
On the Configuration of Non-Functional Properties
in Operating System Product Lines ∗

Daniel Lohmann, Olaf Spinczyk, Wolfgang Schröder-Preikschat
{dl,os,wosch}@cs.fau.de

Friedrich-Alexander-University Erlangen-Nuremberg, Germany
Department of Computer Science 4

ABSTRACT
Reaching a good separation, maintainability and configurability of
non-functional concerns like performance, timeliness or depend-
ability is a frequently expressed but still unrealisable hope of using
AOP technology. Non-functional properties have the tendency to
be emergent, that is, they have no concrete representation in the
code, but appear through the complex interactions between soft-
ware components in the whole. This makes it is very hard, if not
impossible at all, to express them in a configurable manner by ob-
jects or even aspects. The architecture of a software system, how-
ever, is known to have a high impact on some non-functional prop-
erties. Thus, it may be possible to reach configurability of non-
functional software properties by the means of reconfigurable soft-
ware architectures. This paper discusses the connection between
non-functional and architectural properties in the domain of oper-
ating system product lines.

1. INTRODUCTION
Reaching better separation of concerns in software systems was
and is the driving factor for the development of AOP technologies.
One of the big hopes associated with the application of AOP is to
get a clearly modularized implementation of even so callednon-
functional concerns. The non-functional properties of a software
system are those properties that do not describe or influence the
principal task / functionality of the software, but can be observed
by end users in its runtime behaviour.Performanceor resource uti-
lization are the most common examples for non-functional proper-
ties, but also less observable properties likerobustnessor depend-
ability are important members of the class.1 Even if non-functional
properties have no impact on the primary functionality of the soft-
ware system, they have a big impact on its applicability in the real
world. A system that provides perfect functionality, but works ter-
ribly slow, is just unusable. Non-functional properties are therefore
important concerns, their controllability may be crucial for the suc-
cess of a software project.

This is especially true in the domain of embedded systems, where
hardware cost pressure leads to strictly limited resources in terms
of CPU and memory. Under such circumstances, non-functional
concerns like memory usage or timeliness may even dominate the
functional properties of the final product. As a consequence, there

∗This work was partly supported by the German Research Council
(DFG) under grant no. SCHR 603/4

1This definition of “non-functional” is intentionally from the per-
spective of an end user. Other stakeholders (e.g. developers
or salesmen) would probably define very different properties like
portability or unique selling pointsas “non-functional”.

is an ongoing tendency to develop operating systems for embed-
ded devices as tailorableproduct linesthat provide a more or less
fine-grained selectability of functional features. This facilitates, by
leaving out optional functions, some optimization of the system for
specific memory constraints. However, existing operating system
product lines provide only very limited configurability with respect
to other non-functional properties like timeliness, protection or ro-
bustness.

1.1 Problem Analysis
The problem with most non-functional properties is that they are
emergent properties. They are neither visible in the code nor struc-
ture of single components, but “suddenly” emerge from the orches-
tration of many components into a complete system. Properties that
manifest in the integrated system only are indeed crosscutting, as
they result from certain (unknown) characteristics of every single
component. Due to their inherent emergence it is, however, not pos-
sible to tackle them by decomposition techniques like AOP. They
need to be understood holistically, that is, on the global scope of
software development. One could say they need to be addressed by
“holistic aspects”, meaning that the realization of non-functional
concerns does not crosscut (just) the code, but the wholeprocessof
software development.

1.2 The Role of Architecture
The architecture of a software system is known to have a high
impact on many non-functional properties. Architecture can well
be understood as a“holistic aspect”, as it encompasses the set of
fundamental design decisions made at the early stages of the soft-
ware development process. Many architectural decisions are ac-
tually driven by non-functional requirements, based onexperience
regarding their effect on such properties. In the operating systems
domain, for instance, it isknownthat the isolation of every system
components into an own address space (as inµ-kernel OS) has posi-
tive effects on safety and fault protection, while a monolithic kernel
structure isknownto lead to lower demands on system resources.
From the functional viewpoint (of an application) there is, however,
no real difference between aµ-kernel OS and a monolithic kernel
OS[7]. Hence, the architecture of the operating system is itself an
all-embracing non-functional property[10].

