
MEMSY
A Modular Expandable
Multiprocessor System

F. Hofmann, M. Dal Cin,
A. Grygier, H. Hessenauer, U. Hildebrand,

C.-U. Linster, T. Thiel, S. Turowski

Oktober 1992 TR-I4-8-92

Computer
 Science Department

Operating Systems — IMMD IV

Friedrich-Alexander-University
Erlangen-Nürnberg, Germany

Technical Report

This paper was also published as:

F. Hofmann, M. Dal Cin, A. Grygier, H. Hessenauer, U. Hildebrand, C.-U. Linster, T.
Thiel, S. Turowski: “MEMSY — A Modular Expandable Multiprocessor System”;
Parallel Comp. Architectures: Theory, Hardware, Software, and Appl. – SFB
Colloquium SFB 182 and SFB 342; A. Bode, H. Wedekind [Eds.], (Munich, Oct.
8-9, 1992); Lecture Notes in Comp. Sci.; Springer, Berlin; to appear 1993

3

MEMSY
A Modular Expandable Multiprocessor System

F. Hofmann
hofmann@informatik.uni-erlangen.de

M. Dal Cin, A. Grygier, H. Hessenauer, U. Hildebrand,
C.-U. Linster, T. Thiel, S. Turowski

University of Erlangen-Nürnberg
IMMD, Martensstraße 1/3

D-W 8520 Erlangen, Germany

Abstract. In this paper the MEMSY experimental multiprocessor system is
described. This system was built to validate the MEMSY architecture - a
scalable multiprocessor architecture based on locally shared-memory and
other communication media. It also serves as a study of different kinds of ap-
plication programs which solve a variety of real problems encountered in sci-
entific research.

1 Introduction

Among the different kinds of multiprocessor systems, those with global shared-
memory are normally the ones most liked by application programmers because of
their simple programming model. Closer examination of typical problems reveals
that, for a broad class of these problems, global shared-memory is not what is really
needed by the application. Local shared data is sufficient to solve the problems.

Multiprocessors with global shared-memory all suffer from a lack of scalability.
By making clever use of fast buses and caching techniques this effect may be post-
poned, but each system has an upper limit on the number of processing nodes.

Our MEMSY system is now an approach towards a scalable MIMD multiproces-
sor architecture which utilizes memory shared between a set of adjacent nodes as a
communication medium. We refer to this kind of shared-memory asdistributed
shared-memory.

The MEMSY system shall continue the line of systems which have been built at
Erlangen using distributed shared-memory. The basic aspects of this architecture
are described in [2] and [3].

2 MEMSY Architecture

2.1 Design Goals

The MEMSY architecture was defined with the following design goals in mind:

• economy The system should be based on off-the-shelf components we can buy;
only some parts should need to be designed and built by us.

4

• scalability The architecture should be scalable with no theoretical limit. The com-
munication network should grow with the number of processing ele-
ments in order to accommodate the increased communication demands
in larger systems.

• flexibility The architecture should be usable for a great variety of user problems.
• efficiency The system should be based on state-of-the-art high performance mi-

croprocessors. The computing power of the system should be big
enough to handle real problems which occur in scientific research.

2.2 Topology of the MEMSY System

The MEMSY structure consists of two planes. In each plane the processor nodes
form a rectangular grid. Each processor node has an associated shared-memory
module, which is shared with its four neighbouring processor nodes. The grid is
closed to a torus.

One processing element of the upper plane has access to the shared-memory mod-
ules of the four processing elements directly below it, thereby forming a small pyr-
amid. There are four times as many processing elements in the lower plane than in
the upper.

On top of the whole system there is an optional processor which may serve as a
front-end to the system.

memory sharing within a plane
memory sharing between planes
common bus

A-plane

C-plane

B-plane

Fig. 2.1 Topology of the MEMSY system (Torus connections are missing)

5

The basic idea behind this structure is this: the lower plane does the real work
and the upper plane feeds the lower plane with data and offers support functions.

A subset of the processor nodes has access to one or more common bus systems
to allow communication over greater distances or broadcasts.

