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Abstract 

Recently, Continua Health Alliance has brought 
together a powerhouse team, including Cisco, IBM, 
Motorola and others, for personal telehealth products 
and services.  This team will provide commodity 
interoperable healthcare devices and services by 
introducing new connectivity standards for health 
management tools.  But the costs of integrating and 
configuring disparate system services have proven to 
be prohibitive in this domain – healthcare processes 
require extreme agility to assimilate information 
across traditional boundaries.  As a result, these tools 
must work effectively with dynamic business processes 
that often elude cost-effective integration themselves.  
This creates a requirement for software to be fluidly 
configurable and interoperable in order to best 
support personalized care with truly integrated 
solutions.  We believe that, without a new technology 
for the seamless integration of features within 
healthcare devices, costs associated with attempts to 
fuse IT with dynamic business processes will continue 
to be an obstacle in modern patient care. 

Aspect-Oriented Software Development (AOSD) is 
focused on novel notions of modularity that crosscut 
traditional abstraction boundaries. AOSD techniques 
and tools, applied at all stages of the software 
lifecycle, are changing the way software is developed 
in a wide spectrum of application domains, ranging 
from embedded systems to enterprise IT.  This paper 
outlines the ways in which aspects could aid the 
integration and evolution of software used to support 
modern healthcare practices across this spectrum, 
with examples at each stage.  We believe the key 
principle of AOSD – the modularization of 
crosscutting concerns – to be an integral part of the 
solution to the challenges currently facing modern 
health service infrastructures. 

1 Introduction 

Business processes in healthcare are changing rapidly.  
This is largely due to new technologies that enable 
processes that were unthinkable not that long ago.  
Astonishingly, the changes in business processes due 
to evolving technology also bring about changes in 
technology due to evolving business processes.  
Specifically, demands for highly configurable systems 
to support more personalized healthcare needs fall into 
this circular relationship.  Everything from wireless 
sensor network technology to adaptive web 
applications has been put to the test in these dynamic 
environments.  However, the inability for these 
systems to respond has posed a major challenge in 
process integration and evolution today. 

business process or software module

newly introduced 
integration

Figure 1 - Scattered and tangled introduction 
of an integration concern. 

Integration is hard – both at the level of business 
processes and legacy software systems.  We further 
believe that the inherent fusing of the two, and the 
circular relationship involved, makes it even harder. 

Modular Integration Through Aspects: 
Making Cents of Legacy Systems 
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In this paper we suggest that the nature of the problem 
is fundamentally the same in both the business process 
and technology domains:  a set of well defined 
elements (either business processes or software 
modules) with well defined interfaces begin to decay 
as new issues for integration are introduced to the 
system.  Support for integration must be scattered 
across these previously well-defined entities, and 
becomes tangled within them.  This has a costly 
impact – whether it is at the level of processes or 
software – and ultimately compromises the structural 
integrity of the system.  Conceptually, this scattering 
and tangling can be viewed from the perspective 
shown in Figure 1, where the boxes are an abstract 
representation of either a business process or a 
software module, depending on the domain, and the 
dark lines within the boxes represent the scattered and 
tangled integration issues within these legacy entities. 
A more cost effective way to introduce integration is 
depicted in Figure 2.   Here, the modularity of the 
legacy system is preserved. The integration issue 
remains modular, and the legacy entities are still in 
tact. 

aspect

Figure 2 – Modular introduction of an 
integration concern. 

Aspect-Oriented Software Development1 (AOSD) is 
focused on novel notions of modularity that crosscut 
traditional abstraction boundaries. AOSD techniques 
and tools, applied at all stages of the software 
lifecycle, are changing the way software is developed 
in a wide spectrum of application domains, ranging 
from embedded systems to enterprise IT.  This paper 
outlines the ways in which we believe aspects could 
aid the integration and evolution of both business 
processes and software used to support modern 
healthcare practices across this spectrum, with 

1 www.aosd.net 

examples taken from our experience to-date working 
with aspects in software.  We believe the key principle 
of AOSD – the modularization of crosscutting 
concerns – to be an integral part of the solution to the 
challenges currently facing integration and evolution 
of modern health service infrastructures. 

