
Distributed Algorithms
Adapted to Knows-Based Systems

Thomas Eirich

Dec. 1994 TR-I4-94-25

Computer
 Science Department

Operating Systems — IMMD IV

Friedrich-Alexander-University
Erlangen-Nürnberg, Germany

Technical Report

– 3 –

Abstract. This paper presents distributed algorithms
for a computational model based on knows relations.
Usually, a distributed system is modelled by a graph.
The edges of the graph represent static communication
links and messages between nodes has to follow a path
in the graph. This model is called the topology model.
In contrast to this model we assume that any to nodes
can exchanged messages directly provided the sender
knows the identification of the destination. A network
layer abstracts from the underlying communication to-
pology and provides efficient delivery of messages.
This model seems to be more convenient with respect to
today’s software layering. Objects or processes com-
municate via messages, RPCs or DSM without any
knowledge of the physical network.
We present three classes of algorithms, simple propaga-
tion of information, echo algorithms, and election algo-
rithms tailored to this model. Each class is based on the
algorithms of the previous one. The time complexity of
the algorithms is only half of those designed for net-
work topologies.

1 Introduction

This paper presents basic algorithms for distributed sys-
tems based on knows-graphs. Usually, the distributed
system is modelled by a graph. The nodes of this graph
represent processors or processes, and the edges are
communication links. Nodes communicate by exchang-
ing messages over links. The details of the computation-
al models are varying and concern whether links allow
unidirectional or bidirectional communication, whether
communication is synchronous, asynchronous, atomic
or FIFO, or whether the algorithms consider links to be
possibly down. But all these models have in common
that messages between two nodes have to follow a path
in the graph. Therefore, we call these models through-
out topology based. The graph describes the physical to-
pology of a distributed system which is assumed to be
invariant to the distributed algorithm. There are algo-
rithms dedicated to specific topologies because there is
relevant hardware based on it (e.g. rings).

This is the essential difference between a knows-based
and a topology based computational model is the ability
of any to nodes to communicate. In the knows-based
model any two nodes can exchange messages provided
the senderknows the identification of the destination. A
graph models the current system state where directed
edges represent theknows-relations among nodes. Edg-
es are subject to modifications as the distributed compu-
tation proceeds. A node can stand for a host, a process,
or an object. A directed edge fromA to B corresponds
to the fact that nodeA stores the system-wide unique
identification of nodeB. Such an identification could be
an object identifier or a network address.

A knows based model abstracts from the physical topol-
ogy and assumes that a network layer provides efficient
delivery of messages across physical media. Such a
model fits better into the layering of network software
than an topology based approach. Of course, topology
based algorithms could be employed in a knows based
model but their performance would be inferior to adapt-
ed solutions. We will show that time and message com-
plexities can be halfened.

We will start with a very simple algorithm which
achieves propagation of information. Based on this al-
gorithm we then presentecho andelection algorithms.
These are basic algorithms and their operation princi-
ples are building blocks in solutions for several prob-
lems of distributed systems. Echo algorithms [4, 10, 12]
are used to disseminate and collect information. They
are used to create spanning trees for efficient broadcast
delivery or to check connectivity of nodes [4, 12]. Elec-
tion algorithms are based on echo algorithms and are
employed to achieve mutual exclusion [4], to take snap-
shots [5, 8], to detect termination of computations [10],
or to detect deadlocks [3].

The next section describes the knows based computa-
tional model in detail. Section three presents a simple
algorithm to propagate information. Section four en-
hances this algorithm leading to two version of an echo

Distributed Algorithms
Adapted to Knows-Based Systems

Thomas Eirich

eirich@informatik.uni-erlangen.de
University of Erlangen-Nürnberg, IMMD 4

Martensstraße 1
D-91058 Erlangen, Germany

– 4 –

algorithm. Then, in section five election algorithms are
presented based on the echo algorithms of the previous
section.

2 Computational Model

The current state of the distributed system is modelled
by a graph. The nodes represent computing entities.
Each node has a system-wide unique identification.
Node identifications are totally ordered. A node has lo-
cal storage and receives messages destined to it. It can
send messages to any node, including itself, provided it
knows the identification of the destination.

