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ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegen hat und von dieser
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Abstract

The Java virtual machine (JVM) was developed to execute bytecode programs written
in the object-oriented Java programming language and is part of the Java runtime en-
vironment (JRE). Virtual machines allow the execution of programs in a controlled
environment. JVMs are available for all prevalent platforms.

JSim is an emulator, that allows to execute legacy applications on modern host
architectures by simulating a legacy instruction set architecture (guest architecture) on
top of the Java virtual machine. JSim currently supports ARM, MIPS and PowerPC as
guest architectures.

As a type-safe programming language, Java does not directly support the notion of
raw memory as it occurs in physical machines, which imposes a problem when trying
to emulate a physical machine architecture in a JVM. Various ways exist to simulate
physical memory using pure Java, however, each suffers from significant performance
loss due to Java runtime checks.

This work presents a performant solution to emulating raw memory in a JVM by
extending existing JVMs with methods to access a memory area of the host system.
A number of possible implementation approaches were explored and evaluated against
each other. The first implementation extends an existing Java bytecode interpreter to
intercept certain magic methods, replacing them with extended bytecodes that provide
efficient access to untyped memory. In a second implementation, a Java just-in-time
(JIT) compiler was extended to generate code that facilitates untyped memory access.
To explore the impact of different host platforms on the overall performance of both
approaches, an Intel x86 architecture and a PowerPC platform with different implemen-
tation ideas were evaluated against each other.

The developed prototype shows a significant performance improvement compared to
the pure Java-based memory emulation. Particularly for memory intensive applications
the execution time was nearly halved.
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Zusammenfassung

Die Java Virtual Machine (JVM) wurde entwickelt, um Programme, die in der objekt-
orientierten Programmiersprache Java geschrieben und dann zu Java Bytecode kom-
piliert wurden, auszuführen und sie ist Teil des Java Runtime Environments (JRE).
Virtuelle Maschinen erlauben die Ausfhrung von Programmen in einer sicheren Lauf-
zeitumgebung und sind für alle gängigen Plattformen erhältlich.

JSim ist ein Emulator, der es ermöglicht, Altanwendungen auf modernen Wirt-
systemen auszuführen, indem er eine Instruktionssatzarchitektur (Gastarchitektur) in
einer JVM simuliert. Derzeit unterstützt JSim die Gastarchitekturen ARM, MIPS und
PowerPC.

Aufgrund des typsicheren Konzepts unterstützt Java keinen untypisierten Speicher,
so wie er in physischen Maschinen existiert. Insbesondere stellt dies ein Problem dar,
wenn man eine physische Maschine in einer JVM emulieren möchte. Es existieren
zwar verschiedene Ansätze zur Simulation von physischem Speicher in einer JVM
unter Verwendung reiner Java Sprachmittel, aber aufgrund der Laufzeitverifikationen
von Java leiden all diese Ansätze unter Leistungseinbußen.

Diese Arbeit stellt eine Lösung für den effizienten Zugriff auf untypisierten Speicher
aus einer JVM vor. Hierfür wurden verschiedene Implementierungen entwickelt und
miteinander verglichen. Zunächst wurde ein bereits existierender Java Bytecode In-
terpreter dahingehend erweitert, sogenannte magische Methoden abzufangen und sie
durch erweiterte Bytecodes zu ersetzen. In einer zweiten Implementierung wurde ein
Java Just-In-Time-Compiler (JIT) so verändert, dass er Code generiert, der den direkten
Speicherzugriff möglich macht. Um nun die Auswirkungen verschiedener Wirtsarchi-
tekturen auf die Laufzeit zu zeigen, wurden eine Intel x86 und eine PowerPC Architektur
zum Vergleich herangezogen und verschiedene Konzepte implementiert. Die Ausfüh-
rungszeit hat sich im Vergleich zu der Java basierten Speicheremulation erheblich ver-
bessert und wurde für speicherintensive Applikationen sogar fast halbiert.
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Chapter 1

Introduction

Virtual machines gain more and more relevance

JSim

Java Virtual Machine

JIT

Host architecture

application binary

machine code

byte code

native code

Figure 1.1: Legacy binary
execution on top of a JVM

in the computer science field these days, since they
make it possible to execute Java programs on every
platform a VM was developed for.

Besides portability, the execution of programs
within a JVM environment offers a remarkable le-
vel of security mechanisms such as type-safety and
the elimination of buffer overflows, that often occur
in unsafe languages like C and allow to execute
foreign or malicious code.

Frequently, it is necessary to rely on established
legacy applications, but sometimes obsolete hard-
ware forms the basis of the execution of that soft-
ware. Instead of rewriting these programs, which
would entail immense costs and development time,
a virtual execution environment for executing le-
gacy binaries on top of a JVM was implemented
[Sti05]. The Java Simulator JSim compiles the
native code of the application to Java bytecode,
which is then in turn recompiled to machine code
of the host architecture by a JVM (figure 1.1). JSim is part of the VEELS (Virtual
Execution Environment for Legacy Software) project.

Unfortunately Java’s type-safety implicates a problem when trying to emulate a
physical machine on top of the virtual machine, since the concept of Java is not designed
to support access to untyped memory. The performance of JSim is poor. Benchmarks
have shown that the memory module of JSim is a major bottleneck. A promising
approach for improving the performance of JSim thus is the development of a more
efficient memory module. The idea is to extend an existing JVM with methods that
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provide Java applications with efficient access to untyped memory [GPF05]. The im-
plementation covers both the Intel x86 and the PowerPC architecture under Linux.

This thesis is structured as follows: In chapter 2 the existing memory module and
its problems are presented and the basic concept of the developed untyped memory
module is explained. Chapter 3 introduces the bytecode interpreter JamVM [Rob06] and
describes the extensions made to support the untyped memory module. Chapter 4 gives
an overview on the basic Jikes RVM [AAB+00] architecture components and illustrates
the implementation of untyped memory in a just-in-time (JIT) compiler and related
optimizations. The thesis concludes with the evaluation of the new storage construct
and benchmarks that show the performance improvements in chapter 5.



Chapter 2

Conceptual Design

The next sections describe the hitherto existing memory module (SafeMemory) and the
improved new approach to implement untyped memory more efficiently (DirectMemory).

2.1 Interface of a Memory Module

A memory module has to offer methods, that allow to access a memory area similar to
the load and store instructions of a processor. The modules therefore provide methods
to read and write the data types byte, short, integer and long in both little and big endian
variants at specific addresses of emulated memory.

2.2 The SafeMemory Module of JSim

Physical memory can be considered as a sequence of bytes. The straightforward solution
is to emulate the memory as a flat array of bytes. However, Java initializes arrays with
zero, which causes that the underlying operating system allocates physical memory for
the whole array, quickly consuming the entire virtual memory. Therefore a flat array
does not pose a feasible solution.

