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Abstract. Mobile and embedded devices like PDAs, mobile phones, and all
kinds of consumer hardware populate the world we live in. Despite the vision
of ubiquitous computing and its idea of spontaneous interaction among these
devices more than fifteen years ago, most of them are still isolated and restricted
in their interaction capabilities. One reason for this limitation is the poor support
for dynamic adaptation and evolution of software in distributed environments.
This paper proposes AOCI, an Aspect-Oriented Component Infrastructure that
takes the core ideas of AOP, the separation of concerns and system modularization
to make them more adaptable and evolvable, to the domain of component
systems. Components are usually considered as black boxes that can be
combined to a complex system using their outer interfaces. In the context of our
infrastructure, components export possible adaptation points, which are enriched
by ontological information. This enables the application of AOP techniques
without detailed knowledge about the component’s internals, enabling dynamic
and distributed adaptation.

Our prototype is based on OSGi and provides a complete infrastructure to weave
local as well as remote components. We demonstrate the feasibility of our
approach by adapting the RUBIS infrastructure (a web-based bidding system)
to support dynamic user-centric error detection.

1 Introduction

More than fifteen years ago, Mark Weiser introduced the term of ubiquitous
computing [1], which proposes a post-desktop model of human-computer interaction
where information processing is integrated into everyday objects and activities. As
opposed to the desktop paradigm, in which a single user engages a single device
for a specialized purpose, ubiquitous computing has the vision of small, inexpensive,
robust devices, either mobile or embedded in almost any type of object imaginable,
including cars, tools, appliances, and various consumer goods — all communicating
through increasingly interconnected networks. However, the services these objects will
deliver, still have to be adapted to the person, the time, or generally spoken to the context
of their use [2]. In such a world, where everything is connected to everything, Ferscha
et al. [3] propose a spontaneous interaction model, where devices start to interact with
each other once they have entered the physical proximity to each other. This behavior
is called a digital aura [3]. This in turn means that dynamic adaptation of services
in such an aura is of great relevance. Some adaptations can be anticipated, but as



the whole range of applications within an interaction is difficult to estimate, some of
them are not. Thus, there is a need for appropriate software engineering techniques and
methodologies enabling systems to handle unexpected situations - or at least to improve
their features, enabling spontaneous interaction.

1.1 Aspect-Oriented Programming and Components: Do They Match?

Aspect-oriented programming (AOP) [4] has proven to be a technology that can
support software evolution and adaptability. AOP aids the programmer in the separation
of concerns, specifically cross-cutting concerns, as an advance in modularization.
However, the techniques of aspect-oriented software development that help to improve
the modularity of software can restrict the evolvability of that software. The
obliviousness [5] property of aspect orientation states that aspects are not invoked
explicitly, but instead implicitly [6]. However, a developer has to be aware of which
advice are applied to his source code to be sure that the aspect does not negatively
impact his original intent. In consequence, applying AOP to code written by someone
else (especially when the source code is not available) is risky. This is even more the
case when using components [7], which usually offer a black box behavior. Thus, at first
sight, components and AOP do not match, as components inherently forbid changing
their implementation or otherwise lose major benefits like encapsulation or information
hiding.

1.2 AOCI: An Aspect-Oriented Component Infrastructure

Based on our preliminary research work [8], we propose a context-aware Aspect-
Oriented Component Infrastructure (AOCI), which is built upon OSGi [9]. AOCI
seperates the identification of possible points for adaptations (pointcuts at source
code level) from programming of advice (code that will be woven) by embedding a
conceptual metamodel based on an ontology, representing a set of concepts within a
domain and the relationships between those concepts. Component developers export
potential points for adaptation by attaching ontology-based meta information to the
component source code. Thereby, developers do not only restrict the places where
adaptation can happen but also provide information on what kind of adaptations
might be suitable at these points. We call those extended pointcuts ontology-based
pointcuts. Aspect-writers describe where advice code should be applied by means of
the metamodel. To match the ontology-based pointcuts and the aspects, AOCI uses the
Resource Description Framework (RDF) [10] to express the metadata and to enable
easy processing of the ontology. Thus, our system supports a greybox component [11]
approach, allowing adaptation of components at load time by means of the ontology-
based pointcuts.