A directed edge reflects the knowledge of one node
about the other. New outgoing edges are created if a
node stores identifications of other nodes either ob-
tained by creating new instances or extracted from re-
ceived messages. Edges are deleted if identifications are
removed from a node’s state.

The nodes run some distributed computation called the
basic computation. The presented algorithms imple-
ment a control computation which can be initiated from
the basic computation. The control computation com-
municates by exchanging control messages and main-
tains state information separate from the basic compu-
tation. This means, that the control computation can
create a control graph by storing node identifications in
its own state without disturbing the basic computation.

The communication layer available to the control com-
putation provides asynchronous sending of messages.
The identification of the destination must be specified.
The message is reliably delivered after a finite but un-
predictable delay. The communication layer does not
guarantee FIFO order of messages.

All nodes execute the same control algorithm which can
be activated either by the local basic computation or by
incoming control messages. The control computation
performs its processing atomically. Once, one of its pro-
cedures has been started it completes uninterrupted. The
processing of a received message is first finished before
the processing of the next is started or the basic compu-
tation is continued.

In all the presented algorithms the variableσ is the iden-
tification of current node. Zero is not a valid value for
σ. Λ is a set containing the node identifications current-
ly known to the basic computation. The only restriction
to be fulfilled by the basic computation is that the
knows-graph has to be complete. That is, there is a path
between any pair of nodes. The algorithms will work

even without this restriction but then different nodes
have a different view of the system and presentation is
unnecessarily complicated. Uninitialized variables re-
turn either zero or an empty set depending on their us-
age. Messages are denoted in the form〈t: d1, ..., dn〉
wheret is the message type anddi the data carried with-
in the message.

3 Propagation of Information

The first basic algorithm achieves propagation of infor-
mation (PI). Figure 1 shows the algorithm. The basic
computation initiates the algorithm PI by calling the
procedurestart and supplying some data. The proce-
dure immediately returns and the supplied information
eventually will reach all the other nodes. Information is
disseminated by explorer messages〈explorer:i,u,V,P, X〉.
The i denotes the initiator of the informationX. The
componentu is a sequence number and the setsV andP
are used to control the spreading of explorer messages.

A sequence number is necessary because a node can re-
start the algorithm even before the previous information
has been completely disseminated. Since control com-
munication does not provide FIFO channels, explorer
messages with newer information may arrive before
those with older information. Line 5 guarantees, that ex-
plorers carrying obsolete information will be extinct. In
line 8 the sequence number is used to prevent cycles in
the traversal of a particular propagation run. If an ex-
plorer arrives at a node which already has been in-
formed its links are not considered again by late explor-
ers.

A node maintains a variableu counting its own initia-
tions of PI and also a set of variablesengagedi recording
the most recent sequence numbers of received explor-

1 proce dure start(X):
2 u ← u+1
3 send 〈explorer: σ, u, {}, {}, X〉 to σ

4 on receipt of 〈explorer: i, u, V, P, X〉:
5 return if engagedi > u
6 P ← P – {σ}
7 V ← V + {σ}
8 if engagedi < u then
9 engagedi ← u
10 P ← P+Λ–V
11 end
12 if P ≠ {} then
13 foreach (Q, q) in Π(P)
14 send 〈explorer: i, u, V, Q, X〉 to q
15 end
16 end
17
Fig. 1 Propagation of information (PIΠ)

– 5 –

ers. Consequently, several nodes can propagate their in-
formation without interference.

The presented algorithm PI is parameterized with a
function Π which controls the degree of concurrency
and the selection of successor nodes. The function

Π: M → {(M 1, m1), ..., (Mn, mn)}

creates a partition of a set of nodesM and selects from
every partitionMi an elementmi. There are two special
functions

Πmin: M→{(M, m)}
and

Πmax: M→{({m 1}, m1), ..., ({m|M|}, m|M|)}

which lead to the extrema of concurrent behavior. If
Πmin is chosen then the algorithm visits all nodes se-
quentially whileΠmax lets PI perform a depth parallel
traversal. Note thatΠ need not to be invariant. It may be
different at every individual propagation step. This en-
ables the underlying communication system to influ-
ence the performance of the algorithm and to control in-
duced system degradation. The number of partitions
created byΠ can be viewed as the propagation fan-out
and induces network load. The grouping of nodes into
partitions and the elected nodes from every partition can
be chosen with network metrics in mind.

