
On Adaptable Aspect-Oriented Operating Systems

Daniel Lohmann, Wasif Gilani and Olaf Spinczyk
{dl, wasif, os}@cs.fau.de

Friedrich-Alexander-University Erlangen-Nuremberg, Germany

Abstract
Operating systems for small embedded devices have to cope
with a broad variety of requirements as well as strict resource
constraints. Family-based operating system development,
based on aspect-oriented techniques, is a promising approach
to implement operating system product lines that are highly
configurable and tailorable. However, static application-
specific tailoring of operating systems is not sufficient in the
domain of “smart devices”, which are needed in typical “per-
vasive” and “ubiquitous” computing scenarios. To cope with
the dynamically changing environments in this domain we ad-
vocate for adaptable operating systems as a solution. An
adaptable operating system is still tailored down for specific
requirements, but can be reconfigured dynamically if the set of
required features changes. Furthermore, the combination of
adaptability with aspect-orientation potentially allows changes
in global operating system policies at runtime. However, the
dynamic replacement of aspects requires a dynamic aspect
weaving technology, which is naturally quite expensive. As this
means a conflict with the resource constraints of small embed-
ded hardware platforms, there is a need for novel ideas. Thus,
a family-based approach to dynamic aspect weaving is pre-
sented, which allows the resource consumption to scale with
the actual requirements on dynamism. At the same time it of-
fers programmers a convenient high-level language to imple-
ment both, dynamic and static aspects of the operating system.

1. Introduction
Operating systems for embedded and deeply embedded devices
have to scale with a very broad variety of requirements, com-
ing both from the hardware and application level. Different
hardware architectures and configurations have to be sup-
ported, while resources (in terms of memory, power consump-
tion and CPU speed) are often strictly constrained. Applica-
tions typically have very different requirements to the services
and strategies implemented by the underlying OS.

Operating System Product Lines
It is simply impossible to build a “one-fits-all” system that ful-
fills the requirements of all potential applications, while still
being thrifty and economical with system resources. The solu-
tion is therefore to tailor down the operating system so it pro-
vides exactly the functionality required by the intended appli-
cation, but nothing more. This leads to a family-based or prod-
uct-line approach, where the variability and commonality
among OS family members is expressed by feature models
[13]. Special tools are used to extract and statically configure
the concrete operating system based on an application-specific
feature selection [1].
The overall quality of an OS product-line depends mostly on
the offered levels of variability and granularity. A crucial point
is the mapping of all selectable and configurable features to

their corresponding, well encapsulated implementation compo-
nents. Especially the encapsulation of non-functional properties
is often limited, due to their crosscutting character. Fundamen-
tal system policies, like synchronization or activation points for
the scheduler, have typically to be reflected in many points of
the OS component code. This makes it almost impossible to
implement them as independent encapsulated entities and
thereby restricts variability and granularity. Aspect-oriented
programming (AOP) has proven to be a promising way to deal
with crosscutting concerns [2]. It allows encapsulating the im-
plementations of crosscutting concerns in entities called as-
pects, which are then woven into the OS component code (e.g.
classes) at build time. A well-directed application of AOP prin-
ciples in the development of OS product lines can therefore
lead to a higher variability and granularity of the selectable OS
features, as their implementations can not only be encapsulated
by classes, but also by aspects. This potentially results in very
flexible systems that offer configurability of even fundamental
architectural properties [3].

As an example, Figure 1 shows a part of an operating system
product line feature model, where features are mapped to those
classes and aspects that provide their implementation. By ap-
plication-specific feature selection (Figure 2) it is now possible
to create tailored systems that contain only those modules
which implement the selected features.

Additional Requirements of Smart Devices
Static tailoring of an operating system for a specific application
works well in many domains. However, in the emerging mar-
kets of “smart devices” (like mobile phones, personal digital
assistants or “wearables”), the set of executed applications as
well as the non-functional requirements to the operating sys-
tems do vary. Manufacturers are responding to this challenge
by enlarging their devices by more and more system resources
and “big” operating systems that implement many features, but
are less reusable and scalable. This is unsatisfactory, as it no-
ticeably increases production costs, weight and power con-
sumption of mobile devices. We therefore advocate for adapt-
able operating systems, which provide a well-balanced way of
adaptability, while still being based on application-specific tai-

scheduling

Operating System

energy
management

dynamic CPU
freq. scaling

cooperate
FIFO

round
robin

priority based
full preemptive

...