Architecture is usually seen as being something fixed. Most archi-
tectural decisions cover large parts of the code, which makes it very
expensive to change them later. However, as they crosscut the code
they are potentially addressable by aspects. Thus, it should be pos-
sible to implement architecture in aconfigurableway and thereby
leverage towards anindirect configuration of emergent properties.

In the CiAO project[11] we are currently working on the develop-
ment of an operating system family that provides configurability of
certain architectural properties.

1.3 Structure of the Paper
The rest of the paper is organized as follows: In the next section,
we discuss the influence of architectural concerns to non-functional
properties in the domain of operating systems. Section 3 describes
our approach towards the design of architecture-neutral OS compo-
nents, which is also explained by an example in section 4. Finally,
conclusions are drawn and the paper is briefly summarized.

2. CONCERNS OF OS ARCHITECTURE
To reach configurability of architectural properties in operating sys-
tem product lines, it is necessary to havearchitecture-transparent
OS components, that is, components which are designed and im-
plemented to be independent from the actual architecture to use.
It is essential to clearly separate the functional component code
from those elements that reflect architectural decisions. The fol-
lowing lists some of the more important properties that “make” the
architecture of an operating system kernel[10], together with the
emergent properties they are known to influence. The focus is on
embedded systems:

synchronization If the kernel supports concurrent/parallel execu-
tion of control flows, concurrent data access must not lead
to race conditions. Synchronized access to data may be im-
plemented by waiting-free algorithms, special hardware sup-
port (e.g. atomic CPU operations), interrupt locks or higher-
order synchronization protocols. Locks may be allocated on
a coarse-grained or fine-grained base. The chosen kernel
synchronization strategy has a noticeable impact onlatency,
timelinessandperformance.

isolation The different components of an operating system may
have access to the whole system state or to well-isolated
subsets only. Components may be isolated by design
through type-safe programming languages, by hardware sup-
port (segmentation or address spaces via memory manage-
ment units (MMUs) or translation lookaside buffers (TLBs))
or even by distributing them across hardware boundaries.
Isolation may cause additional requirements on data align-
ment, sharing and interaction. The chosen isolation strategy
has a noticeable impact onmemory usage, safety, andper-
formance.

interaction System services may be invoked and interact with
each other by plain procedure calls, local message passing,
inter-process calls (IPCs) or remote procedure calls (RPCs).
Interaction may imply implicit synchronization, data dupli-
cation or (in the case of RPCs) even fail on occasion. The
chosen interaction strategy often goes in line with isolation.
It has a noticeable impact onlatency, memory usageand
performance.

The above listed properties are fundamental building blocks of any
operating system architecture[9]. In our research activities on ap-
plying AOP principles to the PURE operating system family[17,
13], we had the experience that it is not possible to implement an
ex postconfigurability of such fundamental properties. The reason
is that most architectural properties do not only lead to character-
istic code patterns in the component code (which are addressable

by aspects), but also to a number ofimplicit constraintsthat are not
visible in the code. The developer of an implementation without
isolation, for instance, implicitly relies on the possibility to pass
complex data structures by simple untyped references. An imple-
mentation that uses message-based interaction implicitly relies at
some places on the serialization of inter-component invocations.
However, it is nearly impossible to detect which parts of the code
implicitly rely on which constraints. An automatic transformation
of such component code to another architecture, e.g. by aspects, is
not feasible.

The integration of symetric multiprocessing (SMP) support into
Linux is an impressive example for the enormous impact of an
architectural property (kernel synchronization) to a non-functional
property (performance). It is also a good example for the high costs
of architectural transformations in legacy code: The first kernel re-
lease that supported SMP hardware was version 2.0. As most com-
ponents still relied on the coarse-grained kernel synchronization
scheme of earlier versions, it performed badly in SMP environ-
ments. To improve the performance property, a switch towards a
fine-grained synchronization strategy was unavoidable. Hundreds
of device drivers, file systems, and other components of the system
had to be adapted[2]. Now the 2.6 kernel has fine-grained locking
in almost all parts of the system and performs quite well, but the
process took several years to complete.