To avoid this problem, SafeMemory introduces an additional level of indirection.
The memory is divided into pages of 4 kB size, which are managed in a page table.
Each page is implemented as an array of 1024 integers, because word access is the most
frequent access type. The page table is an array of 512k references to pages, resulting in
a total size of 2 MB for the page table and emulated address space of 2 GB. Limiting the
address space to 2 GB allows JSim to calculate addresses with signed Java data types.

A virtual address is transformed to a page index and an offset within the page by
logically shifting right the virtual address (division by 1024) to determine the page index
and clearing all but the least significant 12 bits to determine the offset.

15
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i=(offs&3)<<16;

i |= offs>>>2;

Calculate offset

pt[page][i] = value;

Direct access

i=(offs&3)<<16;

i |= offs>>>2;

Allocate page

Bytewise access

page=addr >>> 12;

offs=addr & 0xfff;

Determine indices
page fault

NullPointer

ArrayIndexOutOfBounds

Fast path Slow Path

not aligned

Figure 2.1: Address translation in the SafeMemory module as described in [Sti05].
This example shows the procedure for the memory access after an invocation to
putInt(addr, val) to write an integer to a specific location.

JSim utilizes Java exceptions to benefit from JVM internal checks to handle page
faults and unaligned access. Though Java using Java exceptions is expensive, it only
affects the rarely taken paths of a page fault and unaligned access (slow path). A page
fault does only occur once per page. Unaligned word access is not supported on many
architectures. On Intel x86 it is possible, but much slower than aligned access and
compilers therefore generate code with correct alignment.

While the most frequent path of aligned access to an already allocated page is not
slowed down by additional verifications (fast path). Figure 2.1 illustrates the possible
code paths of a memory access.

Pages are allocated upon access. Initially the page table is filled with null refe-
rences. By accessing an unallocated page the JVM generates a NullPointerEx-
ception, that designates a page fault. This exception is caught in the SafeMemory
module and the page is allocated.

Words at unaligned addresses span two integers in a page. To detect unaligned
access using JVM internal checks a trick is applied. The two least significant bits are
shifted to position 16 and 17 in the generated offset, creating an offset greater than 1024.
Using this offset causes an ArrayIndexOutOfBoundsException, that is caught
and the slow path is entered, where the word is constructed using byte-wise access.

Compared to memory access on a physical machine, an emulated memory access
through the SafeMemory module is multiple times slower. This is caused by the
runtime checks of the JVM and the overhead of the Java method invocation. A more
efficient implementation requires support by the JVM.
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2.3 DirectMemory
The basic idea of the DirectMemory module is to provide the Java applications with
access to a block of untyped memory of the host system. In the following, only the
conceptual design of the DirectMemory module for Intel x86 architecture is described,
because it allows for a high-performance solution. A PowerPC approach was only
implemented for Jikes RVM for comparison and is described in section 4.7.

In the initial boot phase of the JVM a memory block with a particular size is allocated
from the heap of the JVM process and the base address is stored in the FS register. This
register is not utilized by applications and compilers do not generate code, that uses
it in any way. Though the kernel uses this register, it is the task of operating system
to save and restore the register state. The methods of the memory module interface
(section 2.1) are provided as magic methods that allow JSim to access the allocated
block of untyped memory. The memory is used via segment-relative addressing and the
MMU (Memory Management Unit) is responsible to assure that these accesses do not
violate any segment limits.

2.3.1 Magic Methods
The basic means to implement DirectMemory is the existence of so-called magic me-
thods. These are necessary in order to perform actions, that are impossible in a type-
safe high-level-language such as Java, e.g. the invocation of operating system calls or
garbage collection performing unsafe casts in Jikes RVM [use05].

Magic methods were first applied in the programming language Oberon [WG05]
developed by Niklas Wirth and Jürg Gutknecht and look like ordinary methods, but
the compiler intercepts calls to those methods, ignores the method body and generates
specific code for them at runtime. Thus it is not a surprise that these methods are empty.
A disadvantage is that the deployed JVM has to be modified to intercept magic methods,
but the result is much more efficient than other approaches.

Another possible solution is using native code invoked through the Java Native
Interface (JNI) [Sun03]. These native method calls are significantly more expensive
than invocations to Java methods due to encapsulation of parameters and return values
accordant to the JNI specification. Code for a magic method can directly be produced
at the call-side replacing the call to the magic method, which saves the overhead for the
method invocation. This is most important with short code sequences.

2.3.2 The Intel x86 Architecture
The Intel x86 processor belongs to the CISC (Complex Instruction Set Computer) family.
Compared to a RISC (Reduced Instruction Set Computer) its opcodes are more compli-
cated and the instructions can perform more complex actions. Since the decoding of
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1 byte1 byte
0x64 0x89 

1 byte

opcode ModR/M byteinstruction prefix

00 src dst

Figure 2.2: Encoding of the movfs instruction with register-indirect register addressing

CISC instructions is more expensive, modern x86 processors are equipped with another
functional unit, that translates complex opcodes to RISC instructions and passes them
on to the CPU in order to exploit advantages of the RISC technology [Fog06]. Intel x86
machines feature a narrower and more specialized register set than PowerPC.

Memory management [Int99] on the Intel x86 architecture consists of two main
mechanisms: segmentation and paging. While segmentation is used for protection and
isolation, i.e. division of the memory into segments of different size such as code, stack
and data segment, paging is essential, because it allows to retrieve memory on per page
basis and thus allows to have a greater addressable memory space than physical memory
is available.

2.3.3 Format of an Intel Machine Code Instruction
In order to understand the implementation of untyped memory via the FS selector
register, a closer at the Intel’s instruction layout has to be taken [Int97]. X86 instructions
do not have a fixed opcode length. Generally all instructions share a common encoding
scheme: The first part of that consists of up to 4 prefix bytes, followed by an opcode
number of 1–3 bytes length. Optionally a ModR/M and a scale-index-base (SIB) byte
can be appended and the end is formed by a displacement and an immediate value if
applicable.

Figure 2.2 depicts the encoding of a specific variant of the movfs machine instruc-
tion for the register-indirect register addressing mode. This mnemonic does not directly
exist in the Intel instruction set, rather it is a mov opcode, that uses the FS instead of the
DS segment. It is introduced to facilitate the memory access in the JIT compiler, which
is explained in section 4.4. In the ModR/M byte both the src holding the value and
the dst holding the address stand for three bits, respectively, encoding one of the eight
possible registers, that contain the appropriate information. The ”00” in the ModR/M
byte denotes that the memory address resides in the dst register. Further encoding values
are described in [Int97].