...

...

Operating System Feature Modell

Class

Aspect

ClassClass

AspectAspectAspect

Implementation
Components

«implements»

«implements»

«implements»

...

...

...

Figure 1 Available features and their implementation artifacts

1

loring.

2. Adaptable Operating Systems
The set of requirements (services and non-functional proper-
ties) that has to be fulfilled by a tailored OS depends on the re-
quirements defined by the (potentially) executed applications
as well as on the requirements defined by global user policies,
like the energy or security mode. The requirements set leads to
a feature selection, which corresponds to a specific member of
the operating system family (Figure 2).
An adaptable operating system is reconfigurable if the set of
requirements changes. Such a reconfiguration is necessary, if a
new application is about to be executed with some require-
ments that are currently not offered by the system. It is also
necessary, if there are changes in the global (user-defined) re-
quirements, e.g. the system is switched to a low-power mode.
And finally, to safe system resources, an adaptable operating
system may be reconfigured if some application is removed
and the set of requirements thereby shrinks.
To our understanding, all these configurations are still mem-
bers of one family of operating systems, where each configura-
tion (feature selection) leads to one distinct family member.
The process of adaptation can therefore be understood as
morphing from one feature selection into another. By adapta-
tion to the closest set of the demanded features, the system is
always tailored with respect to the actually executed applica-
tions.

Feature Binding Times
A facility for on-demand adaptation needs to be provided by
the OS itself in some way. The main question is, how to rebind
features at runtime (in particular their implementation classes
and/or aspects), if the set of required features changes?
For classes and libraries this task can be done by a dynamic
loader/linker, which loads the component and performs all nec-
essary steps to bind it, like relocation and component registra-
tion. Such a dynamic library loader is present in many current
operating systems.
However, as our product line follows an AOP-based approach,
features may also be implemented by aspects. For dynamic
loading/unloading of aspects, the system has to provide facili-
ties for dynamic weaving. Dynamic weaving means that as-
pects can be applied or removed during runtime without re-

compiling and re-deployment of an application [4]. We call an
engine for dynamic aspect weaving a dynamic weaver. The dy-
namic weaver is therefore a vital part of any operating system
that uses AOP and supports dynamic binding of features.

f1

f7

f3f2

f6f5f4

App 1 App 2 App n...

Global
Policy

Global
Policy

Joint Feature
 Selection

f1
f6
...

f1
f3
...

f1
f2
...

f2
f6
...

f1
f2
...

Figure 2 Feature selection

3. Implementation Ideas
The implementation of a dynamically adaptable operating sys-
tem family has to deal with a wide variety of concerns like the
management of requirements, provided features, dynamically
loadable modules, the dynamic binding, verification of loaded
modules and many other things. As this paper concentrates on
the aspect-oriented design used to structure a system family,
this section focuses on the technology needed to enable aspect-
oriented programming in a dynamically changing operating
system context.

General Assumptions
Our ideas presented in this section are based on the following
assumptions:

1. Minimal Overhead – The motivation for our work on dy-
namic adaptation is to provide a better, i.e. more resource
efficient, OS support for applications in a dynamically
changing environment than it could be provided by a
one-fits-all solution. If the necessary infrastructure for
dynamic weaving costs more than we can save, the ap-
proach fails.

2. Infrequent Changes – Configuration changes are trig-
gered by users who start new applications or change
some global policies like the power management mode.
The rate of these changes is quite low compared to the
usual “heart beat” of operating systems. Therefore, the
system performance and resource consumption during
the normal execution is much more important than an ef-
ficient switch between the system configurations.

3. Static and Dynamic Aspects – It should be configurable
at compile time whether certain features may be selected
or deselected at runtime. The general idea behind this is
that static features can be implemented more efficiently
than dynamically changeable features and, thus, should
always be preferred. If a feature has a crosscutting nature
it will be implemented by an aspect. Depending on the
system configuration it could either become a static or a
dynamic aspect. Furthermore, static and dynamic aspects
have to coexist in the system. Solutions that only support
dynamic weaving are not acceptable due to their low ef-
ficiency.

Language Support
While building the operating system, aspects are separated
from the early design phase and differentiated into static and
dynamic aspects at the configuration phase. For describing the
static aspects AspectC++ is used. AspectC++[5] is a general
purpose aspect-oriented extension of C++ developed by the au-
thors, and follows an AspectJ-like approach of AOP. It is im-
plemented as a C++ preprocessor, based on a source code
transformation system that transforms AspectC++ code into
C++ code. Afterwards a conventional C++ compiler is used to
compile the executable code.

