name, load this code on
demand and then deploy the Web service.

Additionally, we propose an inclusion of the factory ser-
vice node’s neighbourhood context. This implies that lo-
cal dynamic code loaders get information about their neigh-
bourhood context from the context service. This would en-
able an optimised code loading, for example, from a machine
with the best network connection.

3.3 Mapping Mobile Processes on Mobile Web
Services

We propose to use BPEL for describing self-adaptive mo-
bile processes. As BPEL is represented by a Web service,
we propose to implement the self-adaptive mobile process
using our context-aware mobile Web services.

For an extended process description, we allow the an-
notation of BPEL. This enables the specification of non-
functional properties for the invocation context for specific
Web service calls, such as the desired invocation location.
These annotations have to be evaluated at runtime and can
result in a context-based migration of the mobile process.

Additionally, we introduce an extension of BPEL that al-
lows interface-based migration without specific invocation
interaction. This enables the transformation of a mobile
process from one into another facet and can be used for re-
alising mobile workflows. We propose to add specific tags



to the BPEL description. <migrate> enables the migra-
tion of the mobile process and <copy> allows to create a
copy of the process with an own ID. <clone> allows to
clone the process with the same ID. For specifying the tar-
get location, all tags can be annotated with non-functional
properties as described before. Additionally, human inter-
action with the self-adaptive mobile process can be specified
using BPEL4People [22].

For supporting the developer, we advocate the use of au-
tomatic code generation. There exist code engines that are
able to automatically evaluate standard BPEL processes and
generate the execution code (e.g., IBM WebSphere Process
Server [23]). Although we currently do not have a proto-
type, we think it is possible to generate migration code for
our extended BPEL processes. For supporting context, we
introduce a context decision service, which is able to select
the factory service with the best-fitting context for given
criteria (e.g., required interface or location). This enables
automatic code generation, as calls to this service are static
and only context data, which is represented by key-value
pairs within our system, is dynamic and can be handled as
parameters. Thus, as processing the context is a static call
and migration is handled by invoking the manager service,
the complete code for migration can be generated automati-
cally by a tool before runtime. This results in the generation
of implementation skeletons of Web service facets, in which
developers are able to integrate the real service logic. As we
propose a generic concept, there has to be a code generation
tool that is able to create tailored code for particular Web
service containers.

3.4 Security Considerations
The presented concept has security issues that have to be

considered. As mobile Web services have to rely on the plat-
form, there has to be some trust relationship between the
entities. First, the target selection process has to be secured.
As context is provided by the nodes, the factory finder ser-
vice and the factory service have to trust each other. Oth-
erwise, malicious nodes can provide wrong context, which
is then used for migration. Moreover, malicious nodes can
simply interfere with the selection process and thus reduce
performance. This can be solved using digital certificates in
combination with encrypted communication (e.g., using the
secure sockets layer).

Additionally, a deployment with dynamic code loading
enables the injection of malicious code. This issue could be
solved by introducing digital certificates for the loaded code
portions or by using a sandbox.

Furthermore, the state store service has to be secured
by rejecting malicious nodes that try to override passive
state. Especially the save method has to be secured, e.g.,
using web-service-specific credentials. However, for restrict-
ing data access from unauthorised entities, the load method
should be secured by credentials as well.

These mechanisms provide basic security. However, addi-
tional security is still subject to future work.

4. EXAMPLE APPLICATION
Our described concept should provide an architecture for

the development of flexible and dynamic applications for
ubiquitous environments. As a case study, we think of a mo-
bile reporter application. There, mobile reporters are able
to spontaneously initiate some kind of workflow: Reporters

enter data into a local Web service, which migrates onto the
machine of a (mobile) reviewer, who checks the data, and
then migrates on the machine of a publisher. Additionally,
reporters should be able to become reviewers after a specific
number of accepted reports.

Such an application can be designed and implemented us-
ing our concept as described in Section 3. First, the self-
adaptive mobile process has to be specified using our de-
scription language. Then, a code generation tool creates
skeletons for the different Web service facets. The developer
only has to implement the pure application logic for each
facet, as the code for the context-aware migration decisions
at runtime is automatically generated by the code gener-
ation tool based on the mobile process description, which
may include human interactions as well (cf. Section 3.3).
Then, the implementations have to be registered at our dy-
namic code loading infrastructure for being available within
the whole system. Last, the self-adaptive mobile process can
be deployed and be started.