As Figure 2 eludes, the key difference between an 
aspect-oriented techniques over traditional approaches 
to modularity is that aspects completely specify not 
only the concern they modularize (in this case, 
integration), but also explicitly how that concern 
interacts with the entities it crosscuts.  In software, we 
understand how to do this in terms of well-defined 
points in the execution of a program.  These points are 
well defined in terms of the interfaces that are exposed 
in the system.  In business processes we believe this 
same structure would hold, but we leave it to the 
experts in the area to define exactly what this may 
mean in the context of healthcare processes2.  We 
believe that process modeling, represented by Petri-net 
based workflow nets [1], may be a good place to start 
with further investigation of aspects in this domain.   

This paper is organized as follows.  First we take 
from our experience in embedded systems, outlining 
the technological challenges of viewing a patient as a 
source of data and the need for AOSD in product lines 
of this very lowest level of software, the micro-
controller (Section 2).  We then explore these same 
principles as they apply to challenges facing 
configurable communication protocols (Section 3), in 
these systems where memory, computation and power 
consumption.  Finally, we consider the alternative (or 
perhaps synergistic) application of AOSD to the 
challenges of filtering data at the application level 
(Section 4). 

2 Embedded SYSTEMS Level 

2.1 The Patient at Home as a Source of Data 

Clearly, the most important source of data for 
clinical services and medical processes in the 
healthcare system is the patient. Modern diagnostic 
technologies lead to an increasing amount of 
electronic data to be collected whenever a patient 
visits a physician for examination. While most 
patients see their physician rarely in the first decades 
of their life, for many the time spent increases 
exponentially with their age often resulting in 
necessary hospitalization for constant observation. 

2 We are not healthcare professionals, we are computer scientists. 

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

2



One of the biggest challenges facing our aging 
society is to find ways to allow seniors to age in place
and maintain independence as long as possible. There 
are significant societal and financial benefits to 
supporting independent living however, there is an 
associated risk factor. Episodes of confusion and 
disorientation, undetected heart attacks, and the 
danger of accidents can put a great deal of stress on 
involved individuals. From this, there is growing 
interest in technology that provides constant 
observation in the home, combined with cognitive 
systems for a reliable detection of emergency 
situations. 

To support this independent, self-sustaining, yet 

safe living environment, recording and interpretation 
of the patient’s vital statistics is necessary.  A 
fundamental set of sensors to provide this data, 
coupled with micro-controllers and transceivers for 
data integration are typically attached directly to the 
patient’s body. In this scenario these devices constitute 
the Patient’s Personal Body Network (PPBN) also 
known as the Body Area Network (BAN). 

A constantly worn and working PPBN is the basis 
for two major functions of the overall system: 1) 
detection of short-term body function anomalies. 2) 
providing physicians with long-term data records 
about the patient’s vital statistics.  

Short-term anomalies typically indicate an 

Figure 3 - Example Feature Diagram for a PPBN. 
A PPBN consists of at least one sensor one plan and one sink. Sensors acquire information about the 
patient’s body functions (such as heart rate or blood glucose level) and, optionally, their current environment 
(such as the current position in GPS coordinates). Data acquirement is controlled and integrated by one or 
more plans and, depending on the plan, processed into one or more sinks (such as an alarm sink to indicate 
an emergency situation or a data link to transfer data to an external device.) Plans observe and react on 
medically relevant data (such as a heart rate observer) as well as on cross-cutting system-eminent state 
(such as the still available energy).   
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emergency situation that requires some kind of 
intervention. Depending on the grade of the anomaly, 
intervention may range from reminding the patient to 
take some medication up to an automated emergency 
call for external help.  

Long-term data records from PPBNs could be a 
valuable data source for physicians to detect creeping 
changes in the aetiopathology of the patient.  The 
integration of this data into the clinical process could 
allow physicians to optimize medication and 
treatment.  