3. THE CIAO APPROACH
Our conclusion from the experiences with PURE is that an oper-
ating system has to be designedspecificallyfor architectural trans-
parency. In the CiAO project we are now developing a new family
of operating systems that fulfills the requirements for architectural
configurability. This is a challenging task, as one needs to become
aware of all the explicit and implicit elements that are induced by an
architectural property. As it is not possible to build software with-
outanyarchitecture, a set of abstractions is needed that generalizes
over the concrete property implementation. These abstractions are
then used by components and later transformed, by aspects, into
their architecture-specific representation.

The possible different implementations of architectural properties
highly influence each other. Method calls are, for example, a suit-
able abstraction for the interaction concern. However, to be able
to transform them by aspects into a message-based communication
scheme, it is necessary to have a clear distinction between inter- and
intra-component invocations. This can be realized by naming con-
ventions. Moreover, if isolation enforces message-passing to other
address spaces, untyped references must not be used as arguments,
as they are not resolvable for transportation into another address
space. Message-based interaction is, however, synchronized by de-
sign, while interaction by method calls is not. As a consequence,
critical sections in the component code always have to be marked
explicitly.

This implementation interdependence advises a bottom up design
process.Domain analysisis the first step in finding suitable ab-
stractions for a specific architectural property. Domain analysis
encompasses a detailed analysis of the property implementations
in all architectures to support, e.g. by taking a close look at ex-
isting operating systems. The result of domain analysis is a set
of commonalities and differences between the architecture-specific
implementations, represented asfeature diagrams[4]. The com-
monalities are the anchor for developing the abstractions of the
architecture-neutral model during the design phase. Differences

IRQ-Synchronization

execution model

1-level

irq level thread level

2-level

1st: irq level 2nd:

epilogue level thread level

programming model

1-level

handler thread

may block

2-level

1st: prologue 2nd: epilogues

Figure 1: Feature diagram of theIRQ Synchronizationdomain

are integrated into the model step-by-step by generalization, if pos-
sible, or are separated out into architecture-specific models. The
architecture-neutral model finally can be used as a reference archi-
tecture for the architecture-independent implementation of func-
tional components.

4. EXAMPLE:
INTERRUPT SYNCHRONIZATION

Most operationg system kernels support two different notions of
control flows. Continuing, long-running control flows are typically
supported by athread abstraction. Control flows to perform short-
term reactions on (non-deterministic) external hardware events are
implemented byinterrupt handlers. From the perspective of the
operating system, a thread can be understood as walking top down
through the kernel, while the control flow of interrupt handlers goes
bottom up through the kernel. If, by any chance, interrupts and
threads can meet on their execution paths (e.g. by accessing some
common state), the kernel needs to ensure synchronized access to
this state. The strategy provided for this purpose is usually referred
to asinterrupt synchronization.Interrupt synchronization is an im-
portant part of the kernel synchronization concern discussed above.

4.1 Domain Analysis

Analyzed Systems
The following systems were analyzed: Linux, Windows
(NT/2000/XP), Solaris, PURE[1] and L4Ka[8]. For systems with
SMP support the single-CPU case was analyzed.

General Observations
The execution of an interrupt control flow is initiated by hardware.
In case of an IRQ signal, the CPU interrupts the current executing
control flow and branches into an IRQ handler function. The IRQ
handler function must not block, as this might freeze the system. If
an IRQ handler needs to access some resource which is currently
in use by some thread (or some other IRQ handler), it cannot wait
for the resource to be released. Therefore, every OS needs some
mechanism todelaythe execution of the interrupt code, or at least
of those parts accessing the ressource, until the resource is avail-
able.

