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Abstract 
Operating systems for small embedded devices have to cope 
with a broad variety of requirements as well as strict resource 
constraints. Family-based operating system development, 
based on aspect-oriented techniques, is a promising approach 
to implement operating system product lines that are highly 
configurable and tailorable. However, static application-
specific tailoring of operating systems is not sufficient in the 
domain of “smart devices”, which are needed in typical “per-
vasive” and “ubiquitous” computing scenarios. To cope with 
the dynamically changing environments in this domain we ad-
vocate for adaptable operating systems as a solution. An 
adaptable operating system is still tailored down for specific 
requirements, but can be reconfigured dynamically if the set of 
required features changes. Furthermore, the combination of 
adaptability with aspect-orientation potentially allows changes 
in global operating system policies at runtime. However, the 
dynamic replacement of aspects requires a dynamic aspect 
weaving technology, which is naturally quite expensive. As this 
means a conflict with the resource constraints of small embed-
ded hardware platforms, there is a need for novel ideas. Thus, 
a family-based approach to dynamic aspect weaving is pre-
sented, which allows the resource consumption to scale with 
the actual requirements on dynamism. At the same time it of-
fers programmers a convenient high-level language to imple-
ment both, dynamic and static aspects of the operating system. 

1. Introduction 
Operating systems for embedded and deeply embedded devices 
have to scale with a very broad variety of requirements, com-
ing both from the hardware and application level. Different 
hardware architectures and configurations have to be sup-
ported, while resources (in terms of memory, power consump-
tion and CPU speed) are often strictly constrained. Applica-
tions typically have very different requirements to the services 
and strategies implemented by the underlying OS.  

Operating System Product Lines 
It is simply impossible to build a “one-fits-all” system that ful-
fills the requirements of all potential applications, while still 
being thrifty and economical with system resources. The solu-
tion is therefore to tailor down the operating system so it pro-
vides exactly the functionality required by the intended appli-
cation, but nothing more. This leads to a family-based or prod-
uct-line approach, where the variability and commonality 
among OS family members is expressed by feature models 
[13]. Special tools are used to extract and statically configure 
the concrete operating system based on an application-specific 
feature selection [1]. 
The overall quality of an OS product-line depends mostly on 
the offered levels of variability and granularity. A crucial point 
is the mapping of all selectable and configurable features to 

their corresponding, well encapsulated implementation compo-
nents. Especially the encapsulation of non-functional properties 
is often limited, due to their crosscutting character. Fundamen-
tal system policies, like synchronization or activation points for 
the scheduler, have typically to be reflected in many points of 
the OS component code. This makes it almost impossible to 
implement them as independent encapsulated entities and 
thereby restricts variability and granularity. Aspect-oriented 
programming (AOP) has proven to be a promising way to deal 
with crosscutting concerns [2]. It allows encapsulating the im-
plementations of crosscutting concerns in entities called as-
pects, which are then woven into the OS component code (e.g. 
classes) at build time. A well-directed application of AOP prin-
ciples in the development of OS product lines can therefore 
lead to a higher variability and granularity of the selectable OS 
features, as their implementations can not only be encapsulated 
by classes, but also by aspects. This potentially results in very 
flexible systems that offer configurability of even fundamental 
architectural properties [3]. 

As an example,  Figure 1 shows a part of an operating system 
product line feature model, where features are mapped to those 
classes and aspects that provide their implementation. By ap-
plication-specific feature selection ( Figure 2) it is now possible 
to create tailored systems that contain only those modules 
which implement the selected features. 

Additional Requirements of Smart Devices 
Static tailoring of an operating system for a specific application 
works well in many domains. However, in the emerging mar-
kets of “smart devices” (like mobile phones, personal digital 
assistants or “wearables”), the set of executed applications as 
well as the non-functional requirements to the operating sys-
tems do vary. Manufacturers are responding to this challenge 
by enlarging their devices by more and more system resources 
and “big” operating systems that implement many features, but 
are less reusable and scalable. This is unsatisfactory, as it no-
ticeably increases production costs, weight and power con-
sumption of mobile devices. We therefore advocate for adapt-
able operating systems, which provide a well-balanced way of 
adaptability, while still being based on application-specific tai-
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loring. 