5. RELATED WORK
Hammerschmidt and Linnemann developed a service for

stateful migration of a Web service [2]. This work enables a
continuous addressing of the migratable Web service during
the whole lifetime using local stubs. However, as migration
is based on native Java serialisation, a language-independent
application is not possible. Moreover, the target location is
specified statically and adaptation of the service state, inter-
face and implementation code at run-time is not supported.

Regarding mobile processes, there is work on routes for
mobile agents. These routes of mobile agents are called
itinerary. For example Erfurth and Rossak developed a sys-
tem for planning shortest routes [24]. However, itineraries
are only a collection of predefined machines, on which spe-
cific tasks should be executed. This enables the implemen-
tation of simple processes only, as it lacks a dynamic concept
on the basis of fine-granular non-functional properties.

The DEMAC system addresses support of mobile pro-
cesses in ubiquitous environments [25]. It aims at the ex-
change and the distributed execution of processes by means
of abstraction from the underlying transport protocols. A
custom process description language was developed. How-
ever, DEMAC does not provide continuous support for ap-
plication development. Additionally, there is no support for
adaptive migration and no support for dynamic code load-
ing.

Binder et al. developed an architecture for the creation of
ad-hoc processes [26]. These processes are executed on the
basis of transactional mobile agents. These agents include
the process description as an XML file, which contains the
calls that have to be invoked. However, the architecture is
restricted to Java, as there is no concept for an abstract
state description, and does not offer adaptability of mobile
processes.

Ishikawa et al. describe a system for support of Web ser-
vice integration for pervasive computing [27]. In this work,
processes are described using BPEL. Additionally, there is a
proprietary behaviour description for mobile agents that are
able to take along Web services on other machines (migra-
tion). However, context is supported insufficiently, only one
attribute of context is supported: available Web services at
the target location. Thus, mobile workflows cannot be re-
alised. Moreover, there is no support for adaptation and the



system is restricted to Java.
In contrast to a mobile workflow management system as

for example proposed by Satoh [28], which transfers docu-
ments, our system enables the complete migration of ser-
vices. This enables an adaptation of the application to the
current context and to instantiate the application on de-
vices, which are not aware of the application in advance.
Additionally, a workflow management system specifies the
document format (state), whereas we specify the interface
for collecting data. This provides much more flexibility and
generality.

6. CONCLUSION
In this paper, we presented a generic concept for support-

ing the application development within ubiquitous comput-
ing scenarios. For supporting developers, we propose the use
of self-adaptive mobile processes for application design. We
showed that these processes can be mapped on mobile Web
services and sketched the use of an automatic code gener-
ation tool that supports the actual implementation of the
mobile processes. Implementing mobile processes through
Web services enables continuous addressing of the current
process step during the whole life-time. This enables an ex-
ternal interaction: Other services are able to access the Web
service to implement their functionality.

In the future, the proposed concept will result in an im-
plementation of a generic middleware platform for support-
ing the development process of ubiquitous applications. We
will implement the reporter application, as described in Sec-
tion 4, to show the feasibility of our approach. We are plan-
ning to improve our concept by addressing resource-limited
mobile devices, such as mobile phones. Therewith, we will
examine the minimum requirements on our platform in ubiq-
uitous scenarios.

7. REFERENCES
[1] M. Weiser. The computer for the twenty-first century.

Scientific American, 265(3):94–104, 1991.

[2] B. C. Hammerschmidt and V. Linnemann. Migratable
Web Services: Increasing Performance and Privacy in
Service Oriented Architectures. In IADIS Int. J. on
Comp. Scien. and Info. Sys., volume 1, pages 42–56,
2006.

[3] D.S. Milojicic, W. LaForge, and D. Chauhan. Mobile
Objects and Agents (MOA). In 4th USENIX Conf. on
OO Tech. and Sys., pages 179–194, Santa Fe, New
Mexico, 1998.

