Attack Surface Reduction For Commodity OS Kernels

Trimmed garden plants may attract less bugs

Anil Kurmus

kur@zurich.ibm.com
IBM Research - Zurich

ABSTRACT

Kernel vulnerabilities are a major current practical security
problem, as attested by the weaknesses and flaws found in
many commodity operating system kernels in recent years.
Ever-growing code size in those projects, due to the addition
of new features and the reluctance to remove legacy support,
indicate that this problem will remain a severe system se-
curity threat in the foreseeable future. Reactive measures
such as bug fixes via code reviews and testing, while ef-
fective, can only alleviate the issue. Furthermore, common
practices in system hardening often focus on complex and
sometimes hard to achieve goals that require extensive man-
ual intervention such as security policies for sandboxing.

In this paper, we explore an alternative, automated and
effective way of reducing the attack surface in commodity
operating system kernels, which we call trimming. Trim-
ming is a two-fold process: an initial analysis of a given
system for unused kernel code sections is followed by an en-
forcement phase, in which the unused sections are removed
or prevented from being executed. We discuss the require-
ments that should be reflected in the design of a trimming
infrastructure, and present a lightweight and flexible imple-
mentation example for the Linux kernel by using dynamic
binary instrumentation as provided by kprobes. Our evalu-
ations show we can, in the case of a web server, reduce the
attack surface of the kernel (in terms of the number of kernel
functions accessible from unprivileged users) by about 88%.

Categories and Subject Descriptors

D.4.6 [Security and Protection|: Kernel security; K.6.5
[Security and Protection]: Unauthorized access

General Terms
Reliability, Design

Keywords
Attack Surface Reduction, Kernel Hardening

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

EUROSEC ’11 April 10, Salzburg, Austria

Copyright 2011 ACM 978-1-4503-0613-3/11/04 ...$10.00.

Alessandro Sorniotti

aso@zurich.ibm.com
IBM Research - Zurich

Rudiger Kapitza

rrkapitz@cs.fau.de
Friedrich-Alexander University
Erlangen-Nuremberg

1. INTRODUCTION

Large software development projects, such as the Linux
kernel, suffer from feature explosion [1], which leads to an
ever-growing code size. This problem is also aggravated
by backwards-compatibility requirements. While good soft-
ware projects are structured in such a way that the feature-
explosion problem does not impact performance, the pres-
ence of additional privileged code, which is always the case
for additional code in monolithic kernels, will increase the
attack surface of a system and reduce the overall security of
the software. This is well illustrated by recent local privilege
escalation exploits for the Linux kernel: e.g., in the vmsplice
system call (CVE-2008-0009, CVE-2008-0010, CVE-2008-
0600), the RDS sockets (CVE-2010-3904), v411_compat ioctl
(CVE-2010-2963), or NULL pointer dereferences in various
sockets (CVE-2009-2692, CVE-2009-2698)."

The increasing attention given to kernel security is also
explained by the improvements in the mitigation of user-
space vulnerabilities: because of methods such as address
space layout randomisation, non-executable data pages,
stack smashing protections, and, recently, gadget-free bi-
naries [2], the kernel now compares to privileged user-space
applications as an easier target for attackers. While reac-
tive measures, such as code reviews, and the use of source
code scanners and fuzzers can improve code quality and re-
duce the number of weaknesses in a software, some will still
remain, and proactive measures are necessary.

Most of the aforementioned vulnerabilities could be pre-
vented from being exploited by using known approaches
(e.g., the mmap_min_addr check, grsecurity PaX randkstack,
kernexec, uderef patches). However, we observe that all re-
side in parts of the Linux kernel that are not commonly used
in production systems, and could be disabled through auto-
matical removal of unnecessary code paths from the kernel.