2

We are working on an extension to AspectC++
that allows the developer to write both static and
dynamic aspects in the same AspectC++ lan-
guage. Thus, it would be transparent for the de-
veloper whether s/he is describing a static or a
dynamic aspect. Following this single language
approach, the decision whether some aspect is
static or dynamic can be postponed to the con-
figuration stage and has no impact on the imple-
mentation stage. This approach supports deriving
systems that offer as much dynamicity as neces-
sary while it still allows resolving as much stati-
cally as possible.

Approaches for Dynamic Weaving
To support dynamic weaving of aspects, several
approaches were proposed by the AOSD commu-
nity. Most of them are intended for use in Java environments
and based on Java-specific APIs, runtime byte code manipula-
tion or virtual machine extensions [4, 6, 7, 8].

Interpreter
Extension

Static WeaverBinary Code
Manipulation

Proxy-Based

Call Execution Get Field Set Field …

Introductions Code JoinPoints

Supported
AOP Features

Aspects
Known

JoinPoints
Known

One Aspect
Per JoinPoint

JoinPoints
Filtered

Aspects
Order

Weaver
Binding

Dynamic
Weavers

Interpreter
Extension
Interpreter
Extension

Static WeaverBinary Code
Manipulation

Proxy-Based

Call Execution Get Field Set Field …

Introductions Code JoinPoints

Supported
AOP Features

Aspects
Known

JoinPoints
Known

One Aspect
Per JoinPoint

JoinPoints
Filtered

Aspects
Order

Weaver
Binding

Dynamic
Weavers

Static WeaverStatic WeaverBinary Code
Manipulation
Binary Code
Manipulation
Binary Code
Manipulation

Proxy-BasedProxy-BasedProxy-BasedProxy-Based

Call Execution Get Field Set Field …Call Execution Get Field Set Field …

IntroductionsIntroductions Code JoinPointsCode JoinPointsCode JoinPoints

Supported
AOP Features

Supported
AOP Features

Aspects
Known
Aspects
Known

JoinPoints
Known

JoinPoints
Known

One Aspect
Per JoinPoint
One Aspect

Per JoinPoint
JoinPoints

Filtered
JoinPoints

Filtered
Aspects
Order

Aspects
Order

Weaver
Binding
Weaver
Binding

Dynamic
Weavers
Dynamic
Weavers

Figure 3 Feature model for dynamic aspect weavers [11]

Only few approaches have been proposed for the C/C++ do-
main [9, 10]. They basically follow two general implementa-
tion techniques:

 Machine code manipulation – Aspects are woven at run-
time by on-demand insertion of jump statements to the
aspect code into the machine code at all affected join-
point positions. This technique is followed by the Mi-
croDyner project [9].

 Runtime aspect registration – Aspects are woven by reg-
istering them against a runtime registration system. The
runtime registration system manages lists of all registered
aspects and all available joinpoints and thereby performs
the binding of aspects to joinpoints. The original C++
code is instrumented, either by hand or with the help of
tools, to call the runtime system at each potential join-
point. The runtime system then calls all aspects registered
for this joinpoint. This technique is followed by the DAO
C++ project [10].

These approaches proposed for the C/C++ domain are not ac-
ceptable from our point of view, as they are quite expensive at
runtime. This is especially true for the DAO C++ approach,
where the runtime system has to be called at each potential
joinpoint, regardless if there is an aspect registered for this
joinpoint or not. The MicroDyner approach avoids these costs
by on demand weaving in the machine code, which should per-
form much better at runtime. However, the machine code itself
has to be prepared to support dynamic weaving. At each join-
point position, some NOP bytes have to be reserved for the po-
tentially inserted jump to the aspect code. For hundreds or
thousands of potential joinpoints this sums up to a remarkable
amount of memory. Furthermore, for the joinpoints to be visi-
ble at machine code level, the compiler must not optimize or
inline any part of the code. And finally, this is a machine- and
compiler-specific technique and therefore not practicable for
the broad variety of hardware platforms in the domain of
(deeply) embedded systems.
It is important to understand, that dynamic weaving is always
expensive compared to dynamic loading of classes or libraries.
Dynamically loaded aspects can potentially affect joinpoints in

the whole system, while the (relatively few) junction points of a
dynamically loaded library are usually well known in advance.
To overcome these disadvantages, we propose a family-based
approach of constructing application specific dynamic weavers
from a family of weavers [11]. These weavers are based on the
technique of runtime aspect registration, but tailored down for
the requirements of a specific application’s profile. The follow-
ing sections will explain what this approach means in the con-
text of dynamically adaptable operating systems.