2. Adaptable Operating Systems 
The set of requirements (services and non-functional proper-
ties) that has to be fulfilled by a tailored OS depends on the re-
quirements defined by the (potentially) executed applications 
as well as on the requirements defined by global user policies, 
like the energy or security mode. The requirements set leads to 
a feature selection, which corresponds to a specific member of 
the operating system family ( Figure 2). 
An adaptable operating system is reconfigurable if the set of 
requirements changes. Such a reconfiguration is necessary, if a 
new application is about to be executed with some require-
ments that are currently not offered by the system. It is also 
necessary, if there are changes in the global (user-defined) re-
quirements, e.g. the system is switched to a low-power mode. 
And finally, to safe system resources, an adaptable operating 
system may be reconfigured if some application is removed 
and the set of requirements thereby shrinks.  
To our understanding, all these configurations are still mem-
bers of one family of operating systems, where each configura-
tion (feature selection) leads to one distinct family member. 
The process of adaptation can therefore be understood as 
morphing from one feature selection into another. By adapta-
tion to the closest set of the demanded features, the system is 
always tailored with respect to the actually executed applica-
tions.  

Feature Binding Times 
A facility for on-demand adaptation needs to be provided by 
the OS itself in some way. The main question is, how to rebind 
features at runtime (in particular their implementation classes 
and/or aspects), if the set of required features changes? 
For classes and libraries this task can be done by a dynamic 
loader/linker, which loads the component and performs all nec-
essary steps to bind it, like relocation and component registra-
tion. Such a dynamic library loader is present in many current 
operating systems.  
However, as our product line follows an AOP-based approach, 
features may also be implemented by aspects. For dynamic 
loading/unloading of aspects, the system has to provide facili-
ties for dynamic weaving. Dynamic weaving means that as-
pects can be applied or removed during runtime without re-

compiling and re-deployment of an application [4]. We call an 
engine for dynamic aspect weaving a dynamic weaver. The dy-
namic weaver is therefore a vital part of any operating system 
that uses AOP and supports dynamic binding of features. 
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Figure 2 Feature selection 

3. Implementation Ideas 
The implementation of a dynamically adaptable operating sys-
tem family has to deal with a wide variety of concerns like the 
management of requirements, provided features, dynamically 
loadable modules, the dynamic binding, verification of loaded 
modules and many other things. As this paper concentrates on 
the aspect-oriented design used to structure a system family, 
this section focuses on the technology needed to enable aspect-
oriented programming in a dynamically changing operating 
system context. 

General Assumptions 
Our ideas presented in this section are based on the following 
assumptions: 

1. Minimal Overhead – The motivation for our work on dy-
namic adaptation is to provide a better, i.e. more resource 
efficient, OS support for applications in a dynamically 
changing environment than it could be provided by a 
one-fits-all solution. If the necessary infrastructure for 
dynamic weaving costs more than we can save, the ap-
proach fails. 

2. Infrequent Changes – Configuration changes are trig-
gered by users who start new applications or change 
some global policies like the power management mode. 
The rate of these changes is quite low compared to the 
usual “heart beat” of operating systems. Therefore, the 
system performance and resource consumption during 
the normal execution is much more important than an ef-
ficient switch between the system configurations. 

3. Static and Dynamic Aspects – It should be configurable 
at compile time whether certain features may be selected 
or deselected at runtime. The general idea behind this is 
that static features can be implemented more efficiently 
than dynamically changeable features and, thus, should 
always be preferred. If a feature has a crosscutting nature 
it will be implemented by an aspect. Depending on the 
system configuration it could either become a static or a 
dynamic aspect. Furthermore, static and dynamic aspects 
have to coexist in the system. Solutions that only support 
dynamic weaving are not acceptable due to their low ef-
ficiency. 