Our prototype implementation is based on the Equinox OSGi platform and utilizes
Equinox Aspects [12], which provides basic AOP support for OSGi. At its core,
Equinox Aspects integrates the Aspect] [13] load time weaving features enabling the
dedicated weaving of OSGi components. In the context of our prototype, we use this



support to provide the AOCI-aware components by integrating the proposed ontology-
based pointcuts. We show that our approach performs well in a real-world application,
the RUBIS bidding system, and outline a use case scenario in a ubiquitous setting.

1.3 Contribution

Compared to common component systems such as plain OSGi or the CORBA
component model [14], we see several advantages. As our solution is based on AOP,
components can separate functional from non-functional code, and issues related to
adaptation do not need to be addressed inside the component. Therefore, neither
additonal interfaces have to be implemented, nor is a custom code generation tool
needed. This significantly reduces the complexity of developing components and
runtime overhead if an adaptation is not necessary. Component developers use their
expertise to specify possible points of adaptation without the need to be aware of the
actual advice code that might be integrated. Aspect developers can develop advice as
usual and specify a pointcut at the metamodel level. Thus, in the ideal case, advice and
components can be implemented independent of each other and aspects can be applied
at any time. This aids the spontaneous interaction in a ubiquitous setting together
with the support of applying aspects at remote locations. The use of ontologies as
metamodel bears some advantages. Firstly, they can be used to describe the functional
and non-functional concerns of components. Secondly, they allow a convenient and
powerful querying capability. In the following sections we explain AOCI, which enables
ubiquitious computing and show a proof of concept for this infrastructure.

The remainder of this paper is organized as follows. Section 2 presents the core
idea of an AOCI-aware component. Section 3 outlines the technical background. In
Section 4, we describe the architecture of the prototype. Section 5 shows our sample
proof of concept application. An overview of related work can be found in Section 6,
followed by a concluding section.

2 Basic Concept

Component adaptation needs to be taken into account as a design principle when it is
not possible at design time to anticipate every use case the software will be involved
in during its lifetime. This especially applies to distributed and ubiquitous computing
where users and services are dynamic in nature and where the execution context usually
demands some form of adaptation. In this section we address the challenge to apply
aspect-oriented techniques on components to enable dynamic adaptation.

Components are usually considered as black boxes, which offer specific services
provided by interfaces and hide their implementation. This is especially the case
when using third-party components that are only available in binary form or when
components reside at distant locations. Thus, it is almost impossible to write aspects for
adapting traditional black box components. Even if the component code is available,
the expressive power of AOP can lead to some unwanted side effects.

AOCI addresses these issues by constraining the power of AOP and introduces
ontology-based pointcuts. An ontology-based pointcut represents an extended pointcut,



hence possible points for adaptation, and is based on a conceptual metamodel.
Therefore, in AOCI, aspects are decoupled from the structure of the base program.
As a result, the definition of their application is no longer defined in terms of the source
code and low-level implementation details, but is expressed based on properties of the
metamodel. The metamodel is deployed in an additional abstraction layer, which is
layered over the implementation and serves as a contract between the source code of the
component and the aspect. Fig. 1 illustrates how ontology-based pointcuts, annotated
by the developer of the component, and aspects play together to realize the decoupling
between aspects and source-code. The application developer is responsible for the
components and defines the places where later adaptation is possible in terms of the
ontology. The metamodel is represented as a separate layer and contains the ontology.
The ontology is maintained by a domain expert and is global in scope or at least rich
enough to cover the target domain. Hence, it forms a domain-based abstract view of
the concepts. Aspect developers, however, can write aspects, which are automatically
applied to the component by the infrastructure. To do so, aspect developers write their
advice in conjunction with the ontology-based pointcuts, so forming the aspect. As
a consequence, we decouple the base code from aspects by means of an intermediate
abstraction layer. At the lower level the aspect developer still intercepts and adapts code
of the woven component. As he has no access to the source code he has to depend
on runtime information provided by the AOP engine to actually do the adaptation.
However, the locations where his code is applied is well defined by the ontology based
pointcut. See Section 4.5 for more information about the programming model.
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Fig. 1. Conceptual structure of an AOCI-aware component