3 Hardware Architecture of MEMSY

The experimental memory-coupled multiprocessor system MEMSY consists of
three functional units:

• 4 + 16 processor nodes,
• one shared-memory module at each node, which is called thecommunication

memory and
• the interconnection network which provides the communication paths between

processor nodes and communication memories.

In addition to these essential units which are described in the following sections, an
FDDI net, a special optical bus and a distributed interrupt coupling system are inte-
grated in the system. The FDDI net allows testing and use of another communication
media. The optical bus is designed to support various global synchronisation mech-
anisms. The interrupt coupling system establishes interrupt connections between
every two immediate-neighbour nodes which share a communication memory.

3.1 Processor Nodes

Each node of the MEMSY system is identically designed and consists of a Motorola
multiprocessor board MVME188 and additional hardware, some of which were de-
signed and implemented as part of the MEMSY project. In figure 3.1, which shows
the logical node structure, these parts have a lighter background colour.

The MVME188 board used in the MEMSY system consists of four VME mod-
ules. These are; the system controller board, holding e.g. timers and serial interfac-
es; two memory boards, each holding 16M bytes local memory; and the main logic
board, carrying the processor module.

The processor module comprises four MC88100 RISC CPUs, which have multi-
ple internal parallelism, and eight MC88200 cache and memory management units
(CMMU), which provide 8*64K bytes cache memory. Special features of the pro-
cessor module are:

• Cache coherency is supported by the hardware.
• There exists a cache copyback mode which writes data back to memory only if

necessary and a write-through mode.
• There exists an atomic memory access which is necessary for efficiently imple-

menting spinlocks and semaphores in a multiprocessor environment.
• The caches provide a burst mode which allows atomic read/write access of four

consecutive words1 while supplying only one address.

6

The architecture of the processor module, the MVME188 board and the M88000
RISC product2 are described in greater detail in [9].

All VME modules mentioned above, are interconnected by a high speed local
bus. Each node can be extended with additional modules via this local bus or the
VME bus. The communication memory interface is attached to the local bus. Its
function is to recognize and execute accesses to the communication memories. The
interface hardware provides three ports to which the communication memories are
connected either directly or via an interconnection network. This interconnection
network is described in section 3.2.

To the M88000 the memory interface looks like a simple memory module. The
address decoder of the MVME188 is configured in such way, that the highest two
address bits determine whether the address space of the local memory boards, of the
VME bus or of the memory interface is accessed. In case of the memory interface,
the next two address bits determine the port which should be used for each memory
access. Four further bits of the address determine the path through the coupling unit
and which communication memory is to be accessed.

Addresses and data are transferred in multiplexed mode. The connection is 32
data bits plus four parity bits wide for the address or data transfer. The parity bits
are generated by the sender and checked by the receiver. If the communication mem-
ory detects a parity error in address or data, it generates an error signal, otherwise
a ready signal is generated. If the memory interface receives an error signal or de-
tects a parity error during a read access it transmits an error signal to the M88000,
otherwise a ready signal is sent.

1. A word is always 32 bit wide.
2. The combination of MC88100 and MC88200 is referred to as the M88000 RISC

product.

display unit

port A

port C

local memory

measurement interface

interrupt subsystem
memory interface

port B

local I/O (Disk)

local I/O (FDDI)

optical bus

MC88100 MC88200
8x4x

VME bus

local
bus

Fig. 3.1 Logical node structure

7

The memory interface hardware supports the atomic memory access and the de-
scribed burst mode. Counters have been included in the interface hardware to count
the various types of errors in order to investigate the reliability of the connection.
The counters can be read and reset by a processor. In addition there is a status reg-
ister which contains information about the last error occurred. This can be used in
combination with an error address register to investigate the error.

In addition, the memory interface contains a measurement interface to which an
external monitor can be connected. A measurement signal is triggered by a write ac-
cess to a particular register of the memory interface and the 32-bit word written is
transferred to the monitor. This enables the use of hybrid monitors for measure-
ments on MEMSY. Refer to [5] for further information on this topic.