2.2 Challenges 

While the functionality provided by the higher 
layers of an integrated healthcare system is typically 
implemented using general-purpose commodity 
hardware technology (e.g. PCs and PDAs), the PPBN 
clearly is a special-purpose system.  Patients would be 
required to wear the PPBN at all times, and therefore 
it must not hinder them in their daily living. Hence, 
PPBN components are deeply embedded systems,
allowing the possibility of implantation.  They have to 
be small, light, and robust. This domain strictly limits 
resources in terms of memory, computation power, 
and energy. 

The functional requirements on the PPBN, on the 
other hand, vary widely between patients. The actual 
body functions to observe as well as the observation 
frequency and integration algorithms to must be fine-
tuned for every patient. As it is simply impossible to 
find a one-fits-all solution that adheres to hardware 
and system resource requirements, the PPBN has to be 
tailored to fulfill exactly the requirements of the 
specific patient, but nothing more. This leads to a 
high, but deliberate level of heterogeneity on both, the 
hardware and the software side. There is a demand for 
strategies and implementation techniques to 
systematically deal with this variety in healthcare 
processes in a current state and future states. Current 
states, in the sense that the data gathered by PPBNs 
has to be made available for the physician in charge 
and well integrated with other available data about the 
patient’s current state; and future states in the sense 
that physicians must be able to reconfigure a patient’s 
PPBN according to changing requirements.    

2.3 Embedded Software Product Lines 

There is no one-fits-all recipe for building a 
software system that fulfills the requirements of all 
potential applications, while adhering to system 

resource requirements. The solution is therefore to 
tailor the PPBN to provide exactly the functionality 
required. This leads to a family-based or software 
product-line (SPL) approach. SPL is an effective 
approach to increase reuse and quality of software and 
decrease development time and cost, by sharing 
architecture and a set of reusable components. In the 
embedded systems domain, the SPL approach is used 
particularly for configurable system software, 
especially operating systems.  Well known examples 
are eCos [7], PURE [3], and TinyOS [14]. 

By consequently following the SPL-based approach 
of software development, highly customizable PPBNs 
are feasible. Variant building, however, is only a first 
step in the development process. Without being able to 
organize and manage the many possible variants of 
the software family in an adequate and user-friendly 
manner, this approach will be doomed to failure. 
Feature modeling appears to be a promising way to 
tackle the variability management problem. This 
technique is understood as “the activity of modeling 
the common and the variable properties of concepts 
and their interdependencies and organizing them into 
a coherent model referred to as a feature model” [5].  
The goal is to come up with directives for the 
structural design of a system that meets the 
requirements and constraints specified by the features. 
Common is a graphical representation of the feature 
model in terms of a feature diagram. The diagram is 
of a tree-like structure, with the nodes referring to 
specific feature categories. Four feature categories are 
defined: mandatory, optional, alternative, and or. A 
feature diagram describes the options and constraints 
that shall exist within a system. It models the variable 
and fixed properties of a family of programs, which 
implement that system. The feature diagram shown in 
Figure 4 illustrates the model of the envisioned PPBN. 

2.4 The role of AOP in SPL Development 

Software product lines are prone to evolution due to 
the emergence of new requirements on the products in 
the family. The evolution could be a continuous 
change, which happens with the maturity of the 
technology and involves an incremental adoption 
approach, or it may be radical and force system-wide 
changes at once. The evolution could be the 
restructuring or replacement of a feature or multiple 
features or constantly raising the level of services etc. 
Moreover, the evolution could affect only a particular 
module or a number of different modules. When the 
evolution of a single, related concern requires changes 
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to multiple modules, it is said to be crosscutting and 
hence, non-trivial to localize. Often, the unanticipated 
changes affect multiple modules and result in code 
tangling, limiting levels of evolvability, variability and 
granularity and negatively affecting the quality of the 
SPL. With traditional decomposition approaches, it is 
difficult to localize and encapsulate these crosscutting 
concerns. Thus a crucial point in the SPL approach is 
the mapping of all selectable and configurable features 
to their corresponding, well-encapsulated 
implementation modules. Some so called orthogonal 
features like security, mobility, monitoring, real-time 
constraints, profiling, or energy management, are 
typically reflected in many points of the software code. 
This crosscutting character restricts implementation of 
such orthogonal features as independent encapsulated 
entities and thereby limits variability, granularity and 
evolvability.  