Accordingly, we present trimming, an approach for reduc-
ing the attack surface in commodity operating system ker-
nels for a given set of applications and services. Trimming is
performed in two consecutive phases: an initial analysis for
unused kernel code sections that is followed by an enforce-
ment phase, in which the unused sections are removed or
prevented from being executed. The target of such a mech-
anism is a system with well-defined use cases, typically a
server performing a specific task (e.g., web server, database,
network-attached storage, or soft-router). This allows us to
make the assumption that the kernel features used by such
a system do not change significantly over time. We believe
such an assumption to be realistic in the case of produc-

http://cve.mitre.org/

tion servers, or virtual appliances. Our threat model is a
local unprivileged attacker, who might have obtained his or
her access through a remote vulnerability in a service, and
attempts to exploit a kernel vulnerability, for example for
privilege escalation, or a kernel crash. We implemented a
lightweight trimming infrastructure for the Linux kernel pro-
vided as loadable module that uses kprobes [3]. The latter
enables us to dynamically instrument function calls inside
the kernel and can be used for the analysis phase as well
as for the enforcement phase. Our initial evaluations are
promising, we can reduce the reachable kernel functions for
a web server by approximately 88%. While the overhead
due to dynamic instrumentation is small for our macro-
benchmarks — it varies between 0-15% for instrumenting
20% of all non-static kernel functions — we discuss future
steps to reduce the runtime instrumentation overhead.

The remainder of the paper is structured as follows: Sec-
tion 2 details requirements and the overall approach. Sec-
tion 3 outlines our initial prototype and discusses first eval-
uation results. In Section 4, we briefly compare related ap-
proaches and finally conclude in Section 5.

2. GENERAL APPROACH

Before we detail the two-phased process of trimming a
kernel we outline the general goals that should be met by a
concrete implementation of the process.

2.1 Goals

We identify the following requirements for an ideal
trimmed kernel:

1. effectiveness: in order to reduce the kernel attack sur-
face, trimming should disable as much unused code as
possible.

2. stability: the trimmed kernel must remain stable under
common-case usage. More precisely, any non-malicious
operation crashing the trimmed kernel should also
crash the original kernel; trimming should not break
any user-space application that was expected to be
used with the trimmed kernel.

3. performance: low or no common-case performance
overhead. In some cases, performance improvements
can even be expected (due to reduced memory foot-
print of the kernel).

4. security: trimming should not introduce new vulner-
abilities in the kernel or user-land. Note that, some
malicious operations (i.e., exploits) may have their im-
pact (e.g., privilege escalation) mitigated by degrading
them into denial of service attacks for the application
in the case of a trimmed kernel: we do not consider this
as the introduction of a new vulnerability. Addition-
ally, it should not be possible to circumvent trimming:
if an access control mechanism is used in order to pre-
vent unused code from being executed, it should not
be possible to bypass it (in particular, it should not be
vulnerable to time-of-check-to-time-of-use races).

5. wusability: trimming should only require minimal man-
ual setup (e.g., no policies to write), and have the pos-
sibility for privileged users to create, override or adapt
trimming, preferably without rebooting. Ideally, load-
able kernel modules should also be trimmed.

2.2 Generic system design

In this section, we propose a generic system design for ker-
nel trimming. We distinguish two phases: an initial analysis
phase, followed by an enforcement phase.

2.2.1 Analysis

In the analysis phase, the kernel, and the applications it
should run, are automatically analysed in order to distin-
guish required code sections from unused ones. This re-
quires that the analysed system is not compromised. This
step can be performed either by static or dynamic analysis.
The granularity considered for code sections while perform-
ing analysis can vary: instruction granularity, basic-code-
block granularity, function granularity, or any given subset
of kernel functions (e.g., kernel functions exported for use
by loadable kernel modules, system calls).

A static source code analyser can, beside other things,
identify dead-code or unreachable code [4]. However, it can
be argued that many applications include a large amount
of functionality that is disabled at runtime (e.g., by reading
a configuration file), and the effectiveness of such a static
approach would be lower.

A dynamic analysis phase is essentially a learning phase:
the applications are subjected to non-malicious operations,
simulating their expected use of the kernel. By dynamically
tracking which code paths are used by the application, we
can generate a white-list of allowed kernel code.

2.2.2 Enforcement

The enforcement phase aims to prevent execution of kernel
code sections that have not been white-listed in the analy-
sis phase. This can be achieved by removing or disabling
the relevant code blocks. Removing code (e.g., by recom-
piling the kernel) has the advantage of creating a smaller
kernel, which can improve performance. Alternatively, dis-
abling code, typically by adding an access control check at
the beginning of the code section, has the advantage of pro-
viding more flexibility at runtime: various applications can
access different parts of the kernel.