3 Base Technologies

3.1 RDF Ontology

In our approach the developer provides the means for later adaptability by exporting
metadata about the component and thus providing the component as a greybox. This



information allows the infrastructure to dynamically weave code at predefined places
in the component. To enable the dynamic binding between a greybox component with
advice, we use the Resource Description Framework (RDF), which is a family of World
Wide Web Consortium (W3C) specifications originally designed as a metadata model
using XML. The underlying structure of an RDF expression is a triple in the form
of subject-predicate-object. A collection of RDF statements intrinsically represents a
labeled, directed pseudo-graph. The benefits of RDF are its simple data model and the
ability to model disparate, abstract concepts. Based on RDF, we establish ontologies
for the AOClI-infrastructure and its use cases. Ontologies define concepts in certain
domains and the way these concepts interact, hence they provide a way to view the
world and help to organize information. Furthermore, they facilitate interoperability,
as they define a shared vocabulary and meanings with respect to other terms. To
implement these ontologies, we used OWL (Web Ontology Language) [15], which is a
RDF-based ontology markup language that enables context sharing and reasoning. In
AOCI, we use OWL Full [16], a sublanguage of OWL, which contains the complete
set of language constructs of OWL. To outline the proposed mechanism, we present a
partial definition of a domain-specific taxonomy targeting security as an example for
a non-functional requirement (see Fig. 2). The domain of security is subclassed with
Credential, Auditing, and Security Protocol classes, which are either subclassed or have
references to implementations of these concepts. Our infrastructure already utilizes such
generic ontologies for non-functional properties to reason about potential adaptations
within the components. However, it is possible to modify these ontologies or add custom
ones for more specific use cases.
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Fig. 2. Security ontology

While RDF is a flexible and extensible way to represent information about resources
on a platform, there is still a need for a standardized way to retrieve and process
these data, in order to realize the mapping between an ontology-based pointcut and



an aspect. Therefore we use SPARQL [17], a query language with similarities to SQL,
which has its own syntax and semantics for asking and answering against RDF graphs.
Furthermore, it is possible to query by triple patterns, conjunctions, disjunctions, and
optional patterns. As a programming framework for RDF and SPARQL we selected
Jena [18], as it allows to dynamically compose and evaluate these queries.

3.2 OSGi

Our architecture is based on OSGi, which implements a complete and dynamic
component model in the sense of service-oriented computing. In the OSGi terminology,
components are called bundles. The infrastructure provides bundles with lifecycle
management; they can be remotely installed, started, stopped, updated, and removed
without restarting the framework.

Bundles act as services, which reduces the coupling of bundles by defining service
interfaces. Therefore, if a bundle wants to access services of another bundle, the
interfaces have to be published in the Service Registry. This registry can also be used
to discover and bind services. Each bundle has a bundle manifest, which declares the
identity of a component and its exports and imports in terms of code dependencies and
services to other bundles. Based on these declarations, OSGi enforces collaboration
constraints between bundles.

While there are a number of implementations of the OSGi specification, we decided
to use Equinox [19], as it is a well-proven implementation and is very flexible for
extensions. Equinox offers the possibility to use hooks regarding the bundle life cycle
and the setup of class loaders. This provides the base to integrate load time weaving
support as addressed in the following section.

3.3 Equinox Aspects

Equinox Aspects [12] uses the flexibility of the aforementioned hook architecture to
support the integration of Aspect]’s load time weaving features into Equinox. It has
been implemented as OSGi lacks the support for AOP at the bundle level. This is needed
to apply AOP in a controlled and component-aware way. Aspects are represented as
bundles that can be applied on other bundles. Thus, it is possible to capture inter-bundle
relationships through AOP. In addition, aspects can describe patterns of interaction
between bundles. Consequently, the major benefits of AOP are available for OSGi based
applications.

Within Equinox Aspects, there are two programming models: Opt-In and Co-Opt.
The motivation behind these models is that developers can write their own aspects,
use or customize those of a library, or even weave third party code. Therefore, the
models help to preserve the developer’s intent at runtime using metadata and to resolve
introduced dependencies between the bundles. Using the opt-in model means that
the component developer decides which aspects will be applied to his bundles. This
opt-in model can be implemented by means of the existing manifest headers. On
the other hand, the co-opt model allows to decide where aspect bundles should be
applied. Equinox Aspects introduces several new bundle manifest headers to implement



this functionality. Hence, using the co-opt model means an inversion of dependencies
between the bundles, as the aspect bundle complements the application bundle.