3.2 The Interconnection Network

The topology of MEMSY is described in section 2.2. Each node has access to its
own communication memory and to the communication memories of the four neigh-
bouring nodes. Additionally, every node of the B-plane has access to the communi-
cation memories of its four assigned A-plane-nodes.

a b c d e f g h

processor node communication memory coupling unit

Fig. 3.2 Composition of processor nodes, communication
memories and coupling units

5

5

9 10

6

4

0 1

6

3

7

8 9

1312

10 11

1514

7

11

4

8

13 14 15 12

1 2 3 0

a b c d e f g h

k

l

m

n

o

p

q

r

k

l

m

n

o

p

q

r

2

8

A static implementation of this topology requires up to 9 ports at each node and
up to 6 ports at each communication memory. To reduce this complexity and the
number of interconnections, a dynamic network component, calledcoupling unit,
has been developed. The use of the coupling unit reduces the number of ports need-
ed at the memory interface and the communication memory to three. Only two of
these ports are used for the connections within a plane. The coupling unit supports
the virtual implementation of the described MEMSY topology.

The coupling unit is a blocking, multistage, dynamic network with fixed size
which provides logically complete interconnection between 4 input ports and 4 out-
put ports. The interconnection structure of MEMSY is a hybrid network with global
static and local dynamic network properties.

The torus topology of a single MEMSY plane is implemented by the arrangement
of nodes, communication memories, and coupling units as shown in figure 3.2. For
reasons of complexity the local dynamic network component is not depicted in this
figure. It is described in more detail in the next section.

Each node and each memory module is connected to two coupling units. Thus the
nearest-neighbour torus topology can easily be established. A square torus network
with N=n2 nodes requires N/2 coupling units. The connections from the nodes of the
B-plane to the four corresponding communication memories of the A-plane are also
implemented by using coupling units. These are connected to the third ports.

Internal Structure of the Coupling Unit. The hardware component used to im-
plement a multiprocessor system, as described above, is shown in figure 3.3. In our
implementation of the interconnection network, accesses to the communication
memories via coupling units are executed with a simple memory access protocol.
The interconnection network operates in a circuit-switching mode by building up a
direct path for each memory access between a node and a communication memory.

input or processor port

output or memory port

 Control

P0 P1

P2P3

M0

M3 M2

M1

active switch settings

Fig. 3.3 Internal structure of a coupling unit

9

A coupling unit consists of the following subcomponents:

• 4 p-ports which allow the access to the coupling unit from nodes
• 4 m-ports which provide the connection of communication memories
• 4 internal subpaths which perform data transfer within the coupling unit
• 1 control unit which controls the dynamic interconnection between p-ports and

m-ports
• 4 switching elements which provide the dynamic interconnection of p-ports and

m-ports

The structure of the p-ports and m-ports is basically identical to a memory interface
with a multiplexed 32 bit address / data bus. The direction of the control flow is dif-
ferent for p-ports and m-ports. An activity (a memory access) can be only initiated
at a p-port.

The control unit is a central component within the coupling unit. It always has
the complete information about the current switch settings of all switching ele-
ments. If a new request is recognized by receiving a valid address, the control unit
can decide at once whether the requested access can be performed or has to be de-
layed. For any access pattern the addressed memory port and all necessary internal
subpaths are available when all switching elements contained in the communication
path to be built-up are either inactive or possess exactly the switch settings required
for the establishment of the interconnection.

The necessary switch settings of all required switching elements are fixed a priori
for every possible access pattern. The decision about the performability of a re-
quested access is made by comparing the required switch settings with the current
ones.

It can be seen from the structure of the coupling unit that two different commu-
nication paths containing disjoint sets of internal subpaths can be selected for a
memory access. This results from the arrangement of the switching elements in a
ring configuration interconnected by the internal subpaths. The decision as to which
of the possible communication paths is to be established is made dynamically ac-
cording to the current switch settings. If possible, the communication path requiring
fewer internal subpaths is chosen to minimize the propagation delay caused by the
switching elements.

The feature of the coupling unit which allows alternative communication paths is
important in the context of fault tolerance. This is discussed in [1].