In both cases, modifications to the kernel are required,
whether they affect the kernel source code, kernel disk im-
age, or in-memory kernel image. In all the latter cases, we
remark that static or dynamic binary instrumentation tools
are well suited for adding access control checks.

3. AN IMPLEMENTATION FOR LINUX
KERNELS: KTRIM

3.1 System description

In this section, we describe the design of a proof-of-
concept kernel trimming infrastructure for Linux imple-
mented as a loadable kernel module. The module performs
the analysis and enforcement phases dynamically by using
kprobes [3] for dynamic binary instrumentation. Kprobes
exports an interface for kernel modules to register a probe
for a given kernel code address and a handler function that
is called when the code at the given address is executed.

3.1.1 Setup phase

In our implementation, we add a setup phase to the
generic system design, where we select a set of kernel func-
tions that should be probed, i.e. intercepted, in the analy-

sis phase. For our tests, we have tested two lists: a small
set of all system calls (around 350 functions), and a larger
set of around 2k functions selected out of a total of around
10k non-static kernel functions. In our proof-of-concept, we
refrained from using more functions (including static ones)
due to performance and stability considerations. A too finely
granular approach would indeed be more likely to have false-
positives in the enforcement phase. Also, as a technical note,
registering a probe in our handler or any function called by
our handler would result in unbounded recursion and ker-
nel crash, therefore those functions should not be probed.
The large set was built by taking functions which were ex-
ported for use by non-GPL modules, as these symbols usu-
ally correspond to distinct functionality provided by the ker-
nel. Although our tests show that this initial 2k-set provides
satisfactory code coverage effectiveness, stability and perfor-
mance, we acknowledge that the set of functions would cer-
tainly benefit from being chosen, in future work, by a more
systematic approach (e.g., by using call graphs derived from
the kernel source code or binary).

We also select a policy scope, which is essentially the set of
applications that should be analysed and for which enforce-
ment should take place. In other words, these are the appli-
cations that are likely to be under the control of an attacker
willing to take advantage of a kernel vulnerability. Presum-
ably, in the absence of additional hardening (i.e., MAC type
enforcement), there is no valid security reason for including
applications that will run with system privileges in the policy
scope, because an attacker compromising such an applica-
tion will most likely not need to exploit a kernel vulnerability
to achieve his goals. In our implementation, the policy scope
is restricted to tasks without the CAP_SYS_ADMIN POSIX ca-
pability (which is equivalent to root). However, a policy
scope can also be defined by processes executed on behalf of
a certain user, or a security context (for systems with MAC
support), or a cgroup?.

3.1.2 Analysis phase

In the analysis phase, we essentially run applications in
the policy scope under non-malicious user inputs in order to
learn which kernel functions will be used. This is done by
inserting analysis probes on kernel functions selected in the
setup phase which are associated with the handler routine
in Algorithm 1. Whenever a probe is reached in the context
of an application in the policy scope, the associated handler
code is run: in this case, the probe is removed from the list of
active probes. At the end of the analysis phase, all remaining
active probes correspond to kernel functions that are not
used by applications in the policy scope. This constitutes
the system’s trimming policy.

Algorithm 1 Analysis-probe handler algorithm

ANALYSIS-PROBE-HANDLER (current-task)

if current-task € policy-scope
probes = probes \ {current-probe}

2See Linux kernel documentation: Documentation/

cgroups/cgroups . txt.

3.1.3 Enforcement phase

The enforcement phase starts by replacing the handler of
all probes in the trimming policy from the analysis phase,
with the enforcement-probe handler (see Algorithm 2).
When this handler is triggered by an application in the pol-
icy scope, kernel code that was not used in the analysis phase
is being run, therefore the KTRIM-ENFORCE-DENIAL function
is called to act on this event. For example, in order to pre-
vent a potential attack, the infringing application is killed
by this function, and the attempt logged. Note that this
means both analysis and enforcement only occurs on code
running in process context, as we do not have any user to
blame for code running in interrupt context.

