
Architecture-Neutral Operating System Components

Daniel Lohmann and Olaf Spinczyk
Friedrich-Alexander University Erlangen-Nuremberg

Martensstr. 1
D-91058 Erlangen, Germany

{lohmann,spinczyk}@informatik.uni-erlangen.de

1. INTRODUCTION
The development of a new operating system requires a wide range
of decisions at a very early stage. These early decisions cover (and
define) fundamental properties and policies of the new OS. They
determinelocking strategies, module structureandinteraction, in-
terrupt handlingandsynchronization, supportedhardware archi-
tecturesand more. We denote this set of fundamental properties as
thearchitectureof the OS.
Almost 25 years ago, Lauer and Needham described the duality of
procedure- and process-based operating system structures. They
have showed that it is, in principle, possible to transform one into
the other [2]. However, in real operating systems architectural
properties, like locking and component interaction schemes, tend to
be hard-coded into almost every component of the system, mostly
for the sake of efficiency. Architectural properties are inherent
crosscutting concernswhich makes it nearly impossible to reuse
components in a system with a different architecture.

2. ARCHITECTURE ENCAPSULATION
Aspect-oriented programming (AOP)has proven to be a promising
way to deal with crosscutting concerns. However, until today ex-
periments with AOP in OS code have always been restricted to as-
pects with a limited scope due to a lack of compiler support [1]. A
practical investigation of the benefits for the design and evolution of
new system software has been impossible. With AspectC++ [3], an
aspect-oriented language extension to C++, our group has recently
developed an important tool that enables the application of AOP
concepts in the development of efficient system software. In the
CiAO project1 we have now started the development of an aspect-
oriented family of operating systems which provide, based on as-
pects and static configuration, a full encapsulation of architectural
properties. CiAO is targeted at the broad area of embedded sys-
tems, scaling from very small deeply-embedded devices up to em-
bedded UNIX systems. Therefore, it needs to reach an unattained
level of adaptability and configurability. The ambitious end goal is
to provide even customization of fundamental architectural prop-
erties. For instance, a monolithic kernel, micro kernel, or library

1CiAO is Aspect-Oriented

OS version should be generated from the same sources if only a
specific architecture can fulfill the requirements of the application.

3. ARCHITECTURAL EVOLUTION
The encapsulation of architectural properties as aspects provides,
furthermore, a promising way to cope with architectural evolution.
Architectural evolution tends to be extremely hard and, thus, ex-
pensive, but also unavoidable and required on the long term. This
lesson could be learned from the integration of SMP support into
the Linux kernel. The first kernel release that supported SMP hard-
ware was version 2.0. However, it still used the coarse system-
wide locking scheme of earlier versions and therefore performed
badly in SMP environments. The unavoidable change of the lock-
ing strategy was the trigger for a costly and still on-going process
of architectural evolution. Hundreds of device drivers and other
operation system components relying on the locking scheme had to
be rewritten. If the locking strategy had been encapsulated, e.g. as
an aspect, the process of architectural evolution had probably been
much cheaper.

4. CONCLUSION
The architecture of an operation system is usually seen as some-
thing static. Architectural properties are often crosscutting, their
implementation is spread over the whole system. This makes it
difficult to deal with architectural evolution and nearly impossible
to configure fundamental architectural properties on behalf of the
target applications demands. We are convinced that new program-
ming paradigms, namely AOP and static configuration, are a rea-
sonable way to reach encapsulation (and therefore maintainability,
configurability and reusability) of architectural properties.

5. REFERENCES
[1] Y. Coady, G. Kiczales, M. Feeley, and G. Smolyn. Using

AspectC to Improve the Modularity of Path-Specific
Customization in Operating System Code. InProceedings of
the Joint European Software Engineering Conference (ESEC)
and 9th ACM SIGSOFT Internation Symposium on the
Foundations of Software Engineering (FSE-9), 2001.

[2] H. C. Lauer and R. M. Needham. On the Duality of Operatings
System Structures. InProceedings of the Second International
Symposium on Operating Systems, IRIA, Oct. 1978. Reprinted
in Operating Systems Review, 13,2 April 1979, pp. 3-19.

[3] O. Spinczyk, A. Gal, and W. Schröder-Preikschat. AspectC++:
An Aspect-Oriented Extension to C++. InProceedings of the
40th International Conference on Technology of
Object-Oriented Languages and Systems (TOOLS Pacific
2002), pages 53–60, Sydney, Australia, Feb. 2002.