AOSD provides mechanisms to encapsulate 
crosscutting concerns into isolated entities called 
aspects, by specifying the action that will occur at 
specified points in the system.  This control of 
execution can be applied either statically or at 
runtime. The encapsulation of crosscutting concerns 
provided by AOSD allows for the evolution of these 
concerns in isolation. Hence, evolution is limited only 
to addition, removal or modification of the concern 
without affecting the rest of the application. A well-
directed application of AOSD principles in the 
development of software product lines can lead to a 
higher variability, evolvability and granularity of the 
selectable system features, as their implementations 
can not only be encapsulated by classes, but also by 
aspects. By employing AOSD techniques, the 
evolution in SPL is principally feature-driven as it is 
confined to the deployment or the removal of features 
either statically or at runtime. A well-directed 
application of AOSD principles in the development of 
software product lines can therefore enable the 
development and evolution of optimally patient-
tailored, yet resource-thrifty, PPBN systems. 

3 Configurable protocols 

3.1 Coalescing Patient Data 

TinyOS [14] is an operating system (OS) with a 
modular and communication based design to support 
distributed data collection, and other requirements 
specific to wireless sensor networks.  This system 
software may well be the OS of choice for the 

collection of patient data in commodity wireless 
sensors.   

Development in this embedded systems domain is 
constrained by memory footprint and power 
consumption and motivates the component based 
design of this scaled back OS.  The typical 'mote' 
platform for TinyOS is 10KB of RAM and 100KB of 
ROM.  The event driven design allows for the system 
resource allocation to be based on the components 
required by the event allowing for fine-tuning of 
power consumption between 10uA and 25mA.  These 
events can have a cascading effect, where one event in 
turn triggers another.  This cascading effect introduces 
difficulty when introducing change to a system, 
requiring a developer to understand and possibly 
cascade changes across the system structure. 

Aggregate data collection is identified as one of the 
most widely used services of wireless sensor networks 
and one of the key services in workflow scenarios of 
electronic healthcare.  Many low-level details are 
considered in this seemingly small part of a workflow 
scenario.  TinyOS supports this service, considering 
factors including, but not limited to the number of 
devices involved, the paths available for data transfer 
(routing) with complex routing algorithms dependant 
on system configuration.  

Data collection is considered a non-functional 
requirement along with flow control, error control and 
security that are introduced in a networking 
environment such as this.  These non-functional 
requirements within a networking environment 
introduce complexity with low-level mechanisms of 
support, overflowing the structural boundaries 
established by the functional requirements of the 
system.   

Typical ISO and TCP/IP network protocols adhere 
to a simple hierarchical layering where each layer 
encapsulates a group of related functions.  A CP 
framework provides a requirement-driven, 
customizable set of protocols comprised of function 
specific modules.  A specific protocol stack is then just 
a configuration of the required modules in each 
protocol layer.  The x-kernel [9] is an example of a 
configurable protocol that follows this type of standard 
hierarchical structure.  Although these CP frameworks 
are arguably more configurable and extensible than 
their fixed counterparts, TCP/IP and ISO, they still do 
not support configuration and encapsulation of fine-
grained policy that cuts across multiple layers in the 
hierarchy.  Cactus [8] adheres to the traditional 
layered architecture in its composition of protocols or 
services, where each service is composed of multiple 
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micro-protocols, which are linked to specific events, 
dynamically triggering a corresponding event handler. 

Networking protocols have typically followed a 
layered, hierarchical architecture imposing strict 
interfaces at each level.  This structure allows the 
developer to consider each layer in isolation, where an 
individual layer provides certain services to exactly 
one layer above.  This design provides good separation 
of concerns, reducing the complexity of the system by 
shielding the upper layers from the implementation 
details of those below.  These characteristics 
associated with separation and locality not only aid in 
the initial development process, but also support future 
evolution and modification of the system and lends the 
architecture to reuse. 