In order to be able to efficiently vary the degree of con-
currency, an explorer contains two sets of node identifi-
cations.V records the nodes which already have been
visited by ancestors of this explorer andP contains
those nodes which should be addressed by descendants
of this explorer. The setV prevents that already visited
nodes are reconsidered by descendants. During a relay
step the setP is possibly enlarged with new nodes (line
10) and is then divided into non overlapping sets (line
13). Each part ofP is passed along with a successor ex-
plorer to a node out of this set.

Now, we proof that PI is correct by showing that two
properties are fulfilled: explorer activity will eventually
cease and every node will be visited by at least one ex-
plorer. That is, PI terminates and the information will
reach all nodes.

Property 1: Explorer activity will eventually cease. Ex-
plorers will be extinct either because their information
has become obsolete (line 5, engagedi>u) or because
they will not find any further uninformed nodes (line
12, P={}). Clearly, obsolete explorers cannot survive
because subsequent runs of PI will reach all nodes and
surviving obsolete explorers will be discarded every-
where.

Evidently, the interesting part is to show that explorer
activity ceases in the absence of a subsequent initiation
of PI. LetN be a finite set containing all potential nodes
of the system while the PI algorithm lasts. The life times
of the descendants of an explorer〈explorer: i, u, V, P,
X〉 are bounded by |N–V|. At every propagation step the
visited node is added toV and removed fromP. At least,
after |N–V| stepsP must be empty and propagation
ceases according to line 12.P will be empty because
line 10 ensures that already visited nodes are not added
to P. This means, any node inN is added at most once
to P andP is continuously lessened.

Property 2: Every node will be visited by at least one
explorer. Of course, this is only guaranteed if there is no
interference with a subsequent run of PI. We assume
that some set of nodesM hasn’t yet been visited by ex-
plorers. The knows-graph of the basic computation is
connected and, hence, there must be an already visited
noden which has a link to a nodem∈M. The first ex-
plorer 〈explorer: i, u, V, P, X〉 arriving atn has created
a descendant explorer withm∈P becauseengagedi<u,
m∉V, andm∈Λ. This meansm will be addressed by a
descendant of this explorer. According to property 1 ex-
plorer activity will cease. That is, the set P will become
empty. The nodem must have been removed from P
which only happens (line 6) when nodem is visited by
an explorer.

The PI algorithm can be somewhat simplified if the pa-
rameterΠ is invariant and one ofΠmax or Πmin. Some
components of explorer messages can be saved and
some processing steps can be omitted.

4 Propagation of Information with Feedback

A user of the PI algorithm does not know when all other
nodes have received the information. But PI can be eas-
ily enhanced to provide some feedback about this fact.
Topology-based echo algorithms consist of two phases
[4, 12]: the first phase disseminates data in concentric
waves from the originator towards theends of the
graph. This first phase is like the PI(Πmax) algorithm.
The second phase carries back echo messages towards
the originator. The originator knows that every node has
received its data if it has obtained echoes from all its in-
cident links.

In a knows-based graph the second phase can be im-
proved. Echoes need not to hop back over several nodes
towards the initiator. We can send then directly back to
the originator since its identification is included in ex-
plorer messages. But then, we have a termination prob-

– 6 –

lem: the originator must be able to determine if all out-
standing echoes have been received. We present two so-
lution to this termination problem which goes well
together with the PI algorithm. Certain termination de-
tection techniques, as message counting schemes [10, 7,
6], are not appropriate because they require two waves,
two rounds over a Hamiltonian circle, or two traversals
of a spanning tree. The time saved by directly sending
back echoes would be wasted by expenses of termina-
tion detection.

Figures 2 and 3 show the extensions to PI in black while
original code of PI is printed gray. Some unchanged
lines have been omitted for brevity. The handling of the
information variableX supplied by the basic computa-
tion to PIF has been left out for simplicity.

The sequence numberu part of explorer messages can
be reduced to a single bit if PIF is not restarted before
the previous run has been completed. The single bit is
necessary because it is compared with the state of the
variablesengagedi to determine if a node already has
been visited by explorers of the current PIF run. PIF-1
allows initiations even if the previous run is in progress
while PIF-2 allows a new run only after the previous
one has reported completion. This behavior is inter-
changeable between both algorithms. They can be easi-
ly adapted to meet the application requirements.