Algorithm 2 Enforcement-probe handler algorithm

ENFORCEMENT-PROBE-HANDLER/(current-task)

if current-task € policy-scope
KTRIM-ENFORCE-DENIAL(current-task)

3.2 Evaluation and discussion

In this section, we evaluate ktrim against the requirements
identified in Section 2.1. In case of shortcomings, we discuss
possible improvements.

Our evaluation setup and workload consists of benchmark
tests using the Phoronix test suite®; the test suite is run on
a VirtualBox VM with 500 MB of RAM running Fedora 14.
Among the various tests included in the suite, we select six
that specifically test usual operations carried out within the
chosen use-cases for ktrim i.e. web server, databases and so
forth. For each selected test, we perform three separated
runs: one without the ktrim module (Reference); one with
the ktrim module loaded and in the analysis phase (Analy-
sis); a last one with the module loaded and in the enforce-
ment phase (Enforcement). For each test, we consider two
different function sets (the 2k-exported-symbol-set and the
system-call set), as explained in Section 3.1.1.

3.2.1 Effectiveness

We measure the effectiveness of this implementation by
estimating the amount of (process context) kernel code that
is prevented from being executed for applications in the pol-
icy scope. In the case where we use the large set of exported
symbols, since this set is a representative sample of all non-
static kernel functions (about 20%), we can estimate the
attack surface reduction by using the ratio of the number
of probes remaining in the enforcement phase to the total
number of probes. In the case of the apache benchmark, 227
symbols are kept out of a total of 1922. This represents an
attack surface reduction of around 88%, which shows this
approach is very effective.

Effectiveness can be further improved by providing sup-
port for multiple policy scopes. By analysing various appli-
cations separately, we can enforce accesses to different code
sections in the kernel, and thus reduce the attack surface
for an attacker in a given policy scope. However, this can
increase the overhead of trimming.

3http://www.phoronix-test-suite.com/

4000 14000

250

3500 12000
200
gggg - 10000 |
@ i X% 000 - 150
g 2000 a 2008 | »
= 1500 - = 100
1000 |- 4000 - 50
500 | 2000 |
0 0 0
Apache Benchmark CacheBench SQLite
S— 120 50000
s 45000
- 100 40000
s 35000
@ 7 80 o 30000 -
> - o 60 S 25000 |-
» s @ 20000
. 40 15000
: 10000
s 20 5000
S g & ° °
%, % 7%
S, L. &
% % 8
% %
KA
OpenSSL Gzip PHPBench

Figure 1: Performance results. Dark bars represent the 2k-exported-symbol set. Light bars represent the system-call set.

2k-symbol set
(1922 probes)

system-call set
(342 probes)

Apache 37 (89%) 227 (88%)
CacheBench 18 (95%) 136 (93%)
Gzip 35 (90%) 131 (93%)
OpenSSL 18 (95%) 72 (96%)
PHPBench 18 (95%) 72 (96%)
SQLite 18 (95%) 108 (94%)

Table 1: Number of probes removed in the analysis phase
for each benchmark (in parenthesis, attack surface
reduction)

3.2.2 Stability

As expected, under our test workload, the kernel with the
ktrim module did not crash. Concerning the behaviour of
user-space applications, we note that it is important that the
analysis phase is run over a long enough time to capture all
possible sporadic or periodic events (e.g., cron jobs), in order
to maintain their expected functionality. Alternatively, the
use of static analysis (in the kernel and the applications)
in the analysis phase can help to deduce all code sections
required by the applications. However, it can be argued that
many applications include a large amount of functionality
that is disabled at runtime (e.g., by reading a configuration

file), and the effectiveness of such a static approach would
be lower.

We also remark that for some applications, killing the pro-
cess when enforcing might break their functionality. For ex-
ample, in the case of a multi-user application such as a web
server which is threaded with user-level threads (or uses a
single thread with non-blocking I/0), killing the process will
necessarily result in the loss of service of all users, includ-
ing non-malicious ones, which is undesirable. More fine-
grained possibilities for the KTRIM-ENFORCE-DENIAL func-
tion include interactions with the user-space to enforce the
policy infringement. Namely, the task can be put into un-
interruptible sleep while signalling the breach to a helper
application that will terminate only the session of the in-
fringing user before restoring the state of the application to
resume on another user’s session.