Thus using Equinox Aspects AOP techniques can only be applied in the scope of
aspect bundle, finer-grained mechanisms are not available. However, for AOCI, this
does not mean a disadvantage, as we focus on components and greybox-concepts. On
the implementation level, Equinox Aspects uses the hookable adapter architecture; this
mechanism is used extensively within the class loading of the aspects. Once a bundle is
to be loaded, the class loading is intercepted by Equinox Aspects, which in turn checks
if adaptation is required. This is done by integrating Aspect] and its configuration files,
especially aop . xm1, which publishes the pointcuts, where the aspect bundle’s advice
can be applied. In the context of our implementation we utilize the co-opt model to
weave aspects after a semantic match process has been performed (see Section 4).

3.4 R-OSGi

OSGi offers limited support for distribution. This is achieved by means of interfaces
for interaction with Jini (for OSGi R3) or UPnP (for OSGi R3 + R4). However, Jini is
not a lightweight implementation, as it is based on RMI, which in turn makes it less
feasible on mobile devices, and UPnP does not support the richness of OSGi services
within a distributed environment. Therefore, AOCI uses R-OSGi [20], a middleware
platform that extends the standard OSGi specification to support distributed module
management. R-OSGi allows multiple peers with local OSGi frameworks to interact
in such a way that they behave like one large framework. On the implementation side,
R-OSGi uses proxies, which are created on demand. AOCI is designed for use with
mobile devices and spontaneous interactions are a key requirement. These devices do
not have a preconfigured knowledge about their environment, instead they have to be
context-aware and need to be adapted whenever interaction with other nodes occurs.
R-OSGi addresses this requirement by providing basic support for service discovery.
To communicate with other frameworks, R-OSGi uses the Service Location Protocol
(SLP), which is described in RFC 2608 [21]. By using SLP, it is possible to announce
services on a local network and dynamically discover them. Additionally, services can
be described by attributes, they can be used to query for this service, using LDAP’s
query language. While the notion of services in SLP is very close to the ones in OSGi,
however, the client cannot use the standard OSGI service interface to communicate
with them; instead it has to use the Remote0SGiService interface. Nevertheless,
this does not represent a disadvantage as R-OSGi is encapsulated within the AOCI
infrastructure.

4 Architecture

In this section, we present the prototype for an OSGi based component system
supporting our ontology-based pointcut approach. The implementation is to be
deployed on each participating host. A high-level architectural overview is shown in
Fig. 3. Each of the depicted components is composed of one or more bundles that have
to be deployed in an OSGi instance and provide their interfaces as services.
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Fig. 3. Architecture of the AOCI infrastructure

Currently, our prototype offers two methods for remote interaction (see Fig. 4).
The evaluate method is responsible for initiating the adaptation of bundles. This
method receives a map of annotations (ontology-based pointcuts) and checks whether
the host represented by the particular service instance has aspects-bundles matching
these pointcuts. The details of this process are discussed in Section 4.4. Furthermore,
the get ID-method uniquely identifies an AOCI-host. In the following sections we will
briefly discuss the subcomponents, which form the AOCI infrastructure followed by
the description, how the adaptations of bundles take place using our ontology-based
pointcut concept.

public interface ContextService {
Map<AspectBundle , Set<String>>
evaluate (Map<String , Set<Annotation>> bundlelnformation);

ContextID getID () ;

}

Fig. 4. Interface of the AOCI infrastructure component

4.1 AOCI Adapter

The AOCI adapter represents the part within the infrastructure that communicates with
other hosts and manages the adaptation process. Therefore, it provides the support to
discover other AOCI-aware peers and to exchange aspects between them. Depending
on the scenario, the adapter either acts as a context adapter or a server adapter. Within
a ubiquitous environment with many hosts, it is possible that a specific host offers some




services to other hosts, which can be adapted based on the ontology-based pointcuts
(server adapter), as well as it can provide aspects to other services and adapt them
(context adapter).

Taking the role of a context adapter, an AOCI infrastructure provides the interface
ContextService, thereby enabling a host to publish a set of aspect bundles, which
can be applied to the remote host. To achieve this, the activator of this component
registers an object implementing this interface with the local service registry. The
service property service.remote.registration is set, causing R-OSGi to
export this service. Thus, the context service is discoverable by other peers.

An AOCI infrastructure serving as a server adapter is responsible for weaving
aspects received from other hosts. It registers a listener for peer context services within
R-OSGi. On discovery a FrameworkUpdater thread is created, which initiates an
update run, hence weaving the advice. This is explained in detail in Section 4.4.