Message activity of both algorithms will eventually
cease because they are derived from PI. The difference
between PI and PIF with respect to message creation is
that terminal explorers cause one additional message.
Explorer are called terminal if they do not create de-
scendants in a relay step. They do not disappear as in PI

101 procedure Start:
2 f+ ← 0
3 u ← u+1
4 send 〈explorer: σ, u, {}, {}, 1〉 to σ
5 wait for f+= 1

6 on receipt of 〈echo: w, f〉:
7 return if w≠u
8 f+ ← f+ + f

9 on receipt of 〈explorer: i, u, V, P, f〉:
10 ...
11 if P ≠ {} then
12 foreach (Q, q, g) in Π(P, f)
13 send 〈explorer: i, u, V, Q, g〉 to q
14 end
15 else
16 send 〈echo: u, f〉 to i
17 end
18
Fig. 2 PI with feedback (PIF-1Π)
0

instead they send an echo message back to the initiator.
Echo messages do not cause further message traffic.

Algorithm PIF-1 detects termination by maintaining an
invariant. Explorer and echo messages have a weight
(componentf). The sum of the weights of all explorers,
echoes and the variablef+ at the initiating node yield
one. The invariant is initially true (see fig. 2 lines 2, 4)
and it is maintained at every relay step. The functionΠ
receives the current weightf of the arrived explorer and
splits up this value so that each successor gets a fraction
of f (line 12). The sum of the successor’s weights equals
f. And finally, before an explorer disappears its weight
is sent back in an echo message to the initiator (line 16)
and added there tof+ (line 8). If f+ has value one then
explorer of this particular initiation do not exist any-
more. From the properties of PI we can follow that ev-
ery node has been visited.

The initial weight and the splitting of weights can be
chosen so that it fits well in the binary representation of
numbers. Floating point numbers can not be used be-
cause of rounding errors. This termination principle is
used for instance in garbage collection algorithms [1,
2].

The second algorithm uses two sets of node identifica-
tions to determine if all nodes have been informed. The
two setsV+ andK+ maintained at the initiator strive to-
wards the fixed-pointV+=K+=N whereN is the set of all
informed nodes.V+ contains all the nodes which have
certainly been visited by explorer messages. An explor-
er while moving through the knows graph and records
the visited nodes and the identifications of all other
nodes it gained knowledge of (fig. 3 line 12). These sets

1 procedure Start:
2 K+ ← {}
3 V+ ← {}
4 u ← (u+1) mod 2
5 send 〈explorer: σ, u, {}, {}, {}〉 to σ
6 wait for V+= K+

7 on receipt of 〈echo: V, K〉:
8 K+ ← K+ + K
9 V+ ← V+ + V

10 on receipt of 〈explorer: i, u, V, P, K〉:
11 ...
12 K ← K + Λ
13 if engagedi ≠ u then ... end
14 if P ≠ {} then ...
15 else
16 send 〈echo: V, K〉 to i
17 end
18
Fig. 3 PI with feedback (PIF-2Π)

– 7 –

are stored in the componentsV andK of explorers and
are passed on to echoes and are finally accumulated at
the initiating node.

The termination criterionV+=K+ means that all the
nodes have been visited which explorers have got
knowledge of. PIF-2 maintains the following invariants
in its explorer and echo messages:P⊆K andV⊆K. The
former is true because it is initially true (line 5) and be-
cause it is propagated to successor explorers (P10⊆K10

⇒ P16=(P10+Λ–{σ}–V 10) ⊆ (K10+Λ)=K16). Variables
with subscript or superscript indices denote the state of
the variable before or after the specific line. The latter is
also proofed by induction. It is initially true (line 5). If
the identification of a nodeσ is added toV (fig. 1 line 7)
due to the arrival of an explorer thenσ ∈K because at
the sending nodeσ=q⊆Q⊆P⊆K. Fig.1 line 7 is the only
place whereV is enlarged and we showed that the added
element is already inK.