3.2.3 Performance

Figure 1 shows performance results of our tests: each his-
togram in the array represents the result of a test; the lighter
bars represent the smaller set of all system calls, whereas the
darker bars represent the wider set of 2k functions. From
the figure we notice that the results of the tests without the
module and with the module in enforcing mode are practi-
cally identical: this is a very desirable result, as in common-
case usage a hardened machine would run the ktrim module
in enforcement mode with very limited additional cost (the
highest penalty paid is around 15% overhead on tests with

a high density of operations in kernel mode, the smallest
is less than 1%). We also notice that the analysis phase is
the one with the highest overhead: however i) this phase is
supposed to be limited in time and to be run only once and
ii) it is very expensive only on tests that require a lot of
operations from the kernel: for example, the apache bench-
mark — which is I/O and kernel-heavy — is almost 10 times
as slow.

It is clear that performance could be greatly improved
with the use of static instrumentation for the enforcement
phase. However, we also believe that we could use a faster
dynamic instrumentation technique than kprobes by tailor-
ing it to our use case (while kprobes for example uses jumps
instead of breakpoints, it performs some unnecessary oper-
ations in our case, such as some register saves).

3.2.4 Security

We note that the enforcement phase, which is security crit-
ical, depends solely on the policy scope and access-control
relevant properties of the current task (e.g., user id, capa-
bilities, security context, cgroup). None of these variables
are meant to be under the control of an unprivileged user,
hence enforcement is only possible to bypass if ktrim and/or
kprobes contain implementation vulnerabilities. We also
point out that our implementation is very simple, around
300 lines of kernel module code, which makes it easy to au-
dit and unlikely to contain any vulnerabilities.

3.2.5 Usability

Ktrim is designed as a kernel module that can be con-
trolled through the /proc pseudo-filesystem. A system ad-
ministrator can change phases (enforcement, analysis) or
disable ktrim at anytime. This can be useful for an adminis-
trator willing to quickly update the trimming policy on the
system to adapt to new changes, typically in a testing phase
before the application is rolled out in a service. However,
because the analysis phase requires a system that was not
compromised, these modifications should be performed care-
fully. Additional usability improvements could be made by
allowing to add or remove new probes or change the policy
scope dynamically (i.e., a dynamic setup phase). However
we believe this can negatively impact security and stability.

4. RELATED WORK

We identified three areas of related research that will be
discussed in the following. We explicitly excluded architec-
tural solutions such as microkernels because trimming tar-
gets shortcomings of current commodity operating systems.

4.1 Loadable kernel modules

Loadable kernel modules (LKMs) allow monolithic kernels
to dynamically alter kernel functionality. This is used for ex-
ample in Linux distributions to only load required drivers,
filesystems, and networking services and protocols. In a
sense, LKMs already achieve many of the trimming goals we
list in Section 2.1. However, we achieve better granularity
when discerning among code sections (i.e., better efficiency):
as an example an application might only need a particular
subset of filesystem operations, which LKMs cannot discern,
but trimming does. Clearly, our implementation of trimming
also provides the ability to disable an unnecessary module
entirely for applications within policy scope, as long as the
relevant symbols of the module were included in the setup

phase. More importantly, LKMs are not used with the goal
of reducing the attack surface of attackers, but mostly to
reduce the memory footprint of a running kernel. This is
well illustrated in Linux by the fact that most kernel mod-
ules will be automatically loaded when any (unprivileged)
user-land application requires them, which means that the
attack surface of a local attacker on the kernel includes all
the automatically loadable kernel modules. Similarly, in or-
der to reduce the footprint of the kernel without focusing on
security, specialisation [5] is an approach used on embedded
systems to fit the kernel to the applications it is running.