Instruction prefixes can be prepended to an opcode to obtain a special execution
mode and can be divided into four categories:

• Lock and Repeat: While Lock can set exclusive memory access in multiprocessor
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systems, Repeat is only responsible for string operations.

• Segment override to employ another segment than the default DS segment as used
in figure 2.2

• Operand-size override to switch between 16-bit and 32-bit operands

• Address-size override to switch between 16-bit and 32-bit addresses

The opcode field contains the encoding of an instruction and can—since the SSE
extension of Intel Pentium 3 processors [sse06]—have a maximum length of three bytes.
It can be extended with further three bits through the ModR/M byte. The displacement
determines the offset of a memory address, whereas immediate is a fixed numerical
value of one, two or four bytes in length, in case an opcode uses an immediate operand.

If the operand of an instruction resides in memory, the ModR/M and SIB bytes
become relevant, which define the addressing mode in detail: The ModR/M byte is
partitioned into three fields. The first two of them, the mod and the R/M part together
can accept 32 values, which cover eight registers and 24 possible addressing modes.
The third reg/opcode field can, as already alluded, extend opcodes and encode both a
register and an additional instruction information according to requirements. How these
bits are used, is defined by the primary opcode. In case that the mod and R/M parts are
not combined, the R/M bits can select a register.

Depending on what addressing mode is required, another so-called SIB byte is
necessary to represent it, that contains the scale factor, the index and the base register.
This is the case, if the mod field contains a memory location and bits 0-2 encode the
stack pointer register (esp).

2.3.4 Segments, Selectors and Descriptors
Access to the untyped memory block public static int

mr4(int addr, int value) {
return 0;

}

Figure 2.3: Example for the magic method
mr4 for reading an integer from untyped
memory

is provided by a set of magic methods.
Figure 2.3 shows an example of such a
magic method. The magic method is pro-
vided with an address of the virtual
address space of the emulated program.
This address can be considered as an off-
set into the untyped memory block and
can be converted to an address of the vir-
tual address space of the JVM process by adding it base address of the untyped memory
block.

To calculate the address as efficient as possible the operation is performed by the
MMU. The beginning of the FS data segment is set to the beginning of the untyped
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Figure 2.4: Address translation process via segment registers
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memory block. The MMU calculates the linear address from a logical address, that
consists of a segment selector and a displacement. A selector is a 16-bit wide identifier
for a segment and a reference to one of 8192 entries in a descriptor table. On Intel x86
exist two tables of that kind, the global (GDT) and the local descriptor table (LDT).
The latter is a per process memory management table and relevant for the provision of
untyped memory. By means of this table a logical address is translated into a linear
address, by which a byte is located in the linear address space. In order to map the
beginning of the untyped memory block to the beginning of the FS segment, the relevant
entry in the LDT has to be modified. This comprises a descriptor ID, to identify an
entry in the LDT, the granularity flag, the base address of the FS segment and thus the
beginning of the untyped memory region and the segment limit. The granularity bit
constitutes whether the segment limit is interpreted in byte or 4096 byte blocks. This
information is then passed to the modify ldt() Linux system call to modify the LDT
entry. Finally a FS selector is provided with the Table Indicator Flag, which specifies
whether GDT or LDT is requested, and a descriptor ID to reference the table entry. The
selector is loaded into to the visible part of the segment register, which can only be done
by assembler instructions.

Figure 2.4 shows the correlation between segments, LDT and resulting memory
location: The six available 32-bit segment registers of an Intel x86 processor are depicted
here. These registers consist of a visual part holding the segment selector and a stashed
part (shadow register), that saves size, base address and access rights of a once accessed
segment to accelerate address translation. If the segment has not been utilized yet, the
information has to be retrieved from the LDT and then stored into the shadow register.
The suitable LDT entry has a reference to the required memory segment. The JSim
application delivers the offset to calculate a logical and linear address.

It is sufficient to load the selector only once at the virtual machine start-up. The
shadow register is once filled with access rights, base and limit address information,
with the ambition to speed up the address translation process.
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Chapter 3

Interpreter JamVM

The JamVM [Rob06] is a relatively small, fully functional JVM and was excellent
for testing the idea of untyped memory by means of the FS selector register and if it
causes a remarkable performance increase. It supports the Intel x86, AMD Athlon 64,
PowerPC and ARM architecture at the moment and it is mainly written in C, except for
certain target machine dependent assembler code. JamVM features only an interpreter
mode, i.e. it does not compile high-level language instructions to machine code, but
deconstructs and executes the read bytecode at runtime. This makes it simple to port
JamVM to different architectures. Running JSim on an interpreter is still very slow, but
with the DirectMemory extension faster than the SafeMemory mode.

The JamVM implementation covers POSIX threading, synchronization routines,
signals, class loaders, JNI and has support for a special native interface for JVM specific
functions to save the overhead for JNI invocations. A mark and sweep garbage collector
is responsible for memory management and it supports object finalization.

3.1 Outline over the JamVM Components

An illustration of the components described in the following is given in figure 3.1.
In the beginning the jam module is responsible for initializing the JamVM, that is to
constitute the upper and lower heap boundaries, platform dependent preferences such
as setting the standard 80-bit Intel x86 Linux precision to 64-bit for the interpreter to
avoid roundoff errors [RH01] and the dimension of the stack that is 64KB by default.
Furthermore a class loader is created, which determines the main Java class with its
main method to find the execution entry point. When the static main method is executed
a so-called ExecutionEnvironment is constructed and a stack frame is attached
to the stack and the parameters of the Java main method are pushed onto it. Here
the executeJava() method is called, which marks the entry point to the interp
component, that is the core element of the JVM and comprises the main interpreter loop.

23
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Figure 3.1: Architecture components of JamVM
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Moreover, it contains three opcode handler tables, that mark used and unused opcode
numbers. Two of the tables are necessary for stack caching described in section 3.1.1. In
the interp module the Java bytecodes and magic methods are intercepted, converted
to the JVM’s internal representation and interpreted.

JamVM utilizes threads to implement concurrency and uses the monitor concept to
protect critical areas. The virtual machine works usually in a direct threaded manner,
but can also be used as an indirect threaded interpreter by request. While an indirect
threaded interpreter takes the unmodified bytecode stream and the appropriate handler
location has to be determined by means of the bytecode itself, a direct threaded interpreter
saves this overhead by putting the handler reference into the rewritten opcode series.

The accessmodule comprises functions to check access rights among components,
that is whether classes, fields of classes and methods are public, protected or
private, which is used by the reflect part of the VM, that implements the Java
Reflection mechanism [Sun06]. It is concerned with how to create an instance of an
object, whose type is not known until runtime, for example, and manages reflection
access from the JNI.

Another important part is represented by the class implementation, that offers
functionality to read classfiles containing bytecode streams and further processes this
extracted information to define a class. Loaded classes and internally built arrays are
managed within a hash table. Besides this, all primitive data types such as integer are
arranged in an extensive array.