Language Support 
While building the operating system, aspects are separated 
from the early design phase and differentiated into static and 
dynamic aspects at the configuration phase. For describing the 
static aspects AspectC++ is used.  AspectC++[5] is a general 
purpose aspect-oriented extension of C++ developed by the au-
thors, and follows an AspectJ-like approach of AOP. It is im-
plemented as a C++ preprocessor, based on a source code 
transformation system that transforms AspectC++ code into 
C++ code. Afterwards a conventional C++ compiler is used to 
compile the executable code.  
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We are working on an extension to AspectC++ 
that allows the developer to write both static and 
dynamic aspects in the same AspectC++ lan-
guage. Thus, it would be transparent for the de-
veloper whether s/he is describing a static or a 
dynamic aspect. Following this single language 
approach, the decision whether some aspect is 
static or dynamic can be postponed to the con-
figuration stage and has no impact on the imple-
mentation stage.  This approach supports deriving 
systems that offer as much dynamicity as neces-
sary while it still allows resolving as much stati-
cally as possible.   

Approaches for Dynamic Weaving 
To support dynamic weaving of aspects, several 
approaches were proposed by the AOSD commu-
nity. Most of them are intended for use in Java environments 
and based on Java-specific APIs, runtime byte code manipula-
tion or virtual machine extensions [4, 6, 7, 8]. 
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Figure 3 Feature model for dynamic aspect weavers [11] 

Only few approaches have been proposed for the C/C++ do-
main [9, 10]. They basically follow two general implementa-
tion techniques:  

 Machine code manipulation – Aspects are woven at run-
time by on-demand insertion of jump statements to the 
aspect code into the machine code at all affected join-
point positions. This technique is followed by the Mi-
croDyner project [9]. 

 Runtime aspect registration – Aspects are woven by reg-
istering them against a runtime registration system. The 
runtime registration system manages lists of all registered 
aspects and all available joinpoints and thereby performs 
the binding of aspects to joinpoints. The original C++ 
code is instrumented, either by hand or with the help of 
tools, to call the runtime system at each potential join-
point. The runtime system then calls all aspects registered 
for this joinpoint. This technique is followed by the DAO 
C++ project [10].   

These approaches proposed for the C/C++ domain are not ac-
ceptable from our point of view, as they are quite expensive at 
runtime. This is especially true for the DAO C++ approach, 
where the runtime system has to be called at each potential 
joinpoint, regardless if there is an aspect registered for this 
joinpoint or not. The MicroDyner approach avoids these costs 
by on demand weaving in the machine code, which should per-
form much better at runtime. However, the machine code itself 
has to be prepared to support dynamic weaving. At each join-
point position, some NOP bytes have to be reserved for the po-
tentially inserted jump to the aspect code. For hundreds or 
thousands of potential joinpoints this sums up to a remarkable 
amount of memory. Furthermore, for the joinpoints to be visi-
ble at machine code level, the compiler must not optimize or 
inline any part of the code. And finally, this is a machine- and 
compiler-specific technique and therefore not practicable for 
the broad variety of hardware platforms in the domain of 
(deeply) embedded systems. 
It is important to understand, that dynamic weaving is always 
expensive compared to dynamic loading of classes or libraries. 
Dynamically loaded aspects can potentially affect joinpoints in 

the whole system, while the (relatively few) junction points of a 
dynamically loaded library are usually well known in advance. 
To overcome these disadvantages, we propose a family-based 
approach of constructing application specific dynamic weavers 
from a family of weavers [11]. These weavers are based on the 
technique of runtime aspect registration, but tailored down for 
the requirements of a specific application’s profile. The follow-
ing sections will explain what this approach means in the con-
text of dynamically adaptable operating systems. 