We show that the termination criterion is correct by
contradiction. We assumeV+⊆K+ and no more explor-
ers being in transit. There must be a nodem∈(K+–V+)
and a noden∈V+ with m∈Λn. Otherwise the graph is
not connected. Fromn∈V+ we can follow that there has
been an explorer visitingn for the first time. This ex-
plorer must have created a descendant explorerx with
m∈Px addressed to a nodem∉V. Since PI’s propagation
scheme is implemented correctly and since we assumed
that no more explorers are in transitx must have turned
into an echo message. This can have happened only if
P={}. A nodee is only removed fromP if it has been
visited by an explorer. That is, nodem must have been
visited and should be in the setV.

Note, that PIF-2 also returns inV+ the set of nodes
which have been visited by explorer messages as a re-
sult of termination detection. Often, this is useful for the
basic computation in case it wants to address all these
nodes again [5]. PIF-1 can be easily modified to com-
pute this set, too. The main advantage of these echo al-
gorithms compared to traditional algorithms [4, 7, 8, 10,
12] is the improved time and message complexity. We
compare PIF(Πmin) and PIF(Πmax) to possible solutions
for topology graphs. Message exchange is considered to
take one time unit in average. A node’s computing time
is neglected.

Time complexity equals message complexity for se-
quential traversal of graphs. Topology algorithms have
complexity 2(|N|-1) while PIF(Πmin) has only complex-
ity |N|. N is the set of nodes in the graph G representing
the distributed system. In topology algorithms every

node except the initiator receives an explorer and re-
plies to this explorer with an echo message. PIF(Πmin)
instead addresses every node except the initiator with an
explorer message and only the last node sends back an
echo message. The message size of PIF(Πmin) is bigger
than for topology solutions but this is not considered
harmful due to the high bandwidth of today’s commu-
nication media. Time efficiency is considered the prior
to message complexity [11].

Time complexity for depth parallel traversals is 2Ri(G)
for topology algorithms vs. 2Ri(G)+1 for PIF(Πmax).
Ri(G) denotes the radius of the graph G with the node i
being the center. The radius is defined similar to the di-
ameter of a graph. It is the longest of the shortest paths
from i to any node in G. In the topology approach ex-
plorers first have to travel to farthest node before the
echo message can start their way back towards the initi-
ator. PIF(Πmax) abbreviates the way back from the far-
thest node to the initiator by directly sending to the ini-
tiator.

For both knows and topology based algorithms the de-
termining factor for message complexity is the number
of edges |E| in the graph G. They both induce a spanning
tree on G. An edge (n, m) is part of the spanning tree if
an explorer was sent fromn to m and it was the first ex-
plorer arriving atm. Let T be the edges which are part
of the spanning tree. All other edges are inS=E–T. On
every edge inS two explorers cross each other and cause
the sending of echo messages. For edges inT they be-
have slightly different. Topology based algorithms sent
an explorer in one direction and an echo message in the
other. For PIF(Πmax) there is only an explorer message
per edge inT and some of these explorers turn into echo
messages at the leaves of the tree. Thus, the message
complexity isO(|E|)–O(|N|) for both.

The crucial advantage of the adapted algorithms is their
reduced time complexity though messages are larger
and the number of created messages is only slightly less
compared to topology based algorithms. We consider
reduced time complexity more important because band-
width of communication media has increased to an ex-
tent where processors have problems to keep pace with
incoming data. This means that the number and sizes of
messages have less influence on communication laten-
cy than communication setup per message.

5 Election

Now, we enhance the PIF algorithms of the previous
section in order to obtain election algorithms. We will

– 8 –

consider two enhancements. The first is very simple.
The second is more complicated but has a better perfor-
mance. In order to elect a specific node, we have to
break symmetry in the distributed system. The key
property to accomplish this are the node identifications.
We assume that they are totally ordered. To prevent that
a node dominates we can combine the identifications
with random numbers and use the identifications to
solve a tie. Such totally ordered identifications are com-
mon place in distributed systems and do not imply any
additional costs.