3.2 Challenges 

This hierarchical structure of network protocols 
often results in requirements associated with low-level 
mechanisms overflowing boundaries.  Non-functional 
requirements, such as data collection, flow control, 
error control and security fall into this category.  The 
fine-grained implementation of these low-level 
mechanisms is thus scattered across multiple layers in 
the system.  By this definition we can say that non-
functional requirement crosscut the architecture.  
Regardless of the dominant decomposition of the 
system architecture, there tend to be requirements that 
do not fit cleanly into that hierarchical structure and 
are therefore considered to have an inherently 
crosscutting structure.  

Configurable protocol (CP) frameworks, such as 
Cactus have been developed to provide a modular 
representation of non-functional requirements in 
network architectures.  These non-functional 
requirements in this form, known as micro-protocols,
better support reusability, configurability, 
extensibility, and evolvability.  Healthcare systems 
require a high degree of configurability and flexibility 
across multiple platforms under tight constraints in 
terms of memory footprint, computational resources 
and power. 

The challenge in a micro-protocol implementation 
is in providing a clear separation of these concerns 
that do not fall into the dominant structure of the 
system.  The number of potential configurations in 
addition to the fine-grained nature of their 
implementation makes these micro-protocols the 
grounds for a particularly complex system.   

The implementation of Cactus is restricted by 
traditional approaches to capturing modular design 
and is limited in the following three ways:  

• The ability to provide a clear structural view of 
the relationship between a given micro-
protocol, the events affecting it and the 
strategies to handle those events. 

• The ability for developers to customize the 
events and event handlers within these concrete 
libraries. 

• The ability to provide a clear structural view of 
the interactions between micro-protocols. 

3.3 Solutions 

As a small proof of concept example [3], Hiltunen 
describes the concept of message stability in a network 
service used by many micro-protocols as a trigger for 
related action.  How message stability is defined is 
dependant on multiple factors including general 
network architecture, the micro-protocol affected and 
the specific configuration of the micro-protocol.    

This paper builds on this proof of concept, 
considering two implementations of a multicast 
architecture.  The first version defines message 
stability using a global flag and the second using 
acknowledgements.  The significance of this variation 
in ubiquitous healthcare systems is directly related to 
the issue of resource constraints.  This state of stability 
triggers related action that can vary depending on the 
configuration of the micro-protocol.   This example 
considers both an archiving and a garbage collecting 
micro-protocol for each version, where archiving 
would consume more memory and garbage collection 
would free this constrained resource.   

Figure 4 highlights these characteristics in terms of 
two possible implementations of a multicast service 
(denoted V1 and V2 respectively).  In the first version 
(V1), the trigger is a global flag, and the version can 
be configured to use either archival or garbage 
collection actions.  Similarly, the second version (V2)
can be configured according to these same two actions, 
but the trigger is the act of acknowledgment.   These 
versions, V1 and V2, will form the basis for the design 
and implementation of the configuration aspects that 
will follow. 

service Multicast V1 Multicast V2 

triggers global flag acknowledgement 

action 
archive 

garbage 
archive 

garbage 
Figure 4 - stability micro-protocol 
characteristics 
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The trigger factor for each micro-protocol can be 
defined as the state of message stability.  The 
difference thus lies in the definition of what marks 
entry to that state.  Much like programming to an 
interface, introducing an abstract aspect will force any 
subaspect to concretely define the principled points of 
execution associated with entry to a stable state. 

Figure 5 shows the abstract aspect 
MulticastStability with the single abstract pointcut,
msgStability that will force inherited classes to 
provide a concrete implementation specifying the 
principled execution points in the system associated 
with message stability.   

public abstract aspect MulticastStability { 

   abstract pointcut
       msgStability( Msg m, Client c ); 
}

Figure 5 - Abstract aspect for stability 
microprotocol. 