4.2 Sandboxes

Sandboxes based on system call interposition [6-10] and
mandatory access control (MAC) mechanisms [11-13] pro-
vide the possibility to whitelist permissible operations for
selected applications by creating a security policy. Sand-
boxes also reduce the attack surface of an attacker targeting
the kernel, as the policy will restrict the access to some ker-
nel code. However, this effect is secondary, as sandboxes aim
primarily to prevent applications from performing security
sensitive operations (e.g., open(/etc/shadow, 0_RDONLY))
and not operations that can only result in privilege eleva-
tion when their implementation is vulnerable (e.g., the vm-
splice system call). On the contrary, trimming aims to
prevent access to unnecessary code sections in the kernel
regardless of the fact that they semantically correspond to
additional privileges for the application; it is especially pow-
erful to prevent the exploitation of kernel code, but much
less against the access of resources that become sensitive be-
cause of their relevance to the user-land (e.g., trimming can-
not distinguish between open(/etc/shadow, 0_RDONLY) and
open(/etc/passwd, 0_RDONLY)). Therefore, we see sandbox-
ing and trimming as two complementary approaches that
can be jointly used to achieve better system hardening.

We also note that the seccomp sandbox?® in mode 2 sand-
boxes processes by preventing a subset of system calls from
being executed, achieving a similar functionality as our setup
based on the small set of kernel symbols. In order to achieve
better granularity, seccomp also uses filters on the system
call arguments, in order to further restrict system calls de-
pending on their arguments. Filters can be manually spec-
ified in the policy, together with the bitmap of allowed sys-
tem calls. We believe however that this is a disadvantage:
filtering system call arguments prevents simple automation
of the policy creation process (analysis phase), although this
is possible to achieve probabilistically, as shown in [14]. Ad-
ditionally, the manipulation of the system call arguments
introduces possible races and other vulnerabilities [15]. In
other words, we believe that this conflates the role of the
sandbox, thereby achieving a middle ground between the
two opposite goals of user-land permission containment and
attack surface reduction, as explained in the previous para-
graph.

4.3 Hypervisor-based reference monitors

Virtual machine introspection, as introduced in [16], and
virtualisation in general is an attractive technology for pro-
viding security guarantees on a guest kernel, as it allows
external monitoring of a guest for events such as memory ac-
cess. This makes it possible for example to perform rootkit

‘http://code.google.com/p/seccompsandbox/wiki/
overview

detection [17] with kernel memory integrity and control-
flow integrity checks, even when a guest is entirely compro-
mised [18], which is clearly not possible for a self-monitoring
kernel. As a particularly original example, Chen, et al., [19]
propose an approach to get around the weaknesses of com-
modity operating system kernels by protecting selected ap-
plications within the guest from an untrusted guest kernel,
with the use of encrypted and authenticated memory pages.

We acknowledge that trimming could also be performed
through hypervisor-based monitors, by using active hooks
such as those provided by the Lares framework [20], or, for
less overhead with in-VM monitoring [21]. However, we cur-
rently see no necessity for a hypervisor-based approach and
in cases where resources are scarce, like soft-routers, this
adds too much overhead, while in already virtualised en-
vironments, like infrastructure clouds integration might be
difficult without vendor support.

S. CONCLUSION

There is a recent trend, partly driven by the ongoing im-
provements in the proactive mitigation of user-space vulner-
abilities, to focus on attacking the kernel. One important
source of flaws and weaknesses in the kernel is legacy code
that in many cases is not actively accessed in normal oper-
ation mode but only in the context of an exploit. Taking
these facts into account, we propose a kernel-trimming pro-
cess that is composed of an initial analysis of a given system
for unused kernel code sections and an enforcement phase in
which unexpected control flows are intercepted. Our initial
evaluation results based on an early prototype that performs
dynamic instrumentation of kernel functions are promising.
We were able to reduce the kernel attack surface for a web
server considerably with only small performance penalties.
Based on these results we plan to widen our empirical stud-
ies by evaluating further network-based services, designing
a more precise attack surface metric, and improving the
instrumentation framework, e.g., by evaluating the use of
static analysis techniques.

6. REFERENCES

[1] R. Tartler, D. Lohmann, J. Sincero, and
W. Schréder-Preikschat, “Feature Consistency in
Compile-Time Configurable System Software,” in
Proceedings of the EuroSys 2011 Conference (EuroSys
’11), 2011.