Low Cost Dynamic Weaving
All dynamic aspect weaver implementations we have examined
provide a fixed set of AOP features that can be applied at any
potential joinpoint. For example, DAO C++ [10] supports the
AOP feature to intercept the ordinary control flow before and
after the execution of functions (before/after execution advice).
There are no restrictions concerning the set of functions (join-
points) potentially affected by dynamically loaded aspects, it
might be any function. On the one hand, this is a desirable fea-
ture. On the other hand, the generated calls from every function
to the runtime system are quite expensive. Even functions that
will never be affected by aspects are slowed down and require
more memory space.
The operating system family we are envisioning here should be
scalable in its resource consumption depending on the required
system features. This idea is now extended to the dynamic
weaving support provided by the system, which leads to the
feature diagram shown in Figure 3. Following this approach the
weaver construction is parameterized with specific environ-
ment constraints, which are defined by a feature selection.
For example, in the domain of embedded devices the set of
classes, and thereby the set of available joinpoints, is usually
known in advance (“JoinPoints Known”). Hence, it is possible
to match aspects already at their compile-time to the set of
joinpoints they later need to be registered for. Furthermore, it is
often possible to explicitly filter the huge set of available join-
points to a quite small subset that “makes sense”, like the po-
tential points of interest for system strategies and other cross-
cutting concerns (“JoinPoints Filtered”). If even the set of po-
tential aspects is known in advance (“Aspects Known”), it is
possible to generate such a filter automatically from their
pointcut descriptions. Furthermore, in this case the maximum
number of registered aspects for each joinpoint can be pre-

3

calculated, so it is possible to fix the size of the runtime advice
lists associated with each joinpoint, and thereby omit the ne-
cessity for using costly dynamic data structures. One more
benefit is, that the order of aspect execution can be defined and
resolved statically, if all aspects are known in advance.

List of advice code affecting
this Join point

Aspects register at monitor

DebugAspect

aspect MonitorBinding {
 pointcut virtual dynamicJPS() = 0;
public:
 advice dynamicJPS () : around () {
 monitor.JPBefore(“…”);
 tjp->proceed();
 monitor.JPAfter(“…”);
 }
 };

Synch
Debug
Trace

DynamicAspect

SyncAspect

JoinPoint Register

Put()
Get()

Run-time Monitor

AspectsRegister

Produces affect
XML file

aspect Binding:public MonitorBinding
{
 pointcut virtual dynamicJPS() =
 execution(“…”)||
 execution(“…”)||
 execution(“…”);
}

Class Buffer {
 public:
 void Put();
 int Get();
};

 AspectC++

Figure 4 AspectC++ dynamic weaving framework

The general idea is, to incorporate a priori knowledge about
the system and its execution environment to tailor down the
dynamic weaver infrastructure. This can drastically reduce the
costs (in terms of performance and memory consumption) of
dynamic aspect loading. If the set of effective joinpoints is
small, it should even be feasible to implement dynamic aspect
loading as efficient as dynamic class loading.

Server-Side Weaving
We believe that dynamic weavers can be tailored down without
giving up configurability. However, there will always be a
trade-off between flexibility and cost reduction. Major or unan-
ticipated changes to the system may not be covered by the tai-
lored dynamic weaver. This is especially true for strictly re-
source constrained systems, where it might be necessary to
limit dynamic weaving to very few aspects only, or to omit it at
all. In these cases, server-side weaving might be an option.
The idea of server-side weaving is, to replace the image of the
whole system (or a major system component) by another one
that was built according to the new feature set. The new image
is downloaded from a server which provides images for all
possible configurations in a database, or just compiles the im-
age for a requested configuration on demand. While the idea of
replacing the whole image seems to be a kind of “brute-force
approach”, it can be quite efficient for small devices like cell
phones. As the operating systems are tailored down and mostly
bound statically, their images should not be larger than a few
kilobytes. This can be transmitted and flashed in seconds. Un-
der the assumption of infrequent changes, this reconfiguration
has to be done only rarely, e.g. a few times per day.