Figure 6 shows a concrete implementation of the 
abstract aspect MulticastStability for multicast 
system V1, where entry to a stable state is triggered 
with a global flag.  The concrete named pointcut,
msgStability, specifies the execution points for this 
particular implementation to be any place where the 
stability flag is set and a stable state is entered.  The 
message and the host as parameters are introduced as 
parameters within the pointcut, giving access to the 
instances of those objects.  The aspect builds on this 
named pointcut, specifying the action that will take 
place upon entry to this stable state.  In this case, the 
advice is archiving the instance of the message once 
the stable state is reached.  The after keyword 
explicitly forces this advice to be triggered only upon 
entry to the stable state.    

public aspect microProtocolV1 extends
       MulticastStabilityAspect { 

   Archive a = new Archive(); 

   //joinpoint 
   pointcut msgStability(Msg m, Host h): 
    set(boolean Host.STABILITY_FLAG())  
         && this(m) && target(h); 

   //advice 
   after(Msg m, Client c):
       msgStability(m, c) { 

       //add the message to archive 
        a.add(m); 
  } 
}

Figure 6 - Concrete implementation of 
stability microprotocol for MulticastV1. 

Similar to this implementation, multiple 
configurations of the micro-protocol can be created by 
simply introducing new concrete aspects and fine-
tuning of the pointcut and advice to match the 
specifications.  For example, V2 would define 
msgStability to occur after all acknowledgements 
have been sent out (albeit a more complicated 
pointcut, but still possible considering the high 
likelihood of an ack method for the advice to monitor). 

This small proof of concept has shown that in 
applying AOSD to the domain of CPs is not only 
possible, but also can clarify the structure as suggested 
by Hiltunen.  Further, this proof of concept indicates 
that these results are not limited to a single micro-
protocol, but might also extend to clarify interaction 
between existing micro-protocols.  The relationship 
between a given micro-protocol, the events that affect 
it and the action that they take is localized to one 
modular unit, allowing the code to emulate the design.  
In this form, developers can more effectively reason 
about the relationship between micro-protocols, as 
their internal structure is better separated, their 
external interaction is made explicit, and their 
functionality is exposed in context (within the aspect). 

The localized linguistic support provided in the 
AOSD implementation not only provides developers 
with structural clarity, but also provides access to their 
configuration to allow fine-grained customizations to 
be applied.  

This small study suggests that an AOSD approach 
alleviates the restrictions identified in the Cactus 
approach in the following three ways:    
• Provides a clear structural view of the relationship 

between a given micro-protocol, the events 
affecting it and the strategies to handle those 
events. 

• Allows for fine-grained customization of a given 
micro-protocol configuration. 

• Provides a clear structural view of the interactions 
between multiple micro-protocols. 

There are several tradeoffs to consider with this 
approach.  CPs inherently require a fine-grained 
implementation, which in turn requires fine-grained 
pointcuts in an AO implementation.  Hiltunen 
suggests that current mechanisms for semantic 
pointcuts may be sufficient, but studies have shown 
the contrary.  In [13], Siadat et al provide results that 
suggest the amount of refactoring required in their 
case study to expose sufficient required execution 
points was intolerable.   

This refactoring required maybe alleviated with an 
AO language with stronger semantic support, but this 
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also may introduce the issue of performance.  For 
example, even the more semantic based support 
provided by AspectJ has been shown to incur extra 
performance.  In systems in general, and more 
specifically network architectures; the performance 
overhead of an implementation is a serious 
consideration.  

Another consideration in this domain is the varying 
architectures to consider.  CPs encompass the area of 
embedded devices and also real-time systems, widely 
used in health care.  Specifically, with portable hand-
held embedded devices memory footprint is an issue.  
Currently AO implementations are known to have a 
significant increase in memory footprint, making their 
use limited in this area.  Resource constraints become 
an even greater consideration in real-time systems, 
where deterministic runtimes are necessary for 
ensuring deadlines are met.   