In JamVM a native interface natives for VM internal functionality is provided in
order to circumvent expensive JNI method calls. This includes, besides another tasks
such as setting or retrieving class fields, an interface to services of the alloc module,
that is responsible for memory allocation and garbage collection. In case of native
methods the native invoker can be set to the accordant method of the natives
module or the jni can be used. Natives is also responsible for creating Java threads.

In the alloc component, unallocated memory is managed in a free memory list of
so-called chunks, each of which consists of a header holding information about the size
of the chunk and a pointer to the next chunk. Objects with a finalizer are kept within
a separate has finaliser list. As already mentioned JamVM uses the mark-and-
sweep garbage collector algorithm. Alloc comprises a doMark() and doSweep()
function. In the mark phase a living object reachability analysis is performed, i.e. the
entire heap is scanned in order to determine objects that are still needed. All unmarked
objects are garbage, however, objects with a finalizer are moved to a run finaliser
list, that wait for their handling. Finalizer and reference handlers run as dedicated
threads. In the sweep phase the space of the unmarked present objects is freed and
merged with the chunks of the free memory list. The size of the free heap is recomputed
again. The size of the largest block is memorized to quickly determine which is the
largest memory demand that can be accomplished.
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3.1.1 Stack Caching

JamVM utilizes the stack caching technique, that two cache registers are provided for.
When pushing return values onto a stack residing in RAM and retrieving them on
demand a lot of accesses to the rather slow main memory are performed. Holding a
certain amount of stack elements in registers improves execution time significantly and
furthermore reduces adjustments to the stack pointer. In order to implement the stack
caching optimization in the interpreter every opcode has three representations and that
is also the reason why three opcode handler tables exist. The opcode versions comprise
the following cases:

• both operands are kept in registers

• one operand of the opcode resides in memory and the other in a register

• both operands are kept in main memory.

An illustration of these three cases, opcode versions have to deal with, is given in
figure 3.2. It shows the addition of two values. In the interp module a handlers 0
dispatch table therefore means basically no use of the stack caching technique, while
handlers 1 and handlers 2 involve this optimization, with the use of one and two regis-
ters, respectively.

Due to the smaller number of registers on Intel x86 architectures stack caching
should be deactivated on these machines, because it results in a performance loss.
Register contents have to be stored in memory multiple times, since there are only
few registers. So writing 512 MB memory with integer values continuously with stack
caching enabled on an Intel testing machine resulted in a 21% slow-down in comparison
to a non-stack cached interpreter. However, on PowerPCs this optimization can result
in a higher performance.

3.2 Implementation Details

The Java Virtual Machine Specification [LY99] currently defines 204 bytecode instruc-
tions that every JVM has to implement. The remaining 52 bytecodes are reserved for
future extensions and can be used to define JVM internal operations. JamVM defines
26 so-called quickened bytecodes, which is explained further below in this section. Of
the remaining 26 bytecodes 14 are used for the magic methods of the memory module
interface. Their task is to read and write the primitive data types byte, short, int and long
in little and big endian sequence.
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Figure 3.2: Opcode versions to implement stack caching
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3.2.1 Providing an Untyped Memory Area
In the nativesmodule, the interface between the operating system and the interpreter,
the function initDirectMemory(), that prepares the FS register and allocates the
untyped memory block as explained in section 2.3.4, is defined. It can either be invoked
as a magic method by the Java application program or by the JVM in the start-up phase.
For the last approach initDirectMemory() is called in the initVM() initializer
function shown in figure 3.1, which is invoked by the jam module in the beginning of
the JVM execution. The untyped memory region is then available to the virtual machine
application.

3.2.2 Magic Bytecodes and Quickening
The magic methods are implemented as static calls, since otherwise the object reference
would be pushed onto the stack and this is not needed and would just cause an overhead.
In the next step, the invokestatic bytecodes, that call the magic methods of the
DirectMemory module have to be intercepted by the interpreter and replaced by magic
bytecodes. The magic bytecodes are added to the opcode handler table described in
section 3.1. It determines whether a bytecode number is used or not.

JamVM has implemented the so-called instruction quickening technique, for which
the 26 additional bytecodes are necessary. When a static method is invoked for the
first time, the class it belongs to has to be loaded and initialized, if it has not been
done so far. The verification whether a class has already been prepared must usually be
performed on every static method invocation, which results in a significant performance
loss. Bytecodes handled in that way are referred to as slow bytecodes in the following
explanations. To avoid the checking overhead, JamVM utilizes quick bytecodes. One
such quick bytecode is introduced for invokestatic. When JamVM interprets a
regular invokestatic bytecode, it is replaced by the quick variant in the bytecode
stream and on subsequent invocations, the check if the class was already loaded is
omitted. The operand of the quick bytecode is determined by memorizing the result
of the slow bytecode operand resolution.

This mechanism is modified to replace invocations of the DirectMemory methods
with the appropriate introduced magic bytecode. For each of the magic bytecodes, the
functionality of the corresponding DirectMemory method is implemented in assembler.
The following example shows the simplified implementation of the method, that reads
an integer.

asm volatile("movl %%fs:(%1), %0\n : "=r"(val) : "r"(addr));

In GNU C Assembler [gcc03], which is used here, ”=r” is the output operand,
val in this case, and addr is the input operand, popped from the VM’s operand stack.
Afterwards the val is pushed onto this stack, to provide the correct return value. Both
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Test program SafeMemory DirectMemory
wsort-arm (EBBB) 1m19.865s 0m57.765s
wsort-arm (EBSB) 1m20.477s 0m59.587s
Write Byte-arm – –
Write Short-arm – –
Write Integer-arm 91m+ 64m17.914s
Write Long-arm 39m18.866s 12m37.556s
Read Byte-arm 67m43.536s 15m15.292s
Read Short-arm 34m50.007s 10m34.742s
Read Integer-arm 12m27.484s 3m54.961s
Read Long-arm 7m49.739s 2m44.337s

Table 3.1: Benchmarks: Execution of ARM binaries within JSim in EBSB mode

variables reside in registers. The memory is addressed relatively to the modified FS
selector, thus every address displacement calculation and boundary checking is per-
formed in hardware.

3.3 Conclusion
The provision of new memory constructs in JamVM is not as time-consuming and
complex as in Jikes RVM, which is explained in the next chapter, since JamVM only
supports an interpreter. Even though the execution of JSim on top of this VM is still
very slow, it can be asserted from trivial test programs, that read and write a logical
continuous memory area, that the DirectMemory access improves performance.