Delay Mechanisms
The most simple way to enforce delayed execution is usinghard
synchronization, which, however may result in high latency and lost
interrupts. For this reason, most operating systems follow a more
sophisticated approach and implement the delayed execution by
somesoftware mechanism. The following describes the approaches
used by the analyzed systems:

hard synchronization This approach is, because of its simplicity,
often used on smallµ-controller OS that execute only very
few tasks. The idea is to delay the propagation of the inter-
rupt signal by disabling the IRQ line. Most interrupt con-
trollers are able to hold a signaled but disabled interrupt until
the IRQ line is reenabled again. However, if interrupts are
disabled too long or too often, latency goes up and IRQ sig-
nals might be lost.

prologue/epiloguesThis approach is used by Linux [2, 14], Win-
dows[15], PURE[13] and many other operating systems. The
general idea is to explicitly divide the code to be executed in
case of an interrupt into a critical and an uncritical part. The
critical part, calledprologue, is executed with low latency at
interrupt level. It should perform only the most time-critical
tasks and may only access resources that are protected at in-
terrupt level. Before termination, the prologue may request
the delayed execution of the part which is not time-critical
by registering one or moreepilogues2. Epilogues are queued
until the kernel propagates them for execution, which is (typ-
ically) the case after all nested interrupt handlers have ter-
minated and before the scheduler is activated. Epilogues
thereby have priority over threads, but are interruptable by
prologues if new IRQ signals come in. Threads inside the
kernel can temporary disable the propagation of epilogues to
access shared resources. In this case, epilogue propagation is
delayed until the thread finishes its access.

driver threads This approach is common forµ-kernel OS like
L4Ka[8]. The general idea is to lift all code to be executed
in case of an interrupt up to the thread level. The kernel it-
self contains only a generic interrupt handler, which sends

2Epilogues correspond tobottom halvesor taskletson Linux and
to deferred procedure calls (DPCs)on Windows.

Figure 2: Different configurations of interrupt synchronization in a device driver

a message to the thread registered for an interrupt signal and
activates the scheduler3. If the thereby activated driver thread
has the highest priority, it is then selected for execution and
starts the real processing of the interrupt request. Because the
code is executed inside a thread, it may even block on other
threads (e.g. use synchronous IPCs). Interrupt synchroniza-
tion is thereby mapped to ordinary thread synchronization,
no special mechanism is required.

IRQ pseudo-threads This very sophisticated approach is used by
Solaris[6]. The general idea is, again, to map interrupt syn-
chronization to thread synchronization and thereby avoid
the need for an extra interrupt synchronization mechanism.
However, instead of sending a message to a waiting thread
and activating the scheduler in case of an interrupt, Solaris di-
rectly switches to a special pre-allocated pseudo-thread. The
pseudo-thread owns a complete thread context (instruction
pointer, stack), but is not a deschedulable entity as it is still
running on interrupt level while executing the handler code.
Only if the control flow is required to block (e.g. because of
waiting for a locked mutex), the kerneltransparentlylifts up
the pseudo-thread to become a real schedulable (but blocked)
thread entity, ends the interrupt, and activates the scheduler.
Henceforth, the interrupt handler code is executed on thread
level until it terminates.

Commonalities and Differences
The various approaches used for interrupt synchronization result
in differentexecution modelsfor interrupt code. They also lead to
differentprogramming modelsfor the developer of device drivers,
in which interrupt handling typically takes place. The feature dia-
gram in Figure 1 depicts these two models as main dimensions of
commonality and difference in the domain of IRQ synchronization.

3The message is actually an IPC sent to a usermode thread in an-
other address space (e.g. of a device driver process). However,
this is not relevant here, as it is part of the isolation and interaction
properties.

In theexecution model dimension, one can distinguish approaches
that execute the complete IRQ handler on one synchronization level
from those, where the interrupt code is spread over two different
synchronization levels. The simplehard synchronization, as well
as the L4KaDriver threadsbelong to the first category, whereas
Solaris’ IRQ pseudo-threadsand prolog/epiloguesbelong to the
second. In the 2-level approaches, an interrupt control flow always
begins execution on interrupt level. It continues delayed execution
on either thread level (Solaris) or epilogue level (Windows, Linux,
PURE).