Each node wishing to become a leader starts an echo al-
gorithm similar to the PIF algorithms presented in the
previous section. Several nodes may do this concurrent-
ly. The explorers are ranked according to their initiator
componenti. If an explorer arrives at a node which al-
ready has been visited by a stronger explorer then it is
simply discarded. This guarantees that only the echo al-
gorithm of the node with the highest rank completes.
This solution has the disadvantage that the work of oth-
er initiators is ignored. Their expenses to explore part of
the knows-relationships are wasted. Mattern [8] propos-
es two solutions for a topology based computational
model to improve this simple approach. We present an-
other solution which is better than these two but which
is only possible in knows-based computational model.

As before, every node wishing to become a leader starts
an PIF echo algorithm. Figure 4 shows the resulting
election algorithm if PIF-1 is used. The modifications to
PIF-1 are: explorer and echo messages have some addi-
tional components and there is only one variableen-
gaged. This variable is used to mark ownership of
nodes. Each candidate tries to explore the knows-rela-
tionships and marks every visited node with its identifi-
cation. This is used on the one hand to prevent cycles in
the traversal of a single initiator and on the other hand
to check if other candidates already have explored some
parts of the graph. The traversal work of other candi-
dates is not wasted because explorers are not discarded.
If explorers arrive at foreign nodes the late explorer ig-
nores the incident links (line 26-29 are not executed) be-
cause these links are handled the first explorer.

The effect is that each candidate conquers part of the
graph. Explorers register in the componentO the own-
ers of neighboring regions (line 30) and finally report
this information via echoes back to their originator (line
19, 38). After each candidate has completed its echo al-
gorithms we view (C, O+

C) as a graph.C is the set of can-
didates andO+

C are the edges connecting candidates.
The echo algorithms is restarted on this graph by only a

few of the original candidates (line 10). That is, we have
the same problem as before but with a smaller graph and
a reduced set of candidates. In order to distinguish ex-
plorer messages from adjacent rounds they are equipped
with a bita. The regions discovered by different initia-
tors may have different sizes. Thus, some echo algo-
rithms complete before others and send explorer mes-
sages out to neighboring candidates. Explores and the
current and of the next round may arrive at some. Line
25 uses the local variablea and the information in the
explorer to defer the processing of early explorers. Note
that the echo algorithms will work properly since the
variableengaged is reset at the end of every round.

The concurrent echo algorithms are repeated until only
one candidate survives (O+={σ}, line 10). At least one

01 procedure Start:
2 do
3 O+ ← {σ}
4 f+ ← 0
5 send 〈explorer: σ, {}, {}, {}, a, 1〉 to σ
6 wait for f+= 1
7 a ← (a+1) mod 2
8 Λ ← Λ– {σ}
9 engaged ← 0
10 while O+≠ {σ} ∧ σ = max(O+)

11 if O+={σ} then
12 foreach n in V+

13 send 〈winner: σ〉 to n
14 end
15 end

16 on receipt of 〈echo: f, V, O〉:
17 f+ ← f+ + f
18 V+ ← V+ + V
19 O+ ← O+ + O

20 on receipt of 〈winner: i〉:
21 engaged ← 0
22 V+ ← {}
23 a ← 0

24 on receipt of 〈explorer: i, V, P, f, O, b〉 ∧ a = b:
25 if engaged = 0 then
26 engaged ← i
27 P ← P+Λ–V
28 end

29 O ← O + {engaged}
30 P ← P – {σ}
31 V ← V + {σ} + V+

32 if P ≠ {} then
33 foreach (Q, q, g) in Π(P, f)
34 send 〈explorer: i, V, Q, g, O, b〉 to q
35 end
36 else
37 send 〈echo: f, V, O〉 to i
38 end
39
23Fig. 4 An election algorithm based on repeated execution of

an echo algorithm (RE)

– 9 –

candidate, namely the one with lowest rank among all
other candidates, will be dropped from candidacy at
each round. This guarantees that the loop 2–10 termi-
nates at exactly one node withO+={σ}.

The winner of the election finally notifies all other
nodes about its leadership by awinner message. This
message also triggers the reset of certain variables. Af-
ter receipt of the winner message a node may restart the
election algorithm. As long as a node is engaged in an
election it may not restart the election.

The major advance of this solution is that the traversal
performed concurrently by several candidates is not
wasted. Though, the solution with repeated echo algo-
rithms is not better that the simple solution with respect
to worst case behavior we expect that it is much better
with respect to the average case. As Mattern pointed
out, the average performance of algorithms may signif-
icantly deviate from the worst case with high probabili-
ty [8, 9]. We are currently about to run simulations on
graphs which we consider typical for distributed com-
putations.

