
Stable, Time-Bound Object References in Context of Dynamically Changing
Environments

Rüdiger Kapitza1, Hans P. Reiser2, Franz J. Hauck2
1Dept. of Comp. Sciences, Informatik 4, University of Erlangen-Nürnberg, Germany

rrkapitz@cs.fau.de
2Distributed Systems Laboratory, University of Ulm, Germany

{reiser,hauck}@informatik.uni-ulm.de

Abstract

Most middleware platforms lack sufficient support

to provide reliable references for accessing distributed
mobile objects in the context of dynamic environments,
or they heavily depend on infrastructure mechanisms
like a globally available location service. Based on the
fragmented-object model and on our own middleware
implementation AspectIX, this paper presents concepts
and mechanism that avoid outdated references for dy-
namically distributed objects without additional infra-
structure services. Our approach is based on time-
bound guarantees. Even in the context of malicious
nodes and a partial invalidation of references a safe
binding of the distributed object is guaranteed if ever
possible.

1. Introduction

Common available middleware platforms basically
offer transparent remote method invocations on objects
deployed over a distributed system. To achieve this
they support the classical stub/skeleton-based partition-
ing for accessing a remote object. While this is suffi-
cient to implement basic applications it lacks appropri-
ate support for so called non-functional requirements
like fault-tolerance, scalability and reliability. This is
especially the case in context of highly dynamic envi-
ronments where servers only temporarily support the
provision of a service like in peer-to-peer systems or in
the area of mobile computing. These environments
essentially require mechanisms to replicate and migrate
objects to support fault-tolerant and reliable services at
the object level and mechanisms to reliably and safely
reference these objects. This paper targets solutions for
the latter requirement.

CORBA [3] is a distributed Middleware based on a
standardized architecture that allows the programmer
to create and access objects deployed over a distributed

system. CORBA achieves full interoperability in het-
erogeneous environments by providing location, plat-
form and language transparency. In CORBA, the com-
mon middleware tasks like object location, message
transmission, and marshalling are undertaken by an
Object Request Broker (ORB).

To simplify and standardize the development of
highly-available, fault-tolerant distributed applications
the Object Management Group has released the Fault
Tolerant (FT) CORBA specification. FT CORBA pro-
vides mechanisms for entity redundancy, fault detec-
tion, and fault recovery. Each object of a fault-tolerant
application is replicated via a Replication Manager that
manages the replication group, and creates and de-
stroys objects. A replicated object is realized as a
group of individual CORBA objects each having the
same interface and a unique reference. By aggregating
the object references (IORs) of each replica of the
group an Interoperable Object Group Reference
(IOGR) is formed. The replication of an object is
transparent to the client application. A client uses an
IOGR in the same manner as it would use an IOR.

If an object group is extended or shrunk, the IOGR
will be updated. To distinguish object-group changes
the IOGR contains a version number, which is in-
creased with every change. To make clients and servers
aware of group changes the version information is
passed with every request. If a lower version number is
detected at server side, an updated version will be for-
warded to the client. If a higher version number is de-
tected, the new IOGR is accepted or the replication
manager will be asked for advice.

This approach to reference replicated objects has
certain weaknesses in the context of dynamically
changing environments. If all hosting peers of a repli-
cated object group change over time, previously gener-
ated IORs referencing these peers become invalid and
the object can no longer be accessed. Only if the origi-
nally hosting peers still belong to the same fault-

tolerant domain hosting the object, the replication man-
ager can provide the current contact information.

In dynamic environments like peer-to-peer systems
or in the area of mobile computing this assumption
cannot be kept. Such environments require that not
only the members of object group can change over
time but also the hosts of a fault-tolerant domain or at
least their address information. Even worse, a client
which has already bound to a replicated object could
loose the connection to the object if it does not fre-
quently enough call methods of the object and thereby
update the IOR. Furthermore there is no information
available if and when an IOR invalidates or the contact
between a client and a server breaks away. The conse-
quences are outdated and invalid IOGRs, lost connec-
tions or in the worst-case scenario the binding of
wrong or even malicious objects.