In the programming model dimension, one can again distinguish
between 1-level and 2-level approaches. However, only forpro-
logue/epiloguesthe developer has to split the code explicitly be-
tween boths levels, by optionally requesting the execution of epi-
logues. Driver threadsand IRQ pseudo-threadsoffer an identi-
cal programming model, as the latter performs an automatic transi-
tion from interrupt level to thread level on demand. Optionally, the
thread-based approaches permit the interrupt control flow to block
on other threads.

4.2 Generalization
The variability in the execution model is desired, as it corresponds
to the different implementation of the architecural property, which
in turn lead to the variability regarding non-functional properties.
The variability in the programming model, however, has to be gen-
eralized for the development of architecture-neutral components.
The goal is to be able to configure the execution modelwithout
having to buy another programming model. Figure 2 shows the
possible configurations, as well as the resulting structure, of a de-
vice driver which is accessed from thread and interrupt level.4

Finding a common set of abstractions for the architecure-neutral
progamming model requires some reduction to the common de-

4The possible configurations also depend on the configuration of
other system components, like multi-threading support, which is
required by the thread-based configurations.

nominator. If the specific architectures depends on certain assump-
tions, the most restrictive ones have to make it into the architecture-
neutral model. For instance, only thepro-/epiloguesmodel en-
forces an explicit splitting of the driver into two different levels
of execution (Figure 2). Nevertheless, it has to become a part of
the architecture-neutral model. This is possible, as the enforced
explicit splitting is just an additional requirement which does not
conflict with other requirements. In other cases, however, it might
be necessary to seperate out an abstraction into the architecture-
specific model. The optionalmay blockfeature (Figure 2) is an
example for an architecture-specific abstraction that is only avail-
able in the thread-based models. A device driver implementation
which depends on this feature can not be transformed into thehard
synchronizationor pro-/epiloguesmodel.

The aim of the architecture-neutral driver model is to provide
enough context information to enable a transformation of the driver
code into the architecture-specific model by aspects. This basically
means to insert the “right” synchronization primitives at the “right”
places. Logically, it is access to state which has to be synchro-
nized. However, this can be mapped to method synchronization, as
all state information is considered to be accessible by a restricted
set of methods only. In our model, each method of a device driver
is placed in one of three different synchronization classes:

synchronized Methods of this class are, depending on the actual
configuration, synchronized by some higher-order protocol.
If invoked by an interrupt, the actual execution is typically
delayed. If invoked by a thread, parallel invocation from in-
terrupt has to be prevented. This is the default class for driver
methods. It corresponds to the following execution levels:
IRQ (Configuration 1),Epilogue(Configuration 2),Thread
(Configuration 3),IRQ + Thread(Configuration 4)

blocked For Configuration 2 (pro-/epilogues), methods of this
class correspond to execution levelIRQ. For all other config-
urations they are simply merged into the classsynchronized.

transparent Methods of this class do not need any synchroniza-
tion at all, as they perform atomic operations only or use
interruption-transparent algorithms. Hence, they can be in-
voked from any control flow at any time.

If methods from the same class invoke each other, no synchro-
nization is necessary. Synchronization primitives have to be in-
serted for transitions from thread or interrupt level tosynchronized
or blocked. Configuration 2 additionaly requires synchronization
of transitions between the classessynchronizedandblocked. The
following section describes with a brief example how this can be
implemented in AspectC++[16].

4.3 Implemention Sketch
Consider a simple device driver for the system timer, as in the fol-
lowing listing.

class Timer {
... // state

public :
void init(long time);
long get() const ;
void add_event(const EventCallback* cb);

private :
void tick();
void process_events();

friend class irq_dispatcher;

void handler() {
tick();
process_events();

}

// what belongs to which synchronization class
pointcut int_handler() = "% Timer::handler()";
pointcut blocking() = "% Timer::init(...)"

|| "% Timer::tick()";
pointcut transparent() = "% Timer::get(...)const";
pointcut synchronized() = "% Timer ::%(...)"
&& !int_handler() && !blocking() && !transparent();

};

The driver offers a public interface for threads to set and get the
system time (init(), get()) and to be notified at a certain time
(add_event()). The privatehandler() method is invoked by the
low-level interrupt dispatcher in case of an interrupt signal. It ad-
vances the system time and notifies all registered events that have
expired. Theget() method performs an atomic read operation and
is therefore considered to betransparent, whileinit() is assigned
to blocked, as it performs a non-atomic write operation on the in-
ternal timer value, which is also modified bytick(). All other
methods (excepthandler()) are assigned tosynchronized.