Concluding this section a comparison of the untyped memory implementation and
usual field access is given in table 3.1 and in figure 3.3, the difference of the execution
times is depicted. The measurements were performed on an Intel machine with two
Xeon 3.06 GHz processors on JamVM version 1.4.1. The first test program wsort is
a program that sorts words in alphabetical order. The first benchmark was made in
JSim’s Emulator-By-Basic-Block (EBBB) and the second in Emulator-By-Super-Block
(EBSB) mode. The execution modes of JSim are discussed in [Sti05]. The word list
wlist3 contains 45402 unsorted words and serves as input file to wsort. The Write and
Read prefixed programs write and read 256 MB of a logical continuous memory space,
respectively, and are executed in EBSB mode. Due to the simple structure of these
programs, super blocks can quickly be determined and the DirectMemory extension
causes a up to 77 % performance improvement in contrast to SafeMemory module.
The wsort program is a more real-world application and DirectMemory shortens the
execution time by about 20 %. The execution of the read byte, short and int programs
were aborted. At this point, it can already be seen, that the interpreter is very slow, but
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Figure 3.3: Performance improvement of DirectMemory in contrast to SafeMemory

that the untyped memory extension yields to a better performance of JSim. The same
programs are utilized on a different testing machine in chapter 5. The performance of
Jikes RVM—discussed in chapter 4—in contrast to JamVM is much higher.



Chapter 4

Jikes RVM

The Jikes Research Virtual Machine [AAB+00] (RVM), also named Jalapeño VM, is
an open source project by IBM and it is written almost completely in pure Java. Jikes
RVM requires another host JVM for its bootstrapping phase.

RVM was designed to meet the needs of a server environment, i.e. the execution of
software over a long period of time. Jikes RVM currently supports the PowerPC and
Intel x86 architecture on Linux and PowerPC on AIX, and an extension to Intel’s 64-
bit version is planned. Jikes RVM does not offer an advantage over other JVMs, when
executing programs over a short time, it is even rather slower due to time-consuming
dynamic compilation of code, which is only profitable, if the compiled code is executed
frequently. When meeting a frequently traversed code block, a so called hot spot,
Jikes RVM’s internal JIT compiles it to architecture bound machine code. Subsequent
executions of the hot spot will be really fast, because it can be executed directly on the
machine and does not need to be interpreted anymore.

4.1 Architecture

The RVM consists of a JVM and a JIT compiler subsystem and is written in pure Java,
which imposes a series of problems [AAB+00]. Usually the core elements of a JVM, a
compiler and a class loader besides other services, are written in native code, whereas
in this case a boot image containing these essential modules has to be executed before
the RVM can be started. The boot-image writer, which is coded in Java, generates this
image wherefore a host JVM is needed.

It instantiates a minimal set of needed objects, but it is necessary to transform them
from the object model of the host JVM to the object model of the via the Java reflection
mechanism [Sun06]. The transformed objects are packaged into the boot image. A C
program, the boot-image runner, loads the boot image into the memory, defines some
register states and kicks off the bootstrapping of the JVM. A general survey of the JVM’s
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architecture components is given in figure 4.1.
While the optimizing compiler usually is part of the RVM’s adaptive system, it can

also be used to compile code, when it is first executed and to build the boot image,
but this is only an additional option. The runtime profiling component measures the
performance of the methods, identifies hot spots and calculation intensive bytecode
blocks. This information is then passed on to the controller, that designs an optimization
plan. Due to this plan the optimizing compiler is informed about, which methods have
to be compiled. Profiling is continued for the optimized code and can trigger further
optimizations.

4.2 Native Module Interface
In order to invoke operating system services some native C routines are necessary, which
reside in a single module, but the virtual machine image is set up on Java objects. Thus
there has to be way that these objects are connected to the C code somehow. This is
achieved by the boot record, which marks the first created Java object and constitutes
the communication interface between the underlying operating system and the JVM,
that runs on it. The boot record possesses both methods essential for booting the VM
and function pointers to the system calls. As the method initDirectMemory()—
defined in the native module—which allocates the required memory block and prepares
registers for hardware address translation, has to be made available to the JVM, a
reference to the native method has to be declared here. It is crucial, that this reference
has exactly the same name, as the referenced C function suffixed by IP, which forms
a field in the boot record. This field can be accessed by the VM SysCall class, which
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Figure 4.3: Object layout of array and primitive objects

consists of method signatures and empty function bodies similar to magic methods.
A simplified representation of the boot record structure is given in figure 4.2. Addi-

tionally to the depicted records it contains the JTOC (Jalapeño Table of Contents)
record. The JTOC references a capacious array, which holds static variables and addre-
sses to all static methods of the Jikes RVM.

4.2.1 Object Layout
As the goal was to implement array accesses and execute virtual method calls in an
efficient way, two design decisions on the Jalapeno object layout had to be made:

• Arrays expand from low to high memory, while primitive objects grow down from
the object address. Therefore array field access can be implemented by taking the
base address information and then adding a certain offset.

• Introduction of a further data structure: TIB (Type Information Block)

The object layout of both array and primitive objects is shown in figure 4.3.
Arrays need in comparison to other objects an auxiliary length information, which

is left empty with other data types. For efficiency reasons references in this virtual
machine are programmed as machine addresses, and the value 0 is assigned to a null
reference. But the Java specification requires the generation of a NullPointerEx-
ception by accessing a null object reference. On Linux OS, a hardware trap is
triggered upon dereferencing of a null address. This allows null reference checks to
be handled by the operating system. This is similar to the idea of allowing the hardware
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to perform null and array boundary checks, to provide an accelerated DirectMemory
solution.

4.2.2 Object Header Design
The header consists of a lock word followed by the already mentioned TIB reference.
The lock word contains besides some bits used for synchronization, information for the
garbage collector and a hash code for the object.

The TIB reference points to the TIB, which contains data about the appropriate class
and compiled code for its virtual methods. At this point it becomes clearer, why the
magic methods are implemented as static functions. An invokevirtual bytecode
would require looking up the TIB field slot in the object header, finding the suitable
method body in the TIB array, loading this address in a dedicated register and finally
executing the code. The static method dispatch within the RVM is accomplished in a
less expensive way: Static data and references to static methods reside in the JTOC and
the address of the JTOC array is once loaded into a register at JVM start-up.

4.3 Magic Methods
The Jikes RVM explicitly offers the VM Magic class to escape the limitations Java
imposes in order to perform unsafe casts and raw memory accesses for garbage collection
and here the methods for direct memory manipulation can be defined. Furthermore
declarations for them have to be made in the VM MagicNames class, in which so-
called VM Atoms of the magic methods are created, that are byte strings and represent
the names of the untyped memory functions in the constant pool of a class.