Low Cost Dynamic Weaving 
All dynamic aspect weaver implementations we have examined 
provide a fixed set of AOP features that can be applied at any 
potential joinpoint. For example, DAO C++ [10] supports the 
AOP feature to intercept the ordinary control flow before and 
after the execution of functions (before/after execution advice). 
There are no restrictions concerning the set of functions (join-
points) potentially affected by dynamically loaded aspects, it 
might be any function. On the one hand, this is a desirable fea-
ture. On the other hand, the generated calls from every function 
to the runtime system are quite expensive. Even functions that 
will never be affected by aspects are slowed down and require 
more memory space. 
The operating system family we are envisioning here should be 
scalable in its resource consumption depending on the required 
system features. This idea is now extended to the dynamic 
weaving support provided by the system, which leads to the 
feature diagram shown in  Figure 3. Following this approach the 
weaver construction is parameterized with specific environ-
ment constraints, which are defined by a feature selection.  
For example, in the domain of embedded devices the set of 
classes, and thereby the set of available joinpoints, is usually 
known in advance (“JoinPoints Known”). Hence, it is possible 
to match aspects already at their compile-time to the set of 
joinpoints they later need to be registered for. Furthermore, it is 
often possible to explicitly filter the huge set of available join-
points to a quite small subset that “makes sense”, like the po-
tential points of interest for system strategies and other cross-
cutting concerns (“JoinPoints Filtered”). If even the set of po-
tential aspects is known in advance (“Aspects Known”), it is 
possible to generate such a filter automatically from their 
pointcut descriptions. Furthermore, in this case the maximum 
number of registered aspects for each joinpoint can be pre-
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calculated, so it is possible to fix the size of the runtime advice 
lists associated with each joinpoint, and thereby omit the ne-
cessity for using costly dynamic data structures. One more 
benefit is, that the order of aspect execution can be defined and 
resolved statically, if all aspects are known in advance. 
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Figure 4 AspectC++ dynamic weaving framework 

The general idea is, to incorporate a priori knowledge about 
the system and its execution environment to tailor down the 
dynamic weaver infrastructure. This can drastically reduce the 
costs (in terms of performance and memory consumption) of 
dynamic aspect loading. If the set of effective joinpoints is 
small, it should even be feasible to implement dynamic aspect 
loading as efficient as dynamic class loading. 

Server-Side Weaving 
We believe that dynamic weavers can be tailored down without 
giving up configurability. However, there will always be a 
trade-off between flexibility and cost reduction. Major or unan-
ticipated changes to the system may not be covered by the tai-
lored dynamic weaver. This is especially true for strictly re-
source constrained systems, where it might be necessary to 
limit dynamic weaving to very few aspects only, or to omit it at 
all. In these cases, server-side weaving might be an option. 
The idea of server-side weaving is, to replace the image of the 
whole system (or a major system component) by another one 
that was built according to the new feature set. The new image 
is downloaded from a server which provides images for all 
possible configurations in a database, or just compiles the im-
age for a requested configuration on demand. While the idea of 
replacing the whole image seems to be a kind of “brute-force 
approach”, it can be quite efficient for small devices like cell 
phones. As the operating systems are tailored down and mostly 
bound statically, their images should not be larger than a few 
kilobytes. This can be transmitted and flashed in seconds. Un-
der the assumption of infrequent changes, this reconfiguration 
has to be done only rarely, e.g. a few times per day.  

Configuration Transition 
An important issue for on-demand reconfiguration is the transi-
tion of state. The runtime replacement of classes or aspects 
might involve significant changes of the system data structures. 
This typically leads to serious problems on the object instance 
level, as instances of different class versions may coexist in the 
system. These problems are even harder in multithreaded envi-
ronments. Overall, it is nearly impossible to find a general so-
lution for doing structural modifications on a living non-
stateless system without giving up correctness. 
For this reason, we follow a more pragmatic approach. The 
idea is to suspend the system during the reconfiguration proc-
ess. Because the systems are relatively small, the whole cycle 
of suspending, reconfiguration, and restarting the device should 
take only a few seconds, which is clearly acceptable in the do-
main of smart devices. It requires restartable applications and a 
persistency mechanism for all affected kernel objects. Further-
more, it might be necessary to track entering and leaving of 
threads at module boundaries, to find checkpoints where a par-
ticular module can safely be suspended and exchanged. 