In the AspectIX [11] project we implemented a
CORBA-compliant ORB that provides a fragmented-
object model. Fragmented objects have been proposed
by other research projects [6, 10] as a basic principle
for designing distributed applications that is superior to
the traditional RPC-based client-server architecture
found in most traditional middleware systems. Unlike
those proprietary systems, AspectIX is able to interop-
erate with current popular CORBA-based middleware
platforms. Based on our ORB implementation an Envi-
ronment for Decentralized Adaptive Services (EDAS)
[9] is being developed. This project targets the provi-
sioning of services at the object level that support vari-
ous non-functional requirements in dynamic environ-
ments.

In this paper we present mechanisms to provide
time-bound object references that assure a safe and
reliable object binding and mechanism to keep contact
information up-to-date based on the fragmented-object
model. To prevent outdated references we introduce
an extended IOR profile with a timestamp and an ob-
ject-specific validity-period schema. Additionally we
propose public-private key signing of references to
prevent the binding of malicious objects. Finally we
provide a simple location-service interface and an ex-
tension of the reference to free a fragmented object
from managing their reference.

The remainder of the paper is organized as follows:
The next section describes the fragmented-object
model and relevant features of the AspectIX middle-
ware. Section 3 describes the components of the As-
pectIX profile to provide stable time-bound object ref-
erences. In Section 4 the profile is extended to enable a
secure binding process in context of malicious nodes.
Section 5 introduces infrastructure mechanisms and
extends the profile. Finally, Section 6 provides a brief
related work overview, and Section 7 concludes the
paper.

2. AspectIX Middleware

At its core the Aspectix middleware provides a
CORBA-compliant ORB and, as such, supports het-
erogeneous distributed systems. There are extensions
that allow direct interoperation with Java RMI and Jini
applications. These extensions may be encapsulated in
a transparent way for any client or service implementa-
tion. Our fragmented-object model, which we will ex-
plain in the next subsection, provides a generic abstrac-
tion for true distributed objects with arbitrary internal
structure. Furthermore, AspectIX provides a dynamic
loading service (DLS) [8] that allows loading of plat-
form-dependent code at the client side.

2.1 The Fragmented-Object Model

In a traditional RPC-based client-server system, the
complete functionality of an object resides on a single
node. For transparent access to an object, a client will
get an instance of a stub that handles remote invoca-
tions (Fig. 2.1 A). The stub code is usually generated
automatically from an interface specification.

In the fragmented-object model, the distinction be-
tween client stubs and the server object is no longer
present. From an abstract point of view, a fragmented
object is a unit with unique identity, interface, behav-
ior, and state, like in classic object-oriented design.
The implementation of these properties however is not
bound to a specific location, but may be distributed
arbitrarily over various fragments (Fig. 2.1 B). Any
client that wants to access the fragmented object needs
a local fragment, which provides an interface identical
to that of a traditional stub. However the local frag-
ment may be specific for exactly that object. Two ob-
jects with the same interface may lead to completely
different local fragments. This internal structure allows
a high degree of freedom on where the state and func-
tionality is provided, and how the interaction between
fragments is done. The internal distribution and inter-
action is not only transparent from outside of the object
interface, but may even change dynamically at runtime.
This allows the fragmented-object model to adapt to
changing environment conditions or quality of service
requirements.

Remote
Servant Object

Stub Stub

Fragment Fragment

(A) RPC based Client-Server Interaction (B) Fragmented Object

Public
interface

Fragment

2.1 Client/Server Interaction vs. Fragmented Object

In the next section we introduce the AspectIX pro-
file and the mechanisms that enable a stable and secure
binding process of fragmented objects.