4.2 Ontology Services

The ontology services, comprised of Reasoner, Ontology Service and the Aspect Bundle
Manager, provide the ontology and its functionality for reasoning and maintaining it.
The Ontology Service encapsulates the ontology model as a Jena OWL OntModel
object. The ontology can be serialized as XML and can be updated at runtime.
References to aspect bundles implementing concepts represented in the ontology model
can be registered, deregistered and looked up using this service.

Based on this ontology, the Reasoner Service is responsible for mapping sets of
annotations defined in the source code to sets of aspect bundle references. To achieve
this, it queries the Ontology Service for each annotation if there is an aspect bundle
implementing that concept, thus creating a mapping from annotations to aspect bundles.
In our prototype, we use a basic matching algorithm. However, this can be enhanced to
more complex algorithms that allow a more sophisticated reasoning (e.g., use of rules
or logical operators).

The aspect bundle manager maintains the aspect bundles and acts like an aspect
store. It saves references of the implementations within the ontology and offers
functionality to register and deregister aspect bundles at runtime within AOCI.

4.3 R-OSGi Service

As previously noted, we use R-OSGi as part of our infrastructure to discover and
use remote context services. The discovery of a remote AOCI context triggers
the adaptation-process within our infrastructure. This can happen either manually
by calling RemoteOSGiService.connect (URI endpoint), or via a service
discovery protocol like SLP. R-OSGi communicates across distributed services
by generating and installing bundles containing dynamic proxies. As R-OSGi is
not tightly integrated into the OSGi service registry on each host, AOCI uses a
GenericROSGiServiceTracker to serve as a bridge between the two. For this
purpose, it registers a GenericDiscoveryListener<T> with the registry. This
listener implements the interface ServiceDiscoveryListener, which is called
by R-OSGi when a new service has been discovered and made locally available. Our
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Fig. 5. Discovery, evaluation and adaption of aspects

generic listener can be specialized via the template parameter to look for any service
interface. On discovery, it acquires the service and registers it with the local OSGi
registry, thus making it transparently available to local bundles.

4.4 Adaptation Process

After presenting the structural overview of the AOCI infrastructure in the previous
sections, we describe the dynamic interaction of the components using a sample
adaptation process. During the interaction of two participating hosts, our infrastructure
acts according to two distinct roles, as a server adapter (host A) and as a context adapter
(host B). This is reflected in Fig. 5.

Once two nodes have discovered each other using the R-OSGi service, the
server adapter starts a FrameworkUpdater thread. This thread is responsible for
exchanging information about the hosts and their possible points for adaptation. Based
on this information, the infrastructure decides which adaptions have to take place. Once
running, it scans the currently installed application bundles of the local framework for
AOCIT annotations. This is done by the AnnotationHarvester, which loads each
class from each bundle and uses reflection to find fitting code elements. This piece
of information can be cached for further use (the current prototype does not provide
caching support yet). In the next step, the resulting set of annotations is sent to the
context service for evaluation. This process returns a suitable set of aspect bundles.
These bundles are then installed in the local framework. The manifest headers trigger
Equinox Aspects to adapt the Require-Bundle headers in the manifests of the
application bundles by adding the symbolic names of the relevant aspect bundles. On



each affected application bundle an update-operation is performed, which causes all
dependencies to be re-evaluated. That way the contents of the aspect bundles become
visible” to the application bundles class loaders. As Equinox Aspects is hooked into
the OSGi frameworks class loading, each class is processed by a weaving service, which
uses the Aspect] load time weaving facilities to weave the class if an aop . xm1 file has
been found.
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Fig. 6. Processing the context to select suitable aspects

The component interaction on the side of the context adapter is depicted in Fig. 6.
The context adapter receives the set of annotations as an argument to its evaluate-
method. The evaluation is then delegated to the Reasoner Service, where each
annotation is looked up within the local ontology service returning a set of aspect bundle
references. The reasoner then consults the aspect bundle manager to map the references
to objects implementing aoci.util.aspectbundle.api.AspectBundle.
These objects representing the aspect bundles selected by the reasoner are customized
by the context service to reflect the specific situation in the receiver framework. This
includes adapting their manifest headers so that the Eclipse-SupplementBundle
entries contain the correct application bundles. The resulting set of aspect bundles
is then returned to the caller of the ContextService.evaluate method, the
receiving side.