4 Customizable Enterprise IT 

4.1 Dynamic Monitor Needs 

Traditional system diagnostic and optimization 
techniques in enterprise solutions to application level 
software rely on static system structure and static 
instrumentation.  But static approaches are simply no 
longer sustainable in the evolution of complex, 
distributed and dynamic systems.  This is particularly 
true in healthcare environments, where monitoring 
associated with patient status information may change 
rapidly.   

4.2 Challenges 

Heterogeneity and predefined abstraction 
boundaries are actually obstacles to evolution of the 
system – layering, componentization, and 
virtualization provide necessary levers for abstraction, 
but emergent behaviour ultimately impairs the efficacy 
of local reasoning.  Understanding and evolving 
system behavior thus requires approaches that can 
flow freely across boundaries and provide 
comprehensive analysis that can be easily collected, 
correlated, and subsequently used to adapt applications 
dynamically, as they are executing.  Looking at this 
problem from another angle, complex system 
architectures must be designed and documented from 
the perspective of multiple views for different 
stakeholders [6].  Furthermore, views may need to be 
iteratively refined, as focus changes during the process 
of analyzing interests [4].  Ideally, infrastructure to 

support views should be able to be easily removed 
once users no longer need them, and incur little to no 
performance penalty.   Recent technologies such as 
those employed by JFluid [10] go a long way to 
demonstrating that dynamic bytecode instrumentation 
can be both customized and efficient.      

4.3 Solution  

For a large class of optimization strategies related to 
unanticipated external environment conditions, 
optimizations are becoming an increasingly important 
obstacle to effective evolution.  Mixing optimization 
logic with application logic requires non-local 
information and makes both of them more difficult to 
understand, maintain, and evolve, due to the 
idiosyncratic dependencies on external factors.  
Optimization code is context dependent and highly 
sensitive to dynamic factors such as server load, 
network traffic, and even order of operation 
completion.  These factors make it particularly 
inefficient to encode certain kinds of optimizations in 
the absence of a priori knowledge about execution 
contexts. 

Figure 7 - Data from MonitorAspect.

SONAR (Sustainable Optimization and Navigation 
with Aspects at Runtime) is our current prototype for a 
fluid and unified framework that allows stakeholders 
to dynamically explore and adapt meaningful entities 
that are otherwise spread across predefined abstraction 
boundaries.   This allows for a safe and sound 
approach to system evolution. Through a combination 
of dynamic Aspect-Oriented Programming (AOP), 
Extensible Markup Language (XML), and Java 
Management Extensions (JMX), SONAR can 
comprehensively coalesce scattered artifacts, enabling 
iterative and interactive system-wide investigation and 
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evolution.  SONAR allows stakeholders to easily shift 
focus between coarser/finer grained, or even 
crosscutting entities, and presents system diagnostics 
in a comprehensive, manageable unit. 

JMX is used as a means to comprehensively 
visualize and manage aspects introduced by SONAR.  
This includes retrieving data from aspects, invoking 
operations, and receiving event notification.  Through 
JMX, the aspects can be managed by JMX-compatible 
tools remotely and/or locally. The tool we used is 
called JConsole which is a JMX-compliant graphical 
tool for monitoring and management built into Sun’s 
JDK distribution shown in Figure 7.    

This figure illustrates how the statistics from three 
different invocation points collected by MonitorAspect
can be visualized as line charts in Jconsole and 
managed in SONAR. 

Tracing.  In order to demonstrate SONAR’s ability 
to freely navigate across abstraction boundaries in the 
system, we developed a TraceAspect. This aspect is 
not enabled (i.e., its deployment strategy is manual)
when the system is started. The stakeholder can thus 
enable the tracing through domain independent AOP 
(deploy/undeploy). 

The TraceAspect reflects a request-centric view of 
the system, recording key data points as requests are 
serviced.  As a result, it exposes several key 
configurable options and operations through JConsole, 
such as the ability to: 
• enable/disable tracing to specified classes and/or 

methods 
• apply a filter, to exclude unwanted data 
• configure tracing details (timestamps, duration)  
• manipulate buffer operations (change the size, 

clear the buffer) in resource constrained devices 

Figure 8 – Serving a request stack trace.  