3. Time-Bound Interoperable References

Similar to the FT-CORBA extension the AspectIX
middleware provides an own profile to integrate frag-
mented objects into the CORBA world. A new frag-
ment is created by resolving a so called Creation Ser-
vice provided by the ORB as an initial service. The
service allows the creation of an empty IOR. This IOR
can be filled with various profiles that are also pro-
vided by the ORB. Currently the AspectIX middleware
provides profiles for IIOP, Jini and fragmented objects.

3.1 Basic AspectIX Profile

The basic AspectIX profile for fragmented objects
consists of the following components:

o Code reference
o Peers
o Version

The “code reference” allows specifying the default
fragment implementation that is instantiated during the
binding process. It could either be a direct code refer-
ence like a Java class or a symbolic name that is re-
solved via the dynamic loading service. The “peers”
component identifies a set of arbitrary communication
endpoints that are handed over to the instantiated frag-
ment implementation during the binding process. The
version number is used to distinguish the most recent
IOR. Each time the peers change, the version number
is increased.

3.2 Time-Bound References

So far the AspectIX profile is quite similar to the
FT-CORBA reference except for the code reference.
Additionally the AspectIX profile provides optionally a
validity period component that defines how long at
least one of the peers is accessible. The validity period
is realized as a Universal Timestamp (UTC). Every
time the peer set is changed a new timestamp could be
assigned. However one has to assure that no previous
version is invalidated before the corresponding validity
period expires. Hence a new version may have the
same validity period as previous version but never an
earlier one.

The introduction of a timestamp has various conse-
quences. First of all if a fragmented object resides in a
dynamic environment like a peer-to-peer system or an
ad-hoc network where no static set of peers is available
(as would be required an FT-CORBA-Domain), it will

offer the possibility to change the distribution without
accidentally invalidating an IOR. However the redistri-
bution of a fragmented object is bound by the guaran-
tees given by the currently valid versions of the de-
pending IOR.

Similar advantages apply for clients that do not pos-
sess a permanent Internet connection. This could have
various reasons, for example a mobile device that can’t
access the Internet because the appropriate environ-
ment is not available or the network device is stopped
for power management or monetary reasons. In these
cases the validity period offers the clients a possibility
to check whether all needed references will be still
valid on reconnection and additionally take appropriate
actions if this is not the case. In a power management
scenario the client could wake up the network device
earlier than originally planned in a cost scenario the
client could use an expensive connection medium if no
other is available.

3.3 Updating Time-Bound References

On the technical side time-bound IORs require that
ever party has a weakly synchronized clock. We expect
that a peer is either synchronized via the Network Time
Protocol (NTP) or a similar accurate time source. In
fact the need for accuracy of the time source strongly
depends on the length of the validity period. If the dis-
tribution of fragmented object changes very quickly the
lifetime of an IOR can only be very short and the inter-
nal extension of the validity period to cope with un-
synchronized clocks can also only be very small. On
the other side in a quite stable system the validity
period of an IOR normally will be longer and the same
applies to an additional span of time to tolerate badly
synchronized time sources.

The length of the validity period mainly depends on
the redistribution rate of the fragmented object but also
on the number of peers. This is why a fragmented ob-
ject has to decide how long an IOR should be valid,
and with every change all previous still valid versions
have to be checked. We envision two general update
policies. The easier one could be called on-update-or-
expiration policy. Each time the distribution changes (a
fragment migrates to another location; a new location
is added; a peer crashes or simply drops support) a new
IOR is generated. This IOR is passed whenever it is
needed either explicitly or implicitly (e.g., marshal-
ling). If the most recent IOR version runs the risk of
expiration a new version with a new validity period has
to be generated. This should typically happen before at
least one of the parties holding the IOR expects the
invalidation. As a rule of thumb one would suggest
half of the lifetime of an IOR.