4.5 Development Model

The use of ontology-based pointcuts and aspects within the AOCI infrastructure is fairly
easy. The application developer simply annotates the code for use with AOCI by means



of annotations. In our prototype, we have implemented the ontology-based pointcuts by
means of Java annotations. In Fig. 7 the approach is outlined. The method doPost is
annotated for the application of logging aspects. The mapping of the annotations to the
ontology description is quite simple. While ontologies are represented as hierarchical
trees, this structure is also included within the annotations, whereas the corresponding
nodes in the tree are seperated with points. Additional properties for nodes can be set
with key-value pairs within round brackets.

@AOCI. Logging
public void doPost(HttpServlet request, HttpServletResponse
response ) throws IOException, ServletException

(..

Fig. 7. Code annotated for use with AOCI

The aspect developer has the full power of the Aspect] advice constructs. As a
consequence, this permits him to access the language constructs (e.g., methods, fields,
constructors) annotated in the source code. However, for some concepts within the
ontology this is not enough information to implement meaningful aspects, especially
if parts of the advice are functionally dependent on source code (e.g., when annotating
code for encryption, the component developer has to publish information what can
be encrypted). To solve this issue, the component developer can make use of OWL
class properties to provide this additional information to the aspect developer. The
information which properties are available for use is stored within the ontology.
Furthermore, in AOCI all aspects are only applied within the context of the user,
meaning that the weaving of code does not influence other services running in contexts
also using this component.

4.6 Security Considerations

Dynamic loading of code is risky as the code could be malicious. However, due to the
fact that OSGi is Java-based, it provides standard Java security mechanisms such as
sandboxing [22]. In addition, OSGi offers support for digital code signatures [23] and a
special optional Permission Admin service for a fine-grained security-related framework
configuration since release 4 [9]. So far, off-the-shelf Java runtime environments
provide no support for denial-of-service attacks where malicious code consumes as
much resources as possible. However, this problem can be solved once the isolate
concept [24] is available in a production JVM.

5 Evaluation

For the evaluation we conducted experiments with RUBiS (Rice University Bidding
System) [25]. This web-based bidding system was built to benchmark common




middleware infrastructures under realistic load situations. Thus it can be configured
using different middleware stacks such as EJB, Java servlets, or a plain CGI variant.
The information about items for sale, bids, and users is stored in a database. In the
context of our work we selected the Java servlet variant, as it can easily be ported to
OSGi, which already specifies an HTTP service that is provided by most of the OSGi
platforms. Within the evaluation, we used a Jetty based (a java servlet container) service
implementation and a MySQL database. The servlets representing the core of RUBIiS
had to be packaged as a bundle. This bundle covers about 5000 lines of code and has
been extended and annotated by 17 possible points of extension. These annotations
represent the opportunities to adapt the system to user and administrator demands,
hence forming the ontology-based pointcuts. For the evaluation, we have annotated two
servlets, the AboutMe and the SearchsItemsInCategory servlet. Within RUBIS, there
are over 20 servlets.

In the context of our experiments, we envision the scenario that a certain user has
a specific problem; for example, due to a configuration problem or unexpected inputs.
In the common case, a user would get an error page indicating an unsuccessful request.
This page might include some information, but in general, this is not enough to detect
the cause of the bug. Thus, the user sends a bug report to the site administration.
The site administrator has now the duty to search for the error based on the available
information. Often it can be cumbersome and time consuming to detect the cause for
the error if it is possible at all.

Using our infrastructure, this process can be eased. The user is confronted with
the error and wants to know the reason to get it fixed in a timely fashion. She
discovers that the RUBiS system supports AOCI and that it is possible to get logging
information. Fig. 8 shows the relevant parts of the ontology that are used by our sample
application. Note that parts of the ontology represent non-functional classes, while
others show functional elements. As RUBIS implements a selling platform, there are
already domain-specific elements, which describe the most important services offered
by common selling platforms. Instances of classes can have relationships to other
classes, which means in our case, that RUBiS supports logging. So the user sends over
a logging aspect bundle that is woven at the server side. She re-issues the error-prone
request and gets logging information about the cause of the bug. This information gives
her a basic information about the reasons and she is able to provide a valuable error
report that helps the administrator identify the cause of the bug more rapidly. Of course,
the execution of the user-supplied aspect has to be restricted to the request executions
of the user. This can be achieved by evaluating user context from the current request.
If the current user issuing a request matches the supplier of an aspect, it is executed,
otherwise the request is processed without further interception.