Dynamic Weaving with AspectC++ 
The operating system code has to be prepared to support “low 
cost” dynamic weaving or the replacement of coarse-grained 

modules at runtime, which is necessary for server-side weav-
ing. For instance, server-side weaving requires a loose coupling 
between replaceable modules. An indirection between the 
modules is needed wherever the module boundaries could be 
crossed. This and other similar preparations can be seen as a 
crosscutting concern. Therefore, it is no surprise that the static 
AspectC++ weaver is a helpful tool for implementing the dy-
namic weaving infrastructure. 
Another good example for this idea of “dynamic weaving by 
static weaving” is the runtime weaver binding by a static aspect 
as already shown in  Figure 3. Here the idea is that all potential 
dynamic joinpoints can be described by a static aspect imple-
mentation, which is responsible for the invocation of a central 
dynamic aspect manager component, whenever a dynamic 
joinpoint is reached. This technique is illustrated in  Figure 4. 
Here the aspect “Binding” transparently implements the con-
nection between the component code “class Buffer” and the 
“Runtime Monitor” where all dynamic aspects are registered. 
By changing the “Binding” aspect it is easy to control the set of 
affected potential dynamic joinpoints. This set can be tuned ac-
cording to advance knowledge and features selected in our fea-
ture diagram ( Figure 3) to reduce the overhead, which is re-
lated to our weaving infrastructure. 
The static AspectC++ weaver generates an XML-based report 
about the joinpoints, which were affected by the compiled as-
pects. In  Figure 4 this information is used by the “Run-Time 
Monitor” to create data structures for each potential dynamic 
joinpoint. In the presented system configuration this data struc-
ture is a list used to maintain aspect code registered dynami-
cally for the joinpoint. Currently the dynamic aspects are sim-
ple classes written manually in C++. As soon as some dynamic 
aspect is registered at the runtime monitor, the list of joinpoint 
data structures are traversed to find out which joinpoints are 
affected by this aspect. A pointer to the aspect code (imple-
mented as C++ methods) is added to the list of each affected 
joinpoint. Once a certain joinpoint is reached by a thread of 
control the runtime monitor is invoked and the registered as-
pect code is executed. 
Currently, we are extending the compiler for AspectC++ to 
transform aspect implementation into classes compatible with 
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our new infrastructure for dynamic weaving. This allows sys-
tem developers to use the same expressive aspect language for 
both static and dynamic aspects. By following this single lan-
guage approach the decision whether an aspect is static or dy-
namic can be postponed until configuration time. It can then be 
driven by the trade-off between the application requirements 
and performance.  

4. Related Work 
There is some work going in the direction of applying aspect-
oriented approaches to re-engineer parts of the existing operat-
ing systems [2]. However, this work is purely based on static 
aspect weaving techniques. There is not much work in the di-
rection of using AOP for the dynamic adaptation of operating 
systems. Netinant [12] proposed a proxy based approach for 
adapting operating systems at runtime. Although this work is 
also based on run-time aspect registration, our approach is sig-
nificantly different, because static aspect weaving is used for 
binding the joinpoints to the runtime system. This provides 
transparency for the component code programmers, which is an 
important property of true AOP. 
There are other approaches for dynamic adaptation by means 
of dynamic weaving which are mostly Java based and only a 
few in the C++ domain. These approaches have already been 
briefly discussed in section  3.  

5. Conclusion 
In this position paper, we presented our ideas about adaptable 
aspect-oriented operating systems by making use of the pro-
gram family concept and dynamic aspect weaving. We moti-
vated the need for dynamic weaving from the structure of our 
family implementation, where each feature is implemented as a 
module. If the feature represents a crosscutting concern, the 
module might be an aspect. Consequently, if we allow feature 
selections to be changed at runtime, we have to support dy-
namic aspect weaving. 
To reconcile our demand on minimal resource usage with (in-
herently expensive) dynamic weaving, we presented the idea of 
a configurable weaver family that exploits a priori knowledge 
about possible system changes. Parts of this family have al-
ready been implemented. Additionally, we sketched another 
variant called server-side weaving, which we consider to be 
applicable in many cases. 
Moreover, a single language approach has been suggested by 
which all aspects, static or dynamic, could be expressed in the 
same high-level aspect language AspectC++. The AspectC++ 
language has already been used in several research projects and 
a compiler is available from www.aspectc.org. 
Future work will mainly be a proper evaluation of our weaver 
family with measurements that prove the assumption that we 
can scale the resource consumption with the actual require-
ments on dynamism and that even in resource constrained envi-
ronments at least some level of dynamic weaving can be sup-
ported. In parallel we will step-by-step extend our CiAO oper-
ating system family [3], which should become the demonstra-
tor for the technology present in this paper. 