To clarify the possible realization of the concepts
we describe a brief example. A distributed, fault toler-
ant source code repository should be provided as frag-
mented object. The functionality is split into two frag-
ment implementation, one client side which provides
more or less an intelligent stub and a server implemen-
tation that realizes replicated repository storage. An
instance of the fragmented object is composed for fault
tolerance reasons by at least three serving fragments
and depending on the demand by an arbitrary number
of client fragments. State changes to the repository are
propagated from a client to one of the serving frag-
ments and than via active replication by a multicast
framework between the serving fragments. If a new
serving fragment is added, an existing one is removed,
or a serving host crashes a multicast framework typi-
cally exchanges a view-change message. Thereby the
leaving of serving peers is controlled to be in tune with
guarantees given with pervious still valid IOR ver-
sions. If a valid IOR version runs the risk to invalidate
before the validity period is over further leaving and
changing of serving fragments is inhibited. After each
view change each serving fragment creates a new ver-
sion of the IOR. If there are no view changes for a long
time and the most recent IOR version is at risk to in-
validate one of the serving fragment detects this and
announces a new validity period via the multicast
framework. Each serving fragment creates a new ver-
sion of the IOR with the extended validity period. The
client fragment simply stores the IOR and will ask one
of the serving fragments if the IOR is requested. This
way the client always provides the most recent version
to the outside. The client will check the validity period
of the locally stored IOR. If the client is on risk to
loose the connection to any serving fragment as the
IOR expires, it will ask one of the serving fragments
for a more recent version of the IOR.

 The second update policy may best be named
continuous policy. In contrast to the former case every
time the IOR is requested either explicitly or implicitly
a new validity period is assigned. This has the advan-
tage that clients with non-permanent Internet connec-
tions know the maximal duration they can leave the
network before the IOR invalidates. In the average case
this period will be much longer than with the first pol-
icy. On the other hand the policy has the drawback that
the object has a higher overhead to provide and main-
tain the corresponding information and it restricts the
redistribution because at any point in time a new guar-
antee is given. So it is more or less anticipated that the
distribution changes continuously.

Neither of the both policies fits for all use cases. A
developer has to decide which policy fits best and we
expect that often intermediate actualization schemes
will be chosen.

4. Secure Object Binding

So far the AspectIX profile provides time-bound
IORs that assure a reliable binding of a fragmented
object. However in dynamic environments where frag-
mented objects are distributed over a set of changing
peers that may belong to various independent parties,
techniques for a secure object binding are necessary to
cope with malicious attackers.

4.1 Basic Extension for a Secure Binding

In dynamic environments an attacker could take an
address of a former peer that simply dropped the sup-
port for the fragmented object and provide an IOR that
only includes peers that belong to the attacker. This
might easily be the case in context of dynamically as-
signed addresses via a public internet service provider
(ISP). A fragment-hosting peer disconnects from the
network and the ISP assigns the freed IP to the at-
tacker. This attack can be easily prevented by public
key authentication. Apart from the address of each
node additionally its public key is included in the IOR.

But even the authentication of nodes is not suffi-
cient to prevent attacks at binding time because former
members of the fragmented object could turn into at-
tackers and inhibit the binding process by pretending
still being a member of the object. A solution offers the
introduction of a public-key-signed checksum. On
creation of a fragmented object a public-key pair is
generated. Then a SHA-1 checksum is built over all
profile components and some general components of
the IOR. This hash is signed with the private key. The
checksum and the public key are added as new compo-
nents to the profile. These enhanced IOR now enables
a secure binding process.

In a first step the IOR has to be passed via a trusted
party to the client because the passing party provides
the initial contact to the fragmented object and there-
fore always has the chance to exchange the whole IOR.
This is known as the first contact problem in the con-
text of peer-to-peer systems like Freenet [4]. A signed
public key and a well-known certificate authority
might solve this problem but introduces additional
complexity and overhead. If the IOR could be acquired
via trusted party and the fragmented objects holds the
guaranties given by the validity period the following
protocol allows a reliable and safe binding of a frag-
mented object.