All the above options and operations are accessible 
through this aspect’s JMX interface. All data is stored 

at the server side and can be retrieved and viewed 
through JMX management tool. 
Figure 8 visually depicts the information collected by 
SONAR regarding requests to retrieve customer 
accounts.  Each bar indicates the processing time (in 
milliseconds) of a method, the summation of the time 
spent in processing its method body and subsequent 
method calls. The top level is the entry point of 
serving an HTTP request. Access to SessionBeans, 
EntityBeans and JSPs are traced to clearly show the 
processing time in each software layer according to 
J2EE architecture.

Cross-platform Optimization.  We chose 
SpringAir, a web application built upon Spring and 
the .Net  framework, as our second case study to 
demonstrate cross-platform support for optimization. 
The basic idea is to retrieve some cached data from 
remote systems and build a local copy in order to save 
the time spent on network communication.  
Optimizations that improve locality can dramatically 
impact the evolvability of many of today’s web-service 
based applications.  These kinds of performance 
bottlenecks could thus be avoided in the context of 
time sensitive patient care information retrieval 
scenarios.  The important evidence this work suggests 
is the efficacy of aspects in the role of high-level 
system integration and beyond – into the realm of 
optimization. 

Our plans are to investigate how to unify SONAR 
with heavyweight, low level tool kits in order to 
provide an efficient means of truly integrating tasks 
crossing all layers in the software stack, beyond 
middleware and applications shown here, and down 
into the protocol and OS layers, as discussed in 
Sections 2 and 3. We also plan to further investigate a 
high level language specifically for optimization and 
navigation into SONAR, based on what we have 
established so far in terms of semantic representation 
of system behaviour.  We believe this language would 
require higher-level representation of aspect 
compositions in order to provide comprehensive 
management.  For example, when some combination 
of optimizations may actually interfere with each 
other, or to determine when the lifetime of an 
optimization has essentially expired due to changes in 
the external environment.  We further believe that this 
kind of language could be adapted to be semantically 
viable at the level of aspects associated with the 
integration of business processes.  Process modeling 
tools such as Protos [12] may give us some insights as 
to what these languages may require.    
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5 Conclusion 

Healthcare devices and features they provide are the 
core building blocks of electronic healthcare system 
with the number of features growing rapidly.  These 
clearly defined blocks provide a modular approach to 
the healthcare system, encapsulating each concern and 
facilitating change, maintenance and reuse.  But the 
responsibility of integration and coordination of these 
devices cuts across the system and does not fall cleanly 
and separately into the legacy structure.  This 
crosscutting structure is difficult to modularize with 
current approaches, but it is exactly the way in which 
AOSD looks to promote and support modular 
reasoning and implementations.  AOSD cuts across 
the core hierarchical structural boundaries by 
specifying the uniform integration points across each 
feature.   

Evolution of legacy entities in general is hard 
because traditional structural organization is not agile 
enough to change both statically and dynamically 
without breaking.  AOSD supports this concept by 
providing a centralized locus of control of the 
explicitly defined elements of interaction.   

The concept of modularity extends beyond the 
software design and implementation and has effects in 
business, society and multiple facets of human 
organization.  Baldwin et al.  identify the role of 
modularity in business organization and product 
development [2].  Baldwin goes on to recognize that 
this modularity does not necessarily align with the 
hierarchical organization structure we are accustomed 
to:   

“We would also say: do not be dogmatic 
about product and process boundaries.  A 
process can be a module, and, if it is, the 
process can be a product. In fact, product 
definitions are endogenous in a modular 
system.” 

The examples provided in this paper, at three levels 
of integration, illustrate the ways in which the 
consideration and management of crosscutting 
structure in a modular way is beneficial. We believe, 
the consideration of crosscutting modularity at the 
level of business process, and ultimately the design 
and implementation of these complex healthcare 
systems is necessary to alleviate the cyclic relationship 
between evolving business processes and evolving 
technology.  Specifically, as the opportunity to change 
interaction strategies is supported by the structural 
integrity of aspect-oriented development we can 

provide more configurable business processes, design 
and systems. 
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