References 
 
[1] D. Beuche, A. Guerrouat, H. Papajewski, W. Schröder-Preikschat, 

O. Spinczyk, and U. Spinczyk: The PURE Family of Object-Oriented 
Operating Systems for Deeply Embedded Systems. Proceedings of 
ISORC’99, May 1999, St Malo, France 

[2] Y. Coady, G. Kiczales, M. Feeley, N. Hutchinson, and J. S. Ong:
Structuring Operating System Aspects. CACM, pp. 79–82, October
2001. 

[3] D. Lohmann and O. Spinczyk: Architecture-Neutral Operating Sys-
tem Components. WiP Session on SOSP’03, October 19th-22nd, 2003, 
Bolton Landing NY, USA. 

[4] 
 

A. Popovici, T. Gross, and G. Alonso: Dynamic Weaving for Aspect 
Oriented Programming. Proceedings of AOSD’02, April 2002, En-
schede, The Netherlands. 

[5] O. Spinczyk, A. Gal, and W. Schröder-Preikschat: AspectC++: An 
Aspect-Oriented Extension to C++. In Proceedings of TOOLS Pa-
cific’02, February, 2002, Sydney, Australia.  

[6] R. Pawlak, L. Seinturier, L. Duchien, and G. Florin: JAC: A flexi-
ble framework for AOP in Java. Reflection 2001 

[7] S. Aussmann and M. Haupt: Axon – Dynamic AOP through Runtime 
Inspection and Monitoring. First workshop on advancing the state-of-
the-art in Runtime inspection (ASARTI’03), 2003 

[8] Y. Sato, S. Chiba, and M. Tatsubori:  A Selective, Just-In-Time As-
pect Weaver. Proceedings of GPCE’03, 2003, Erfurt, Germany. 

[9] Y. Chen, Aspect-Oriented Programming (AOP): Dynamic Weaving 
for C++, Master thesis, August 2003, Vrije Universiteit Brussel and 
École des Mines de Nantes 

[10] S. Almajali and T. Elrad: A Dynamic Aspect Oriented C++ Using 
MOP with Minimal Hook. Proceedings of the 2003 Dynamic Aspect 
Workshop (DAW04 2003), RIACS Technical Report 04.01, March, 
2004, Lancaster, UK. 

[11] W. Gilani and O. Spinczyk: A Family of Dynamic Weavers. Proceed-
ings of the 2003 Dynamic Aspect Workshop (DAW04 2003), RIACS 
Technical Report 04.01, March, 2004, Lancaster, UK. 

[12] P. Netinant, C. A. Constantinides, T. Elrad, and M. E. Fayad: Sup-
porting the Design of Adaptable Operating Systems Using Aspect-
Oriented Frameworks. Proceedings of the International Conference of 
Parallel and Distributed Processing Techniques and Applications 
(PDPTA’00), pp. 271-278, June 2000, Las Vegas, NV, USA.  

[13] K. Czarnecki and U. W. Eisenecker: Generative Programming –
Methods, Tools, and Applications. Addison-Wesley, 2000 

 
 

5 

http://www.aspectc.org/

	Abstract
	Introduction
	Operating System Product Lines
	Additional Requirements of Smart Devices


	Adaptable Operating Systems
	Feature Binding Times

	Implementation Ideas
	General Assumptions
	Language Support
	Approaches for Dynamic Weaving
	Low Cost Dynamic Weaving
	Server-Side Weaving
	Configuration Transition

	Dynamic Weaving with AspectC++

	Related Work
	Conclusion
	References