6 Conclusion

We presented echo and election algorithms for a knows-
based computational model. This model relies on a net-
work layer which provides efficient delivery of messag-
es to any node in the system provided the identification
of the destination is known. Nodes in such a system
have only limited knowledge about other nodes. This
knowledge is subject to modification while a distributed
computation proceeds. This scenery is more realistic for
distributed applications and systems than the assump-
tion of a static graph where edges represent available
communication paths. Normally, distributed applica-
tions are not aware of the network topology. Distributed
operating systems offer at least topology transparent
services (e.g. IP) and sometimes location transparent
communication (e.g. mobile objects). Even inside of a
distributed operating system algorithms should not be
designed for certain topologies and efficient routing
should separated from algorithms with other concerns.

We started with a simple parameterized algorithm PI
which achieves propagation of information. The tra-
versal behavior of this algorithm can range from se-
quential to depth parallel. A functionΠ controls the tra-
versal order and the degree of concurrency. This func-
tion need not to invariant instead it can be varied at
every relay step. Via this function a network layer can
hook into the algorithm can tune the efficiency accord-

ing to current network metrics. Furthermore, it also can
control the network load induced by the algorithm.

Then, two echo algorithms based on the PI algorithm
have been presented. The time complexity of both algo-
rithms is half of those for topology based models. The
reduction comes from the different construction of the
information collection phase. Echo messages can be
send directly to the initiator of the echo algorithm. But
this introduces a termination problem. The initiator
must be able to determine when the last echo message
has arrived. We proposed two solutions which fit well
in the presented algorithms.

Finally, we discussed two election algorithms both
based on the echo algorithms. The first used message
extinction and the second was based on repeated execu-
tions of echo algorithms. The advantage of the latter one
was that concurrent traversals of leader candidates are
not wasted.

7 References

[1] D. I. Bevan: Distributed Garbage Collection Using
Reference Counting. InProc. PARLE - Parallel Archi-
tectures and Languages Europe, J. W. de Bakker, et al.
(eds), 1987, pp. 176-187

[2] D. I. Bevan: An Efficient Reference Counting Solu-
tion to the Distributed Garbage Collection Problem. In
Parallel Computing 9, 1989, pp. 179-192

[3] G.Bracha, S.Toueg: Distributed deadlock detection.
In Distributed Computing, vol. 2, 1987, pp.127-138

[4] E.J.H. Chang: Echo algorithms: Depth parallel op-
erations on general graphs. InIEEE Trans. on Software
Engineering, vol.SE-8, no.4, 1982, pp.391-401

[5] T.Eirich: Fine-grained checkpointing in distributed
object systems. TR-I4-94-12, Univ. of Erlangen-Nürn-
berg, IMMD IV, June 1994

[6] D. Kumar: A class of termination detection algo-
rithms for distributed computations. InProc. of 5th
Conf. on Foundations of Software Technology and The-
oretical Computer Science, N. Maheshwari (ed), LNCS
206, Springer Verlag, 1985, pp. 13-22

[7] F. Mattern; Algorithms for distributed termination
detection. InDistrib. Comput., Vol.2, 1987, pp. 161-
175

[8] F.Mattern:Verteilte Basisalogorithmen, Springer-
Verlag, 1989

[9] F. Mattern: Message Complexity of Simple Ring-
Based Election Algorithms - An Empirical Analysis. In
9th Int. Conf. on Distributed Computing Systems, IEEE
Computer Soc. Pr., 1989, pp. 94-100

– 10 –

[10] F.Mattern: Asynchronous Distributed Termination
– Parallel and Symmetric Solutions with Echo Algo-
rithms. InAlgorithmica, Vol.5, No.3, Springer Verlag
New York, 1990, pp.325-340

[11] D. Peleg: Time-Optimal Leader Election in Gener-
al Networks. InJournal of Parallel and Distributed
Computing, January 1990, pp. 96-99

[12] A. Segall: Distributed Network Protocols. InIEEE
Trans. Inform. Theory, Vol.22, 1983, pp.23-35