As long as the validity period of an IOR is not ex-
pired at least one of the peers still belongs to the frag-
mented object. So every accessible peer referenced in
the IOR is asked to provide the current version of the
IOR. It may appear that one or more peers provide a

newer version of the IOR. Each time the checksum and
the signature are verified. If the checksum and the sig-
nature are valid all accessible peers referenced by the
new IOR are contacted. It is assumed that an attacker
cannot provide a new version of the IOR because she
does not possess the private key. This process contin-
ues until a stable state is reached where all accessible
peers provide the same version of the IOR. Then this
actual version of the IOR is used to connect to the
fragmented object.

Depending on the structure of the fragmented object
and the communication mechanisms there is still a pos-
sibility to become a victim of a former object member
that attacks the binding process. Between the search of
the most recent IOR and the actual binding the frag-
mented object could change. Therefore, after connect-
ing the fragmented object and before submitting re-
quests, the most recent IOR is again evaluated. If the
IOR is identically all will be fine otherwise the connec-
tion will be aborted and the fragmented object will be
reconnected based on the new IOR version. Afterwards
the IOR is checked again. This goes on until a former
version of the IOR is identically to the version after
connecting the fragmented object.

 A problem might be if there are many IOR changes
in a short time because the search for the current ver-
sion of the IOR possibly never ends. In practice this
will not be an issue because if all peers participate only
for very short periods of time such a high fluctuation
rate requires very short validity periods. Such small
periods reduce the benefit of the overall concept and
also reduce the usability of the fragmented object and
therefore should be generally avoided. If the frag-
mented object is hosted by a quiet stable set of peer
and there are additional peers that change rapidly these
additional peers should not be included into the IOR if
possible. Finally the usage of the location-service ex-
tension described in the following section also pro-
vides a solution for frequently changing fragmented
objects with a short validity period.

4.2 Extension for a Secure Binding in Context
of Malicious Attackers

The proposed additions are almost enough in con-
text of malicious attackers belonging to the peers of the
fragmented object. If a fragmented object addresses
this problem for example via a Byzantine agreement
protocol this has also to be considered for the binding
process. Such protocols guarantee the agreement in
context of m attackers as long as the overall number of
participating nodes equals or exceeds 3m+1. So it is
not enough that one peer is accessible for the whole
validity period but it has to be a non-faulty one. Hav-

ing m+1 hosts permanently available until expiration
of an IOR implies that at least one non-faulty node is
accessible. The actual binding process remains the
same and especially the verification of the most recent
IOR after connecting the fragmented object. Of course
there may be up to m hosts that incorrectly answer or
will not reply at all during the binding process, even if
they are included in the most recent IOR, but this can
be ignored.

4.3 Updating Secure References

In the pervious section two possible update schemes
where proposed. These schemes also apply for the pub-
lic-key-based extension of the IOR. In the first scenario
where only vacated addresses could be taken by at-
tackers one or more peers could hold the private key
and sign and propagate the new version of the IOR as
needed. In the second and third scenario where former
member of the fragmented object or even peers of the
fragmented object could be malicious attackers none of
the peers should possess the private key and therefore
have the possibility to provide arbitrary versions of the
IOR. Instead an outstanding party holds the private key
on a smart-card. This might be the manager of the
fragmented object. Depending on the policy she signs a
new version of the IOR and publishes it via the agree-
ment protocol. This procedure has the minor drawback
that the key holder represents a single point of failure
outside of the fragmented object. The fragment object
can not decide on its own for example based on a man-
ager supplied policy when to change the IOR and in-
stead is dependent on availability of the fragment man-
ager or a process run on behalf of her.

A possible solution to the problem offer algorithms
which generate private key shares [5]. To encrypt or
decrypt a message k out of n key shares are necessary.
However these parameters are fixed at creation time of
a public private key pair. We currently inspect which
additional actions have to be taken to address a dy-
namically changing set of peers.