4.4 Assembler
The assembler of the RVM translates assembler code, generated by one of the compilers,
to machine specific code. The low-level class for the IA32 (32-bit Intel Architecture)
ISA (Instruction Set Architecture) is composed of a part, that deals with particular cases
of Intel opcodes, and machine generated functions that emit similar structured machine
codes like mov. For each possible addressing mode a method is assigned to a machine
instruction. The method name is composed of three parts: The emit keyword is a
prefix to every embedded method in this module, the name of the desired opcode is
directly appended and the last part describes the addressing mode. As an example the
newly defined mnemonic movfs, which uses the FS instead of the DS data segment, is
depicted in figure 4.4. The instruction takes two byte encoded registers as parameters.
The setMachineCodes() function first sets a segment prefix override, 0x64 for the



4.5. THE BASELINE COMPILER 35

public final void emitMOVFS_Reg_RegInd(byte dstReg,byte srcReg)
{
int miStart=mi;
setMachineCodes(mi++,(byte)0x64);
setMachineCodes(mi++,(byte)0x8B);
emitRegIndirectRegOperands(srcReg, dstReg);

}

Figure 4.4: An Intel mov instruction via the FS segment: movfs

if (methodName == VM_MagicNames.mr4) {
asm.emitPOP_Reg(T0); // address
asm.emitMOVFS_Reg_RegInd(T0, T0);
asm.emitPUSH_Reg(T0);
return true;

}

Figure 4.5: Compilation of the magic method mr4

FS segment. 0x8B is the encoded hexadecimal opcode of the mov instruction, that
expects a word (32-bit) or a double-world (64-bit). In order to write bytes another mov
instruction has to be utilized. The emitRegIndirectRegOperands() function
sets the appropriate SIB and Mod/RM bytes as described in section 2.3.3. Both is
written into the machine code buffer. The same assembler class is also used by the
optimizing compiler, but another optimizing instance is set up on top of it, which is
discussed later in this chapter.

4.5 The Baseline Compiler
The baseline compiler is divided into two parts: An architecture independent compiler
frontend and machine specific backend, that generates assembler code. The functionality
of the baseline compiler is straightforward. It compiles very fast, because does not use
complex optimizations, but the performance of the generated code is poor. However,
it is a core element of the bootstrapping process and it is a crucial part of the compiler
subsystem, because generating optimized code is expensive and only profitable at hot
spots.

The VM BaselineCompiler class is the target architecture independent part and
the core of the baseline compiler for the Intel x86 target machine is the VM Compiler
class. In the VM Compiler Java bytecodes and magic methods are compiled to an
assembler-like code, as shown in figure 4.5. When the baseline compiler is first instan-
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Figure 4.6: Generation of layer-specific instructions during compilation of a magic
method

tiated, a new VM Assembler object asm is created, on which certain emit methods
can be invoked. The detected method name determines, which code has to be generated
and first the desired parameter, in this case the address, is retrieved from the operand
stack and saved into T0, which is the EAX register on an Intel machine. Afterwards a
register-indirect register movfs instruction is performed on register T0, which is part
of the assembler. In the first parameter of this function the value fetched from memory
is saved, and the second one contains the address. The method sets a segment prefix
override for the FS segment as described above and writes the mov Intel opcode into the
machine code array. After this instruction has been executed by the CPU, the result is
put into the T0 Register and pushed onto the operand stack to provide the return value.

4.6 Compiler Optimizations

4.6.1 Machine-independent Layer

While the baseline compiler implementation allows to use the DirectMemory ma-
nipulating functions, it is important to let the Jikes RVM internal JIT optimize the
newly added machine constructs. For this a closer look at the RVM’s compilation
and optimization process has to be taken, which can be divided into several parts and
translation levels to generate highly efficient code at given time limitations [AAB+00].
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FS_INT_LOAD {identifier}
Load {instruction format}
load {traits}
<empty> {defined registers}
<empty> {used registers}

Figure 4.7: Machine independent IR instruction for loading an integer relative to the FS
segment

High-level Intermediate Representation (HIR)

First of all Java, bytecode is translated to the high-level intermediate representation
(HIR). In this phase the stack-based bytecode is transformed to register-based three
address representation.

In the compilation phase the code is still on a high abstraction level, i.e. is very
similar to bytecode. The three address representation facilitates the code motion process.
In order to make these optimizations available for the magic untyped memory constructs,
new intermediate representation operators have to be implemented. One aspect to faci-
litate the work of the optimizing compiler is the notion of instruction formats. When
the new instructions for the machine independent layer are defined, the JIT is informed
about the kind of instruction. The compiler has predefined methods of how to optimize
some types of instructions. For example, there are several bytecode store instructions,
that can be optimized in the same way.

An instruction format in the InstructionFormatList describes the needed operand
types in detail. However, the existing instruction formats meet the needs of all magic
bytecodes, since Load and Store schemes have already been implemented. The structure
of the fs int load operator, is shown in figure 4.7. It resides in the machine inde-
pendent OperatorList, which defines besides bytecode similar HIR also LIR (low-level
intermediate representation) operators, which are used for Jikes RVM specific issues.
The added operator is identified by an unique denotation and fits into the instruction
format Load. Furthermore it can have certain traits, telling whether it is a load or a
conditional instruction, for example, to further specify the operator. Implicitly used and
defined registers could also be set here, but due to the fact that the auxiliary operator is
machine independent, these lines are blank.

To transform Java bytecode to the HIR form, magic methods have to be intercepted
by the OPT GenerateMagic class. Correct parameters are passed through the ope-
rand stack and symbolic registers are assigned for return values, while the previously
added proper IR operator is appended to the current basic block for a specified called
magic method. The construction of basic blocks is crucial to make further optimizations
possible.

First of all a look at optimizations, that do not exceed the basic block, is taken.
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Among them is common sub-expression elimination, that is, if the calculation of a result
for different variables is the same and the components of this computation expression
cannot have changed their values in the meantime, the result can be evaluated once,
memorized and can then replace the calculation term.

A further improvement can be achieved by identifying checks that have to be per-
formed and the possibility that an exception can occur. If one entry in an array has
to be manipulated, one verification, that the to be accessed index is within bounds, is
necessary. It is apparent that for the actual change of the value, the array check can
be omitted. In this example there are two array accesses, but only one exception can
be thrown, because it is about one operation. Such cases can be detected in the HIR
and unnecessary checks can be deleted, thus saving a lot of time. In addition the JVM
possesses the OPT Simplifier to reduce the complexity of instructions, if possible.
This module does only take the instruction itself into consideration and does not analyse
the relation to the overall program process. For example, an int bswap instruction to
change the byte order can be simplified: if the value, that has to be swapped, does not
change over a period of time, constant folding can be applied, i.e. the evaluation of
constant terms. The int bswap is moved to an int move instruction, which is of
the Move instruction format and transforms the operand into an register operand. In the
HIR a control-flow graph, in which the single basic blocks are ordered, is constructed.