Configuration Transition
An important issue for on-demand reconfiguration is the transi-
tion of state. The runtime replacement of classes or aspects
might involve significant changes of the system data structures.
This typically leads to serious problems on the object instance
level, as instances of different class versions may coexist in the
system. These problems are even harder in multithreaded envi-
ronments. Overall, it is nearly impossible to find a general so-
lution for doing structural modifications on a living non-
stateless system without giving up correctness.
For this reason, we follow a more pragmatic approach. The
idea is to suspend the system during the reconfiguration proc-
ess. Because the systems are relatively small, the whole cycle
of suspending, reconfiguration, and restarting the device should
take only a few seconds, which is clearly acceptable in the do-
main of smart devices. It requires restartable applications and a
persistency mechanism for all affected kernel objects. Further-
more, it might be necessary to track entering and leaving of
threads at module boundaries, to find checkpoints where a par-
ticular module can safely be suspended and exchanged.

Dynamic Weaving with AspectC++
The operating system code has to be prepared to support “low
cost” dynamic weaving or the replacement of coarse-grained

modules at runtime, which is necessary for server-side weav-
ing. For instance, server-side weaving requires a loose coupling
between replaceable modules. An indirection between the
modules is needed wherever the module boundaries could be
crossed. This and other similar preparations can be seen as a
crosscutting concern. Therefore, it is no surprise that the static
AspectC++ weaver is a helpful tool for implementing the dy-
namic weaving infrastructure.
Another good example for this idea of “dynamic weaving by
static weaving” is the runtime weaver binding by a static aspect
as already shown in Figure 3. Here the idea is that all potential
dynamic joinpoints can be described by a static aspect imple-
mentation, which is responsible for the invocation of a central
dynamic aspect manager component, whenever a dynamic
joinpoint is reached. This technique is illustrated in Figure 4.
Here the aspect “Binding” transparently implements the con-
nection between the component code “class Buffer” and the
“Runtime Monitor” where all dynamic aspects are registered.
By changing the “Binding” aspect it is easy to control the set of
affected potential dynamic joinpoints. This set can be tuned ac-
cording to advance knowledge and features selected in our fea-
ture diagram (Figure 3) to reduce the overhead, which is re-
lated to our weaving infrastructure.
The static AspectC++ weaver generates an XML-based report
about the joinpoints, which were affected by the compiled as-
pects. In Figure 4 this information is used by the “Run-Time
Monitor” to create data structures for each potential dynamic
joinpoint. In the presented system configuration this data struc-
ture is a list used to maintain aspect code registered dynami-
cally for the joinpoint. Currently the dynamic aspects are sim-
ple classes written manually in C++. As soon as some dynamic
aspect is registered at the runtime monitor, the list of joinpoint
data structures are traversed to find out which joinpoints are
affected by this aspect. A pointer to the aspect code (imple-
mented as C++ methods) is added to the list of each affected
joinpoint. Once a certain joinpoint is reached by a thread of
control the runtime monitor is invoked and the registered as-
pect code is executed.
Currently, we are extending the compiler for AspectC++ to
transform aspect implementation into classes compatible with

4

our new infrastructure for dynamic weaving. This allows sys-
tem developers to use the same expressive aspect language for
both static and dynamic aspects. By following this single lan-
guage approach the decision whether an aspect is static or dy-
namic can be postponed until configuration time. It can then be
driven by the trade-off between the application requirements
and performance.

4. Related Work
There is some work going in the direction of applying aspect-
oriented approaches to re-engineer parts of the existing operat-
ing systems [2]. However, this work is purely based on static
aspect weaving techniques. There is not much work in the di-
rection of using AOP for the dynamic adaptation of operating
systems. Netinant [12] proposed a proxy based approach for
adapting operating systems at runtime. Although this work is
also based on run-time aspect registration, our approach is sig-
nificantly different, because static aspect weaving is used for
binding the joinpoints to the runtime system. This provides
transparency for the component code programmers, which is an
important property of true AOP.
There are other approaches for dynamic adaptation by means
of dynamic weaving which are mostly Java based and only a
few in the C++ domain. These approaches have already been
briefly discussed in section 3.