The Timer driver code is architecture-neutral regarding the inter-
rupt synchronization property. The following aspect is used to
transform it to usehard synchronization:

aspect Configuration1 {
pointcut block() = Timer::synchronized()

|| Timer::blocking();
advice call (block() && !within (block()

|| Timer::int_handler()) : around () {
disable_int();
tjp ->proceed();
enable_int();

}
};

The aspect for theprologue/epiloguesmodel has to give some extra
advice for the delayed execution of epilogues and for the potential
transitions between the synchronization classesblockedand syn-
chronized:

aspect Configuration2 {
pointcut block() = Timer::blocking();
pointcut delay() = Timer::synchronized();
advice call (delay())

&& !within ("% Timer ::%(...)") : around () {
lock_epilogues();
tjp ->proceed();
leave_epilogues();

}
advice call (block()) && !within (block()

|| Timer::int_handler()) : around () {
disable_int();
tjp ->proceed();
enable_int();

}
advice call (Timer::synchronized()) && !within (

Timer::synchronized()) && cflow (
execution (Timer::int_handler ())): around (){

add_epilog (tjp ->action ());
}

};

For thedriver threadsmodel no advice has to be given, as all nec-
essary synchronization is implicitly done by the message-based in-
teraction used to invoke methods. As discussed in section 2,inter-

action is another architectural property which is not in the scope of
this paper.

aspect Configuration3 {
// nothing to do!

};

Finally, the necessary synchronization primitives for theIRQ
pseudo-threadsmodel are applied by this aspect:

aspect Configuration4 {
pointcut exclude() = Timer::synchronized()

|| Timer::blocking();
advice call (exclude())

&& !within (exclude()) : around () {
lock_mutex();
tjp ->proceed ();
unlock_mutex();

}
};

5. SUMMARY AND CONCLUSIONS
Many non-functional properties of software systems are emergent
and, thus, need to be addressed on a global scope by some sort of
“holistic aspects”. Architecture can be understood as such a “holis-
tic aspect”, as it has a noticeable impact on many non-functional
properties. Architectural decisions do crosscut significant parts of
the actual implementation of every component. This gives the op-
portunity to address them by aspects and thereby configure non-
functional propertiesindirectlyby the means of configurable archi-
tectures. On the other hand, software components have to be specif-
ically designed with architectural configurability in mind, which
can be a quite complicated task. The work on CiAO is clearly at an
too early stage to evaluate the benefits of using aspects for this pur-
pose on the large scale. From what we did so far we can, however,
draw some preliminary conclusions:

The devil is in the details While it is broadly accepted that as-
pects are feasible for encapsulating crosscutting concerns,
their applicability for the non-trivial case always seems to
be a question on its own. For the (relatively complex) inter-
action patterns found in operating systems this is specifically
true, as subtle implementation details can have an enormous
impact on correctness or performance. Hence, an in-depth
analysis of the technical details is unavoidable for a reliable
evaluation if and how AOP is beneficial for the encapsulation
of certain architectural properties.

Applicability to other OS concerns Interrupt synchronization is
just one of the properties that “make” the architecture of an
operating system. It is a natural starting point for a bottom-
up process, which is required to tackle the inherent interde-
pendencies between architectural properties. Architecture-
neutral models for other fundamental properties, including
isolation and interaction, have to be developed as well. This
will probably be again a matter of very specific details. How-
ever, we are optimistically that the general approach as de-
scribed in section 3 works for these other properties as well.