[4] M. Strasser, J. Baumann, and F. Hohl. Mole: A Java
based mobile agent system. 2nd ECOOP Works. on
Mob. Obj. Sys., 1997.

[5] D.B. Lange and M. Oshima. Programming and
Deploying Java Mobile Agents Aglets, 1998.

[6] F.M.T. Brazier et al. Agent factory: generative
migration of mobile agents in heterogeneous
environments. In ACM Symp. on Applied Comp.,
pages 101–106, Madrid, Spain, 2002.

[7] Y. Peter and H. Guyennet. Object mobility in large
scale systems. Cluster Comp., 3(2):177–185, 2000.

[8] R. Kapitza, H. Schmidt, and F. J. Hauck.
Platform-Independent Object Migration in CORBA.
In OTM 2005, LNCS 3760, pages 900–917, Oct 2005.

[9] Object Management Group (OMG). Common object
request broker architecture: Core specification. OMG
Doc. formal/02-12-02, 2002.

[10] Object Management Group (OMG). Life Cycle Service
Specification. OMG Doc. formal/2002-09-01, 2002.

[11] R. Kapitza, H. Schmidt, G. Söldner, and F. J. Hauck.
A framework for adaptive mobile objects in
heterogeneous environments. In OTM 2006, volume
4276 of LNCS, pages 1739–1756, 2006.

[12] R. Kapitza and F. J. Hauck. DLS: a CORBA service
for dynamic loading of code. In OTM 2003, Sicily,
Italy, 2003.

[13] R. Kapitza, U. Bartlang, H. Schmidt, and F. J.
Hauck. Dynamic integration of peer-to-peer services
into a corba-compliant middleware. In OTM 2006
Workshops, volume 4277 of LNCS, pages 28–29, 2006.

[14] R. Kapitza, H. Schmidt, U. Bartlang, and F. J.
Hauck. A generic infrastructure for decentralised
dynamic loading of platform-specific code. In 7th Int.
Conf. on Distrib. App. and Interop. Sys—DAIS’07,
2007. Accepted for publication.

[15] L. Gong. JXTA: A network programming
environment. IEEE Internet Comp., 5(3):88–95, 2001.

[16] W3C. Web Services Architecture.
http://www.w3.org/TR/ws-arch/, 2004.

[17] D. K. Barry. Web Services and Service-Oriented
Architectures. Morgan Kaufmann, 2004.

[18] W3C. Web Services Description Language (WSDL)
Version 2.0 Part 1: Core Language.
http://www.w3.org/TR/wsdl20/, 2003.

[19] W3C. SOAP Version 1.2 Part 1: Messaging
Framework. http://www.w3.org/TR/soap12-part1/,
2003.

[20] Organization for the Advancement of Structured
Information Standards (OASIS). Introduction to
UDDI: Important Features and Functional Concepts.
Whitepaper, 2004.

[21] T. Andrews et al. Business Process Execution
Language for Web Services - Version 1.1, 2003.

[22] Matthias Kloppmann et al. WS-BPEL Extension for
People - BPEL4People, 2005.

[23] IBM. Websphere process server.
http://www-306.ibm.com/software/integration/wps/,
2006.

[24] C. Erfurth and W. R. Rossak. Autonomous Itinerary
Planning for Mobile Agents. In 3rd Symp. on Adapt.
Ag. and Multi-Ag. Sys.—AAMAS, 2003.

[25] C. P. Kunze, S. Zaplata, and W. Lamersdorf. Mobile
Process Description and Execution. In 6th Int. Conf.
on Distr. App. and Interop. Sys.—DAIS, 2006.

[26] W. Binder, I. Constantinescu, B. Faltings, K. Haller,
and C. Trker. A Multiagent System for the Reliable
Execution of Automatically Composed Ad-hoc
Processes. In Auton. Ag. and Mult.-Ag. Sys.,
volume 12, pages 219–237, 2006.

[27] F. Ishikawa, N. Yoshioka, Y. Tahara, and S. Honiden.
Mobile Agent System for Web Services Integration. In
Perv. Netw., 2004.

[28] I. Satoh. A document-centric component framework
for document distributions. In OTM 2006, volume
4276 of LNCS, pages 1555–1575, 2006.