[2] K. Onarlioglu, L. Bilge, A. Lanzi, D. Balzarotti, and
E. Kirda, “G-Free: Defeating Return-Oriented
Programming through Gadget-less Binaries,” in
Proceedings of the 2010 Annual Computer Security
Applications Conference, 2010.

[3] A. Mavinakayanahalli, P. Panchamukhi, J. Keniston,
A. Keshavamurthy, and M. Hiramatsu, “Probing the
guts of kprobes,” in Proceedings of the 2006 Linux
Symposium, 2006.

[4] P. J. Guo and D. Engler, “Linux kernel developer
responses to static analysis bug reports,” in
Proceedings of the 2009 conference on USENIX
Annual technical conference, USENIX’09, 2009.

[5] D. Chanet, B. De Sutter, B. De Bus, L. Van Put, and
K. De Bosschere, “System-wide compaction and
specialization of the linux kernel,” ACM SIGPLAN
Notices, 2005.

[6] N. Provos, “Improving host security with system call
policies,” in Proceedings of the 12th conference on
USENIX Security Symposium, 2003.

[7] 1. Goldberg, D. Wagner, R. Thomas, and E. A.
Brewer, “A secure environment for untrusted helper
applications confining the wily hacker,” in Proceedings
of the 6th conference on USENIX Security Symposium,
Focusing on Applications of Cryptography, 1996.

[8] A. Dan, A. Mohindra, R. Ramaswami, and
D. Sitaram, “Chakravyuha: A sandbox operating
system for the controlled execution of alien code,”
tech. rep., IBM TJ Watson research center, 1997.

[9] A. Acharya and M. Raje, “M APbox: using
parameterized behavior classes to confine untrusted
applications,” in Proceedings of the 9th conference on
USENIX Security Symposium, 2000.

[10] C. Willems, T. Holz, and F. Freiling, “Toward
Automated Dynamic Malware Analysis Using
CWSandbox,” IEEE Security and Privacy, 2007.

[11] SELinux. http://selinuxproject.org/page/.

[12] TOMOYO. http://tomoyo.sourceforge.jp/.

[13] grsecurity. http://grsecurity.net/.

[14] D. Mutz, F. Valeur, G. Vigna, and C. Kruegel,
“Anomalous system call detection,” ACM Transactions
on Information and System Security, pp. 61-93,
February 2006.

[15] T. Garfinkel, “Traps and pitfalls: Practical problems
in system call interposition based security tools,” in
Proceedings of the Network and Distributed Systems
Security Symposium, 2003.

[16] T. Garfinkel and M. Rosenblum, “A virtual machine
introspection based architecture for intrusion
detection,” in Proceedings of the Network and
Distributed Systems Security Symposium, 2003.

[17] N. Petroni Jr, T. Fraser, J. Molina, and W. Arbaugh,
“Copilot-a coprocessor-based kernel runtime integrity
monitor,” in Proceedings of the 18th conference on
USENIX Security Symposium, 2004.

[18] M. Christodorescu, R. Sailer, D. L. Schales,

D. Sgandurra, and D. Zamboni, “Cloud security is not
(just) virtualization security: a short paper,” in
Proceedings of the 2009 ACM workshop on Cloud
Computing Security, CCSW ’09, 2009.

[19] X. Chen, T. Garfinkel, E. C. Lewis,

P. Subrahmanyam, C. A. Waldspurger, D. Boneh,

J. Dwoskin, and D. R. Ports, “Overshadow: a
virtualization-based approach to retrofitting
protection in commodity operating systems,” in
Proceedings of the 13th international conference on
Architectural Support for Programming Languages and
Operating Systems, ASPLOS XIII, 2008.

[20] B. D. Payne, M. Carbone, M. Sharif, and W. Lee,
“Lares: An architecture for secure active monitoring
using virtualization,” in Proceedings of the 2008 IEEE
Symposium on Security and Privacy, 2008.

[21] M. L. Sharif, W. Lee, W. Cui, and A. Lanzi, “Secure
in-vm monitoring using hardware virtualization,” in
Proceedings of the 16th ACM conference on Computer
and Communications Security, CCS 09, 2009.