Up to now only local optimizations were taken into account. In order to further
improve the code formation, it has to be tweaked across basic blocks. Assignments
that define unused variables can be omitted. This procedure is called passive code
elimination and is closely related to copy propagation: If a value is assigned to a variable
and the variable is in turn assigned to anything else, the value can directly be used. The
JIT utilizes the SSA (Static Single Assignment) form [FKS00], that improves both local
and global optimizations and beyond that simplifies register allocation. Additionally
aggressive inlining of methods is performed to reduce the call overhead.

Low-level Intermediate Representation (LIR)

At the LIR level the JVM independent object layout is adapted to the RVM’s object
model. A bytecode is split up into several LIR instructions in order to operate with
the TIB pointer, for example. Since the generated LIR is much more extensive, only
few optimizations are done here. A dependence graph, that is used for a Bottom-Up-
Rewrite-System (BURS)—described in the next section—is constructed for every basic
block.
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4.6.2 Machine-dependent layer
Machine-specific Intermediate Representation (MIR)

The machine-dependent layer is represented by the MIR, that decides which machine
specific instructions have to be generated and on which further code simplifications can
be performed. The previously created dependence graph for each basic block is split up
into trees, that serve as input to a BURS.

BURS

BURS is used by the optimizing compiler for instruction selection by taking a complex
expression tree from the LIR and translating it to MIR code, while applying dynamic
programming [AAB+00] and it is a pattern matcher based on trees and is modelled on
Iburg [FHP92].

A BURS code-generator generator processes a series of rules and each of them
comprises four items:

• a production, which indicates the tree pattern to be replaced by a specified symbol

• a cost function, that predicts whether the application of the rule is profitable at all

• a set of flags, which specify the actions to be taken

• a template for Java code emission

The symbol substituting the dependence tree is a non-terminal located on the left side
of the rule, and the pattern to be detected is on the right. Both are separated by a colon
and the collection of all rules forms the grammar. Besides non-terminals a grammar can
have operators with a varying number of operands.

r: FS_INT_STORE(riv, OTHER_OPERAND(riv, INT_CONSTANT))
15
EMIT_INSTRUCTION
EMIT(MIR_Move.mutate(P(p), IA32_MOVFS, MO_S(P(p), DW),

Store.getValue(P(p))));

Figure 4.8 illustrates the dependence tree, which is represented by the above production
specification, where riv can be resolved either to a register, a subtree that can be mapped
to a register or an immediate operand. OTHER OPERAND is an operator and is merely
applied to construct a binary tree data structure. In order to evaluate the cost function
or to facilitate code generation a set of methods is provided in Jikes RVM and a symbol
p is assigned to refer to the current root tree node, whereas P(p) in the code example
gets the instruction associated with that node. If required, the left and the right child, in
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Figure 4.8: Application of a BURS rule and resulting MIR form

case they exist, can be accessed via PL(p) and PR(p), and their successors by means of
concatenating L’s or R’s with respect to the root.

Whenever a tree defined in the production is matched and the code generation costs
do not exceed 15, the code defined by EMIT is emitted and substitutes the fs int store for
a IA32 MOVFS target architecture dependent instruction with the appropriate operands.

The rules file is used to create a state machine, that can apply dynamic programming
at compile time, which then converts the IR to the next level.

The BURS theory has established for a longer time and a lot of implementations
have been made, while the new approach of Hanson [FHP92] offers a remarkable
performance enhancement. In comparison to approved BURS programs, which emit
ideal code in a constant period of time per tree node, it is additionally possible to have
non-constant costs, as implemented in Jikes RVM. This is achieved by postponing the
dynamic programming process until compilation time.

The output of BURS then forms the final MIR, which is the last level before emitting
the actual code.

4.6.3 Machine Code Generation

Jikes RVM has implemented the linear scan register allocation algorithm as described
in [PS99] to map the arbitrarily sized number of virtual registers to physically existing
ones. The RVM offers an option to print the final machine code, so it is possible to
analyze the effect of the untyped memory implementation on the extent of generated
code. For this PowerPC application binary wsort, that sorts words alphabetically, was
executed within JSim. As a result the number of instructions was halved.
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4.6.4 Survey of the Overall Optimized Compilation Process
Concluding the section about optimizations, an overview of how magic methods are
treated by the JIT compiler is depicted in figure 4.6 and presented as follows.

The stack-based bytecode is transformed into HIR code, that operates on registers to
facilitate code transformations, that operate on three-address code. The magic bytecode
mw4 is intercepted by the modified compiler, thus generating a fs int store in-
struction, that is used both at the HIR and LIR. Appended to a basic block, several
optimizations can be applied on and across the block and in the LIR the instruction is
adapted to the Jikes RVM’s object design. Furthermore a dependence graph, used in
the MIR, is constructed for each basic block. In the transformation from LIR to MIR,
symbolic registers are mapped to physical ones. Finally in the MIR the dependence
graphs are used for BURS to select the machine instruction to be emitted, as illustrated
in figure 4.8.

4.7 PowerPC Baseline and Quick Compiler Implemen-
tation

4.7.1 The PowerPC Architecture
The G4 is a 32-bit general purpose processor and belongs to the RISC family [IBM00].
It has a simpler instruction set than Intel x86 processors. The operational part of the
opcodes has the same length for all opcodes. Unlike the Intel x86 architecture PowerPC
features 32 GPRs (General Purpose Registers).

4.7.2 Implementation Details
The PowerPC architecture on the AIX operating system was the first supported ar-
chitecture in IBM’s research JVM. For PowerPC, Jikes RVM additionally features a
third compiler, the so-called quick or quickline compiler and will probably replace
the baseline compiler in the future, since baseline implementation on contemporary
PowerPCs is extremely slow. The quick compiler tries to keep stack variables in registers
and not at memory locations, thus causing a remarkable performance speed-up. While
it does several optimizations, e.g. memorizes, which variables have already been loaded
into registers, it rather resembles the baseline than the optimizing compiler structure,
i.e. it has no notion of any intermediate representations [use05].

As the PowerPC architecture has a completely different machine design and does
not possess an unused register, another approach has to be made. The easiest way
in the baseline compiler implementation is to select a register, which is acquainted
with the VM Compiler class, and to manipulate it in that way, that it holds the base
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address to the virtual memory block, that has to be performed for each interception of
a magic method. For this the base address, returned in the native code module has to
be provided to the compiler class, that does not have a notion of the underlying layer.
For this, similar to make the memory initializer function initDirectMemory()
available in the JVM, two methods returning both the two high and to low bytes of the
base address, have to be embedded in the VM BootRecord and VM SysCall class.
Since the PowerPC instruction set only allows to load 16-bit words, but the virtual base
address usually is a 32-bit value, the two high bytes and consecutively the last bytes
are loaded in the accordant position into the register. For every magic method, the
baseline compiler encounters, the base address has to be loaded again, which requires
two machine instructions. Another problem is, that the PowerPC architecture does not
provide a swap instruction, so it had to be implemented in software. Unfortunately this
results in a lot more machine instructions, that in turn need more cycles. Altogether the
implementation on PowerPC was not as efficient as on an Intel x86, but nevertheless
faster than the SafeMemory module. The implementation in the optimizing compiler
resembles Intel x86 implementation and will therefore be not discussed here.