The user-initiated injection of the logging aspect results in a service downtime as
the affected bundles have to be reloaded. The integration resulted in a mean downtime
of the service of 2.21 seconds, contrasted to a downtime of 0.42 seconds on average for
a simple update and restart. The increased service unavailability is a consequence of the
bytecode rewriting to integrate the aspect during the class-loading process.

We have benchmarked the plain RUBiS system and compared it with AOCI
deployed and the applied logging aspect for one user. The results are shown
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Fig. 8. RUBIS ontology

in Table 1. The table shows the access time for two servlets (AboutMe and
SearchItemsInCategory) for an increasing number of clients. For a lightly
loaded system the impact of AOCI is up to six percent whereas for a highly loaded
system the impact is between 19-41 percent for the average case. Of course, the impact
is related to the underlying AOP engine. Most of the additional spent time is used
for weaving the aspect bundles. Within our measures, the time used for the matching
algorithm and for collecting the annotations can be neglected.

Servlet No. Clients M";’;Tﬁ‘;ﬁﬁg. Mimi}[:fﬁvg’ Avg. Diff. in %
200 17 | 476 | 32 | 17 | 230 | 32 0
AboutMe 300 16 | 726 | 41 | 16 2623 | 49 19
400 16 | 1926 74 | 17 | 4060 | 105 41
200 37 | 581 | 75| 4 | 316 | 79 5
SearchltemsInCategory 300 5 | 168197 | 5 |4576| 99 2
400 5 |18974|218 | 21 [16765|278 27

Table 1. Benchmark results: plain RUBIS vs. AOCI and RUBiS

In the future, we want to extend the ontology and scenarios. For example, a user
could supply an aspect that generates information about her bids and offers.

6 Related Work

We identified three areas of related research that will be discussed in the following.

Extended Pointcut Concepts intend to leverage the actual matching of aspects and
code to a higher level. Kellens et al. [26] state that AOP suffers from a fragile
pointcut problem, which means that seemingly safe modifications of an aspect-oriented
program can lead to unexpected impacts in the application. To overcome this issue,
they introduce model-based pointcuts, which decouples the aspects from the base code.
Hence, the fragile pointcut problem is transferred to a more conceptual level. As



opposed to AOCI, they do not introduce ontologies to realize the matching between
aspects and pointcuts, instead they extended the CARMA aspect language combined
with the formalism of so called “intensional views”. CARMA uses SOUL, a language
akin to Prolog, to reason about the application of advice. The fragile pointcut problem
is also addressed by Cyment et. al [27]. In their work, they have introduced an
intermediate abstraction layer. On top of this they have implemented model-based
pointcuts and a semantic pointcut framework. Compared to Kellens, they embody a
higher level of abstraction. However, as opposed to AOCI, they do not use ontologies
either.

Distributed AOP applies the ideas and concepts of AOP to distributed applications. In
their work, Navarro et al. propose AWED [28], a new aspect language that addresses
the distribution of aspects. AWED is realized as an extension of JAsCo, which provides
dynamic aspects for Java. AWED offers several explicit distributed programming
mechanism. Firstly, they introduce remote pointcuts, which are more general than
those of related approaches; secondly, they support the execution of asynchronous and
synchronous advice and lastly, they define a notion of distributed aspects including
models for deployment, instantiation, and state sharing of aspects. The distribution
of aspects is also addressed by Tanter et al. [29]. In their work, they introduce a
flexible infrastructure that allows aspects to be used in a distributed manner. Based
on their work, it is possible to define distributed aspect languages and frameworks. The
distribution of aspects is also supported within AOCI. However, in our infrastructure,
we did not extend the aspect language, but enhanced the infrastructure to offer this
functionality.

Adaptive Component Systems support modularization of software through com-
ponents and offer support for runtime adaptation. Most of them concentrated on
providing mechanisms to adapt components, only few use the benefits of AOP and
make use of an ontology-based metadata description. Pessemier et al. [30] show that
AOP can safely be supported by Component-Oriented Programming (COP). In their
paper, they explain which problems they have encountered when using AOP with
components. To overcome these issues they have introduced the greybox, which marks
a compromise between modularity and openness. However, there is no support for
building applications using the support of an ontology or an alternative semantic model.