5. Location Service

Although the validity period provides good support
to keep track of the distribution changes of a frag-
mented object their might be situations where an IOR
simply invalidates. For example if all peers of a frag-
mented object change rapidly and so the validity period
is comparative short or in cases where a node leaves
the Internet longer than expected. Aside from these
situations there might be fragment implementations
that do not provide the necessary mechanisms to re-
fresh the IOR information. A fragment implementation

may only support protocols for the transmission of
multimedia streams to connect to streaming servers.
Even if the IOR is valid at binding time such protocols
normally do not support the transmission of arbitrary,
additional control information like a forthcoming ad-
dress change. If the addresses of the stream provide
changes the client fragments simply loose their connec-
tion. Thus, additional mechanisms have to be provided.
One way would be to provide an additional communi-
cation channel is appropriate to announce such address
changes. Instead of putting the burden on the fragment
developer we introduce the opportunity to leave this to
a location service which also offers a solution for the
aforementioned problem of invalidated IORs.

To achieve this, we introduce an additional location
service component to the IOR profile, which is of
course also signed as it is part of profile. This optional
component is simply another (embedded) IOR that
references the location service of the depending frag-
mented object. If the IOR of an object contains a refer-
ence to a location service the service is bound first. The
location service fragment is handed over to the frag-
mented object. The fragment implementation has now
the choice to use the peers provided by the original
IOR or to ask the location service for a current set.

The location service could have any interface be-
cause the fragment implementation receives a normal
object from the ORB during the binding process. We
propose the following API but of course a developer is
not limited to use it:

interface LocationService {
 void registerIOR(in string ior,
 in boolean observe)
 throws AlreadyRegistered,
 InvalidFormat;

 void updateIOR(in string ior)
 throws InvalidFormat, NotAuthorized;

 string getCurrentIOR(in string ior)
 throws UnkownObject, InvalidFormat;
};

This API supports a push- and a pull-based update
of IORs. If the default fragment implementation is not
able to keep track of IOR changes like in the initial
mentioned streaming example the push-based update is
suitable. On creation of the fragmented object it is reg-
istered at the location service via the registerIOR()-
method and a false observe-flag. If the fragmented
object was prior unknown to the location service and
the IOR string is well formatted the object is registered
otherwise an appropriate exception is thrown. At any
point in time the IOR of a registered object can be up-
dated under the precondition that the provided version
is newer than the already registered one and has a valid
signature.

If the default implementation of a fragmented object
keeps track of all changes of a fragmented object there
is no need for the fragmented object to announce these
changes to the location service. Instead the fragmented
object advises the location service to observe distribu-
tion changes via the observe flag handed over to the
registerIOR()-method. The location service simply
binds the fragmented object and now can always de-
termine the actual IOR.

A fragment can acquire the current version of an
IOR from the location service via getCurrentIOR()
by handing over a previous version.

7. Related Work

The concept of time-bound references could be
compared to leases. Middleware system like Jini [1] or
.Net [12] use leases to de-allocate resources after a
certain period of time. If a lease times out and is not
renewed the server can safely reassign the resources to
other clients. It is in the interest of a server to provide
lease that are only valid as long as the client needs the
resources. In contrary, time-bound references are not
used to assign resources but to keep contact informa-
tion up-to-date. Moreover it is in the interest of all par-
ties to provide references that are valid as long as pos-
sible.

Various middleware systems provide mechanisms
for object mobility or support the mobile agent para-
digm. Emerald [7] and SSP-Chains [13] try to prevent
the invalidation of references by leaving forwarding
information behind at previous locations of the object.
If this fails Emerald contacts registry services and if
this does not help, an exhausting search over all nodes
is started. Of course such a search does not scale at a
global scope and static always-available registries are
assumed. These assumptions cannot be hold in dy-
namic environments.