Chapter 5

Benchmarks

In this final chapter the DirectMemory implementation and execution on a guest archi-
tecture within JSim is evaluated against the SafeMemory module and native execution
of ARM and PowerPC binaries.

5.1 Testing Environment

An Intel Pentium M with 1.6 GHz serves as guest architecture for JSim for both the
use of the SafeMemory module and the implementation via magic methods. For
measurements of the native execution time a PowerPC G4 with 400 MHz and an Intel
StrongARM-110 are conferred with the emulated runtime environment. Jsim is executed
on top of Jikes RVM version 2.4.2 using the optimizing compiler.

5.2 Microbenchmarks

Table 5.1 shows the execution times for the benchmarks programs used in section 3.3 to
illustrate the performance improvement of the DirectMemory extension of the interpreter
JamVM: wsort sorts a list of words and the Write and Read programs write and read
256 MB from memory with the appropriate data types. A comparison of DirectMemory
and SafeMemory is given in figure 5.1. All test programs utilize the EBSB mode of
JSim, which was not possible with the SPEC benchmarks described in section 5.3.

5.3 SPEC Benchmarks

The Standard Performance Evaluation Corporation (SPEC) group offers a series of
benchmark programs [spe03], that can be run to give an impression of the approximate
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Read_Long

Read_Integer

Read_Short

Read_Byte

Write_Long

Write_Integer

Write_Short

Write_Byte

wsortEBSB

0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90 1,00

SafeMemory
DirectMemory

Figure 5.1: Microbenchmarks

Test program SafeMemory DirectMemory
wsort-arm 1m16.469s 0m59.788s
Write Byte-arm 7m51.353s 6m47.921s
Write Short-arm 4m30.953s 3m48.906s
Write Integer-arm 2m15.448s 1m57.227s
Write Long-arm 1m15.901s 1m5.824s
Read Byte-arm 1m28.642s 0m37.802s
Read Short-arm 1m13.257s 0m28.930s
Read Integer-arm 0m27.954s 0m12.365s
Read Long-arm 0m18.089s 0m10.277s

Table 5.1: Microbenchmarks: Execution of ARM binaries within JSim in EBSB mode
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performance of computers. Each of the benchmarks charges hardware components in a
different way.

Unfortunately only a subset of the these programs can be run on JSim, which is in
some extent due to the incomplete kernel emulation described in [Sti05] and is secondly
caused by the still partial implementation of Jikes RVM.

The CPU2000 benchmark suite is the successor version of SPEC CPU95 and now
provides more CPU intensive calculations. Besides this, some memory intensive com-
pression programs are also available, on which the difference between the SafeMemory
and DirectMemory module is most notable.

In the following a short overview of the tested programs will be given.

5.3.1 Description of the SPEC CINT2000 Programs

gzip

gzip is a compression program and holds the balance between execution time and di-
mension of the resulting packed file. It implements the Deflate-Algorithm, that is based
on LZ77 (Lempel-Ziv) and Huffman encoding.

bzip2

While the time overhead of bzip2 is significantly higher compared with gzip, the resulting
compression is much more efficient and works with the BWT (Burrows-Wheeler-Trans-
formation) algorithm. Since all compression and decompression of the input files for
both gzip and bzip are performed in memory, the execution on JSim with direct memory
access provides particularly good performance.

mcf

mcf uses a lot of integer and pointer arithmetics and there are also frequent accesses
to the RAM. It implements the network simplex algorithm and solves the problem of
having as minimal traffic in a network as possible, while serving each node nevertheless.

5.4 Results
As shown in table 5.2 and figure 5.2 the discrepancy between the performance of memory
and CPU intensive programs is notable. Since only the memory performance is improved
by the DirectMemory module in the JIT compiler and the compression programs per-
form almost their complete work in memory, the performance advantage is greater than
with the CPU intensive mcf benchmark.
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PowerPC gzip PowerPC mcf ARM bzip2
00:00:00
00:07:12
00:14:24
00:21:36
00:28:48
00:36:00
00:43:12
00:50:24
00:57:36
01:04:48

01:12:00
01:19:12
01:26:24
01:33:36
01:40:48
01:48:00
01:55:12

Execution time

Direct memory 
access

SafeMemory

Native execution

Figure 5.2: Native vs JSim with DirectMemory access vs. JSim with SafeMemory

The execution time was measured from the beginning of the Jikes RVM bootstrap-
ping phase, but this is negligible, because the benchmarks run over a relatively long
time. The mode of JSim was emulation by basic block. Available code generation
strategies are explained in [Sti05]. The super block mode in combination with magic
methods was not executable. This could be caused by the incomplete implementation of
the RVM, since the DirectMemory access with the JSim super block mode was possible
on the Java bytecode interpreter JamVM.

Test program bzip2 gzip mcf
input file input.program input.program inp.in

JSim-SafeMemory 115m6.560s (ARM) 77m19.646s (PPC) 55m57.410s (PPC)
JSim-DirectMemory 58m48.293s (ARM) 47m12.165s (PPC) 50m21.781s (PPC)

ARM 45m15.780s 64m51.620s 70m58.070s
PowerPC 7m6.978s 14m45.805s 20m36.291s

Table 5.2: Benchmarks
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5.5 Does Untyped Memory violate Type-Safety?
The SafeMemory module of JSim shows that untyped memory can be implemented
using pure Java methods. Since the methods of the memory module interface do not
allow to load and store references, the presented DirectMemory implementation does
not violate the type-safety of Java.

5.6 Conclusion and Future Prospects
Although performance of the obsolete PowerPC G4 and Intel StrongARM-110 cannot
be compared to newer technology processors, the time measurements of the binaries
show that an execution of legacy applications within a type-safe emulation environment
is feasible in a reasonable period of time.

It is not claimed that the runtime of an application within JSim is as fast as native
performance on the same machine, but legacy software is going to be emulated as
efficient on modern hardware as it used to execute on obsolete hardware. The computer
technology will develop consistently, so that the overhead, that the simulation of an
entire architecture causes, will hardly be noticeable and established applications will
not have to be reinvented anymore.

The next generation of computers have a 64-bit wide address bus. Thus the 32-bit
virtual address space of the guest architectures guarantees not to violate any limitations.
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