In their work, Rho et al. [31] describe that services in a Service-Oriented
Architecture (SOA) are general in their nature, which allows them to fit the needs of
as many clients as possible. On the other hand, these systems cannot address every
single requirement. Therefore they introduced the concept of context-sensitive service
aspects, which can be changed dynamically at runtime. Their framework is Ditrios,
which is based on OSGi and supports a context-sensitive weaving. But as their system
addresses adaptation on a SOA level, AOP techniques are restricted to calls on the
service level.

Duclos et al. [32] outline that both component-based applications and AOP address
the same separation of concerns issue. While containers are only proposing a fixed set
of services, AOP works at the object level. Additionally, they present an approach to get
both the advantages of AOP and component based systems. Furthermore, they provide a
simple language for using aspects on applications. These aspects can be applied without



code availability. However, the software allows the adaptation of components, but this
has to be triggered manually, hence, it is not for use in a ubiquitious environment.

The Rainbow framework [33] provides a software architecture and infrastructure to
support the self-adaption of software systems. To fulfill this, the architecture uses an
abstract model to monitor the system’s runtime properties, and provide means to react
upon events and adapt the software. However, Rainbow neither addresses the concept
of greyboxes nor AOP and therefore misses concepts for dynamic injection of custom
code.

Another approach to enhance component based software development is introduced
with the JAsCo [34] language. It is an aspect-oriented programming language, which
main contributions are its highly reusable aspects and its strong aspectual composition
mechanism for combination of aspects. However, while the adaptations can be applied
dynamically at runtime, there is no concept to automate this.

CAMidO [35] is an architecture for supporting development and execution of
context-aware component applications. It provides an ontology metamodel, which
facilitates the description of context information. Additionally, the platform provides
the possibility to write interpretation and adaption rules, which are used by the CAMidO
compiler. However, there is no support for either AOP or a semantic model to automate
the adaptation.

Miigge et al. [36] present a solution for an adaptive middleware in the area
of ubiquitous computing and describe a new approach combining aspect-oriented
programming with structural metadata. This metadata can be used to weave aspects
from the aforementioned Ditrios middleware. However, they do not address context-
aware applications. Although there is support for AOP, there is no concept like a
greybox.

7 Conclusion and Future Work

We presented the concept of ontology-based pointcuts to enable the dynamic weaving of
local and remote components without requiring their source code. Thus, our technique
offers support for dynamic adaptation of services in distributed and ubiquitous
environments going beyond the adaptation of their external interfaces. Ontology-based
pointcuts are provided by introducing an additional abstraction layer mediating between
aspects and components using an ontology. We have implemented this concept in
the context of the AOCI infrastructure on top of the component framework OSGi.
Bundles, which support components in the context of OSGi, provide possible points
for extension using the ontology. Aspects on the other side do not need to match at
the source level but on the ontology layer level. Thus, AOCI-aware components do
not resemble black boxes, in fact they can be seen as greyboxes publishing additional
metadata for later adaptation. In conjunction with our service discovery layer, which
automatically interacts with other frameworks, our prototype enables adaption in
distributed environments. The latter was demonstrated by adapting RUBiS, a web-based
bidding system, to provide user induced logging support.

Albeit we have implemented a proof of concept for ontology-based pointcuts
and shown that they enable adaptation at a higher level and perform well in the



context of OSGi, we see several main fields for further investigation. Firstly, we want
to address and evaluate scenarios within the ubiquitious computing domain, where
already existing services and functionalities hosted on devices could be extended
by other devices. As an example, a mobile device could request another device to
apply an encryption aspect before beginning the communication. Secondly, the AOCI
infrastructure has to be ported to smaller devices for attacking scenarios in ubiquitous
environments. We are confident that this can be achieved by using the Concierge OSGi
implementation [37], which was specially designed for mobile and embedded devices
and by using the JamVM that we already used for research in the context of resource
restricted systems [38]. Thirdly, we have plans to extend the expressiveness of our
annotations to enable more complex adaptations. For example, we want support for
matching of subclasses within an ontology as well as the use of logical operators within
the matching algorithms. Furthermore, we want to evaluate the scaling of our approach
in a bigger environment.
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