
KESO • A Type-Safe Middleware for Embedded Systems

Department of Computer Sciences
Distributed Systems and Operating Systems

http://www4.cs.fau.de/Research

Christian Wawersich • Michael Stilkerich

Domains

AVR Node

Domains

Tricore Node

Domain

KESO enables you to relocate domains
from one node to a different node in

the system by only changing the
configuration. Inter-domain
communication continues
to work without changing
 the application due to the
 uniform portal mechanism.

Node

Domain Domain

Error

Domain

Domains are the realms of memory protection in KESO
similar to processes in modern operating systems.

KESO's protection is built on Java's type-safety
combined with the strict seperation of the objec

 heaps of each domain and replication of mutuable
global data in each domain. The isolation inhibits

the spreading of an error and allows the safe
 integration of different tasks on a node.

NodeDomain
Service

Domain

P
or

ta
l

NodeDomain

P
or

ta
l

With portals, KESO offers a uniform and safe
way of inter-domain communication. The
communication mechanism is location-

transparent, i.e. the client domain does not
need to know on which node the service

domain resides. A service is a Java
interface providing a well-defined set

of methods to the client domains.

The static nature of the system and the
semantical richness of the Java bytecode allow
the KESO compiler to perform aggressive global
optimizations. Tests with a ported C-application

to KESO have shown that the resulting KESO
system has a similar footprint as the original

unsafe C application.

Native C JAR File multi
domain

single
domain

unsafe
0

2

4

6

8

10

12

14

16

18

Code Size Comparison of a Sample Application

C
od

es
iz

e
(k

B
)

OSEK

KESO Domain Domain

Task Synchronization

Scheduling 12 Alarm Management

Event Management

KESO is firmly based on an event-driven OSEK OS
that is widely spread in the automotive industry.
The priority-based scheduler of the OSEK OS is
used for the scheduling of the tasks in a KESO

system. Other features of the OSEK OS such as
the priority-ceiling-based synchronization

mechanisms are also provided by the KESO API to
the Java applications, whereby KESO allows to

enforce domain-based access restrictions.

Domain

Heap

Memory

KESO provides special memory objects that
allow to r/w access to a specific region of
memory. Only primitive datatypes can be
read and written through this interface.

Range checks are performed on each access
to prevent memory corruptions.

Memory objects can also be used to provide
shared memory between domains which

allows the efficient exchange of large
amouts of data.

RAM

memory-mapped
deviceregisters

range
check

Tasks

13

Heap/GC

Service

Heap

Portal

Tasks

2

OSEK/VDX

KESO Services

Tricore Microcontroller

OSEK Services

Device
Memory

Tricore Node

AVR

Task
Heap

Portal

HeapPortal

AVR Node

AVR

AVR Node

TaskHeap
Portal

Service

Contrary to traditional JVMs, KESO maintains a seperate
heap for each domain. There are no cross-references
between the heaps of two different domains, which

allows garbage collection to be performed per
domain and also enables the deployment of different

garbage collection strategies in different domains.
Memory is allocated per domain by configuring

 the size of the heaps.

traditional JVM

Heap of
Domain A

Heap of
Domain B

Heap of
Domain C

seperate heap for
each domain in KESO

Node

Domain Domain

Error

Domain

Garbage collection strategies can be configured for
seperately for each domain. Domain's that do not
dynamically allocate memory can run without a

garbage collector and thus completely avoid the
associated overhead. KESO contains a highly

preemptable garbage collector with worst-case
 latencies (8us) lower than those of the
underlying OSEK/VDX system (12 us).