Additional Requirements to AspectC++ The interrupt synchro-
nization example demonstrates that AspectC++ already pro-
vides the ability to perform quite complex context-dependent
transformations. Nevertheless it is rather likely that we have
to carefully extend AspectC++ to address other architectural
properties. To implement, for instance, component interac-
tion via IPCs as an aspect, one has to be able to give advice

that forwards the whole calling context to a thread running in
another address space.5

6. RELATED WORK
There is some related work in the domain of applying AOP tech-
niques to operating systems. Coady et all demonstrated the encap-
sulation of an architectural OS property (prefetching) by an aspect
in the FreeBSD kernel[3]. However, the focus of this work was not
on configuration of architectural properties. The THINK frame-
work demonstrates, how operating systems with different interac-
tion schemes can be constructed from architecture-neutral com-
ponents by using special “binding components”[5]. THINK does
not use AOP, it is based on COM interfaces and does not support
the configuration of other architectural properties. Related work
that suggest to exploit aspects for specifying synchronization con-
straints is to numerous to list, however, the work of Lopes[12] prob-
ably had the most noticeable impact to this topic.

7. REFERENCES
[1] D. Beuche, A. Guerrouat, H. Papajewski, W. Schröder-Preikschat,

O. Spinczyk, and U. Spinczyk. The PURE family of object-oriented
operating systems for deeply embedded systems. In2nd IEEE Int.
Symp. on OO Real-Time Distributed Computing (ISORC ’99), pages
45–53, St Malo, France, May 1999.

[2] D. P. Bovet and M. Cesati.Understanding the Linux Kernel.
O’Reilly, 2001.

[3] Y. Coady, G. Kiczales, M. Feeley, and G. Smolyn. Using AspectC to
improve the modularity of path-specific customization in operating
system code. InESEC/FSE ’01, 2001.

[4] K. Czarnecki and U. W. Eisenecker.Generative Programming.
Methods, Tools and Applications.AW, May 2000.

[5] J.-P. Fassino, J.-B. Stefani, J. Lawall, and G. Muller. THINK: A
software framework for component-based operating system kernels.
In 2002 USENIX TC, pages 73–86. USENIX, June 2002.

[6] S. Kleiman and J. Eykholt. Interrupts as threads.ACM OSR,
29(2):21–26, Apr. 1995.

[7] H. C. Lauer and R. M. Needham. On the duality of operating system
structures.ACM OSR, 13(2):3–19, Apr. 1979.

[8] J. Liedtke. Onµ-kernel construction. In15th ACM Symp. on OS
Principles (SOSP ’95). ACM, Dec. 1995.

[9] A. Lister and R. Eager.Fundamentals of Operating Systems.
Macmillian, 4 edition, 1988.

[10] D. Lohmann, W. Schröder-Preikschat, and O. Spinczyk. On the
design and development of a customizable embedded operating
system. InSRDS Dependable Embedded Systems (SRDS-DES ’04),
Oct. 2004.

[11] D. Lohmann and O. Spinczyk. Architecture-Neutral Operating
System Components.19th ACM Symp. on OS Principles (SOSP’03),
Oct. 2003. WiP session.

[12] C. V. Lopes.D: A Language Framework for Distributed
Programming. PhD thesis, College of Computer Science,
Northeastern University, 1997.

[13] D. Mahrenholz, O. Spinczyk, A. Gal, and W. Schröder-Preikschat.
An aspect-orientied implementation of interrupt synchronization in
the PURE operating system family. In5th ECOOP W’shop on
Object Orientation and Operating Systems, pages 49–54, Malaga,
Spain, June 2002.

[14] A. Rubini and J. Corbet.Linux Device Drivers. O’Reilly, 2001.
[15] D. A. Solomon and M. Russinovich.Inside Microsoft Windows

2000. MS Press, 3 edition, 2000.
[16] O. Spinczyk, A. Gal, and W. Schröder-Preikschat. AspectC++: An

aspect-oriented extension to C++. In40th Int. Conf. on Technology
of OO Languages and Systems (TOOLS Pacific ’02), pages 53–60,
Sydney, Australia, Feb. 2002.

[17] O. Spinczyk and D. Lohmann. Using AOP to develop
architecture-neutral operating system components. In11th SIGOPS
Eur. W’shop, pages 188–192, Leuven, Belgium, Sept. 2004. ACM.

5Within the same address space this is already possible in As-
pectC++ by using so-calledaction objects[17, 16].