The FIPA [2] has specified the agent naming refer-
ence model identifier to access mobile agents. Such
references consist of a set of physical addresses at
which the agent could be located. If this is not the case
the reference provides additionally contact information
of resolving services. The specification assumes static
available resolving services and provides no support
for a secure binding of distributed object because a
FIPA-compliant agent is always located at one physical
site.

6. Conclusions

We have presented an enhanced AspectIX IOR-
profile to safely bind truly distributed objects in con-
text of dynamic unstable environments. This is

achieved by time-bound signed IORs. If such an object
is actively replicated via a Byzantine agreement proto-
col to be aware of malicious attackers, this is taken into
account by additional profile components. This way
the binding process is even safe in the context of mali-
cious attacks.

To provide long-living references and free the de-
veloper from implementing mechanisms to update the
IOR, we introduced a flexible solution to provide a
location service which manages the current IOR of a
fragmented object.

Currently we evaluate the proposed mechanisms in
context of the EDAS project that aims to provide de-
centralized, adaptive services. These services target
dynamic environments and can change their internal
service structure from a traditional client/server sce-
nario to peer-to-peer based model where peers only
temporary support service provision. Long-living ref-
erences that enable a secure binding are essential for
this kind of services.

Further steps will be to provide a better support for
fragment developer to update an IOR either at the ORB
level or as a library and supply a fault tolerant imple-
mentation of the proposed location service.

References

[1]Jini Technology Core Platform Specification.

[2]FIPA Agent Management Specifiaction. 2004,

[3]The Common Object Request Broker Architecture
and Specifications. Revision 3.0.2, Object Management
Group (OMG), Dec. 2002.

[4]I. Clarke, O. Sandberg, B. Wiley, and T.W. Hong,
"Freenet: A Distributed Anonymous Information Stor-
age and Retrieval System (2000)," in Proc. of Work-
shop on Design Issues in Anonymity and Unob-
servability, 2000.

[5]Y. Frankel, P.D. MacKenzie, and M. Yung, "Robust
efficient distributed RSA-key generation," in Proc. of
the Annual ACM Symposium on Theory of Comp.,
1998, ACM Press, pp. 663 - 672.

[6]P. Homburg, L. v. Doorn, M. v. Steen, A.S. Ta-
nenbaum, and W.d. Jonge, "An object model for flexi-
ble distributed systems," Proc. of the 1st Annual ASCI
Conf., 1995.

[7]E. Jul, H. Levy, N. Hutchinson, and A. Black,
"Fine-Grained Mobility in the Emerald System," ACM
Trans. on Comp. Sys., 6(1), 1988, pp. 109-133.

[8]R. Kapitza and F.J. Hauck, "DLS: a CORBA service
for dynamic loading of code," in Proc. of the OTM
Confederated Int. Conf., Sicily, Italy, 2003.

[9]R. Kapitza, F.J. Hauck, and H. Reiser, "Decentral-
ized, Adaptive Services: The AspectIX Approach for a
Flexible and Secure Grid Environment," in Proc. of
Grid Services Engineering and Management (GSEM
2004), Erfurt, Germany, 2004, Springer.

[10]M. Makpangou, Y. Gourhant, J.-P.L. Narzul, and
M. Shapiro, "Fragmented Objects for Distributed Ab-
stractions," in T. L. Casavant and M. Singhal, ed.,
Readings in Distributed Computing Systems, IEEE
Computer Society Press, 1994, pp. 170-186.

[11]H. Reiser, F.J. Hauck, and R. Kapitza, "Integrating
Fragmented Objects into a CORBA Environment," in
Proc. of the Net.Object Days, Erfurt, 2003.

[12]J. Richter, Applied Microsoft .NET Framework
Programming, Microsoft Press, 2002.

[13]M. Shapiro, P. Dickman, and D. Plainfossé. " Ro-
bust, Distributed References and Acyclic Garbage Col-
lection," in Proc. of Symposium on Principles of Dis-
tributed Computing, 1992.