5. Conclusion
In this position paper, we presented our ideas about adaptable
aspect-oriented operating systems by making use of the pro-
gram family concept and dynamic aspect weaving. We moti-
vated the need for dynamic weaving from the structure of our
family implementation, where each feature is implemented as a
module. If the feature represents a crosscutting concern, the
module might be an aspect. Consequently, if we allow feature
selections to be changed at runtime, we have to support dy-
namic aspect weaving.
To reconcile our demand on minimal resource usage with (in-
herently expensive) dynamic weaving, we presented the idea of
a configurable weaver family that exploits a priori knowledge
about possible system changes. Parts of this family have al-
ready been implemented. Additionally, we sketched another
variant called server-side weaving, which we consider to be
applicable in many cases.
Moreover, a single language approach has been suggested by
which all aspects, static or dynamic, could be expressed in the
same high-level aspect language AspectC++. The AspectC++
language has already been used in several research projects and
a compiler is available from www.aspectc.org.
Future work will mainly be a proper evaluation of our weaver
family with measurements that prove the assumption that we
can scale the resource consumption with the actual require-
ments on dynamism and that even in resource constrained envi-
ronments at least some level of dynamic weaving can be sup-
ported. In parallel we will step-by-step extend our CiAO oper-
ating system family [3], which should become the demonstra-
tor for the technology present in this paper.

References

[1] D. Beuche, A. Guerrouat, H. Papajewski, W. Schröder-Preikschat,

O. Spinczyk, and U. Spinczyk: The PURE Family of Object-Oriented
Operating Systems for Deeply Embedded Systems. Proceedings of
ISORC’99, May 1999, St Malo, France

[2] Y. Coady, G. Kiczales, M. Feeley, N. Hutchinson, and J. S. Ong:
Structuring Operating System Aspects. CACM, pp. 79–82, October
2001.

[3] D. Lohmann and O. Spinczyk: Architecture-Neutral Operating Sys-
tem Components. WiP Session on SOSP’03, October 19th-22nd, 2003,
Bolton Landing NY, USA.

[4]

A. Popovici, T. Gross, and G. Alonso: Dynamic Weaving for Aspect
Oriented Programming. Proceedings of AOSD’02, April 2002, En-
schede, The Netherlands.

[5] O. Spinczyk, A. Gal, and W. Schröder-Preikschat: AspectC++: An
Aspect-Oriented Extension to C++. In Proceedings of TOOLS Pa-
cific’02, February, 2002, Sydney, Australia.

[6] R. Pawlak, L. Seinturier, L. Duchien, and G. Florin: JAC: A flexi-
ble framework for AOP in Java. Reflection 2001

[7] S. Aussmann and M. Haupt: Axon – Dynamic AOP through Runtime
Inspection and Monitoring. First workshop on advancing the state-of-
the-art in Runtime inspection (ASARTI’03), 2003

[8] Y. Sato, S. Chiba, and M. Tatsubori: A Selective, Just-In-Time As-
pect Weaver. Proceedings of GPCE’03, 2003, Erfurt, Germany.

[9] Y. Chen, Aspect-Oriented Programming (AOP): Dynamic Weaving
for C++, Master thesis, August 2003, Vrije Universiteit Brussel and
École des Mines de Nantes

[10] S. Almajali and T. Elrad: A Dynamic Aspect Oriented C++ Using
MOP with Minimal Hook. Proceedings of the 2003 Dynamic Aspect
Workshop (DAW04 2003), RIACS Technical Report 04.01, March,
2004, Lancaster, UK.

[11] W. Gilani and O. Spinczyk: A Family of Dynamic Weavers. Proceed-
ings of the 2003 Dynamic Aspect Workshop (DAW04 2003), RIACS
Technical Report 04.01, March, 2004, Lancaster, UK.

[12] P. Netinant, C. A. Constantinides, T. Elrad, and M. E. Fayad: Sup-
porting the Design of Adaptable Operating Systems Using Aspect-
Oriented Frameworks. Proceedings of the International Conference of
Parallel and Distributed Processing Techniques and Applications
(PDPTA’00), pp. 271-278, June 2000, Las Vegas, NV, USA.

[13] K. Czarnecki and U. W. Eisenecker: Generative Programming –
Methods, Tools, and Applications. Addison-Wesley, 2000

5

http://www.aspectc.org/

	Abstract
	Introduction
	Operating System Product Lines
	Additional Requirements of Smart Devices

	Adaptable Operating Systems
	Feature Binding Times

	Implementation Ideas
	General Assumptions
	Language Support
	Approaches for Dynamic Weaving
	Low Cost Dynamic Weaving
	Server-Side Weaving
	Configuration Transition

	Dynamic Weaving with AspectC++

	Related Work
	Conclusion
	References