Performance of the Interconnection Network. An access to shared data in the
communication memories requires a significantly higher access time than an access
within the node. In addition to the fact that the reduction in access time caused by
using a cache is generally no longer possible, the longer transfer paths and the exe-
cution of control mechanisms cause further delays. The sequentialization which can
be required when conflicts occur either in the communication memories or in the
coupling units can cause additional waiting times. The memory access time in our
implementation is normally 1µs and up to 1.3µs if blocking occurs due to a quasi-
simultaneous access.

10

Since only data which is shared by nodes is held in the communication memories,
such as boundary values of subarrays, the increased access time has only a small in-
fluence on the overall computing time. Measurements made using the test system
INES [4] specially developed to measure the performance of the coupling hardware
show that a high efficiency can be achieved under realistic conditions. Thus reduc-
ing the complexity of the network by using coupling units causes only a small re-
duction in performance compared to a static point to point network.

4 Programming Model

The programming model of the MEMSY system was designed to give the applica-
tion programmer direct access to the power of the system. Unlike in many systems,
where the programmer’s concept of the system is different from the real structure of
the hardware, the application programmer for MEMSY should have a concept of the
system which is very close to its real structure. In our opinion this enables the pro-
grammer to write highly efficient programs which make the best use of the system.

In addition, the programmer should not be forced to a single way of using the sys-
tem. Instead, the programming model defines a variety of different mechanisms for
communication and coordination3. From these mechanisms the application pro-
grammer may pick the ones which are best suited for his particular problem.

The programming model is defined as a set of library calls which can be called
from C and C++. We choose these languages for the following reasons:
0
(1) Only languages which have some kind of a ‘pointer’ make it possible to imple-

ment the routines, which access the shared-memory, as library calls. Otherwise
costly extensions to the languages would have been needed.

(2) The C compiler is available on every UNIX system. As it is also used to develop
the operating system itself, more effort is taken by the manufacturer to make
this compiler bug-free, stable and have it generate optimized code.

(3) Compared to programs using index references, programs using pointer referenc-
es can lead to more efficient machine code.

The MEMSY system allows different applications to run simultaneously. The oper-
ating system shields the different applications from one another.

To make use of the parallelism of each processing unit, the programmer must
generate multiple processes by the means of the ‘fork’ system call.

4.1 Mechanisms

The following sections introduce the different mechanisms provided by the pro-
gramming model.

3. We use the termcoordination instead ofsynchronization to express that not the si-
multaneous occurring of events (e.g. accesses to common data structures) is meant
but their controlled ordering.

11

Shared-Memory. The use of the shared-memory is based on the concept of ‘seg-
ments’, very much like the original shared-memory mechanism provided by UNIX
System V. A process which wants to share data with another process (possibly on
another node) first has to create a shared-memory segment of the needed size. To
have the operating system select the correct location for this memory segment, the
process has to specify with which neighbouring nodes this segment needs to be
shared.

After the segment has been created, other processes may map the same segment
into their address space by the means of an ‘attach’ operation. The addresses in
these address spaces are totally unrelated, so pointers may not be passed between
different processes. The segments may also be unmapped and destroyed dynamical-
ly.

There is one disadvantage to the shared-memory implementation on the MEMSY
system. To ensure a consistent view over all nodes the caches of the processors must
be disabled for accesses to the shared-memory. But the application programmer may
enable the caches for a single segment if he is sure that inconsistencies between the
caches on different nodes are not possible for a certain time period. The inconsis-
tencies are not possible if only one node is using this segment or if this segment is
only being read.

Messages. There are two different message mechanisms which are offered by the
programming model: the one described in this section and the one named ‘trans-
port’, described later.

This message mechanism allows the programmer to send short (2 word) messages
to another processor. The messages are buffered at the receiving side and can be re-
ceived either blocking or non-blocking. They are mainly used for coordination.
They are not especially optimized for high-volume data transfer.

Semaphores. To provide a simple method for global coordination, semaphores
have been added to the programming model. They reside on the node on which they
have been created, but can be accessed uniformly throughout the whole system.

Spinlocks. Spinlocks are coordination variables which reside in shared-memory
segments. They can be used to guard short critical sections. In contrast to the other
mechanisms this is implemented totally in user-context using the special machine
instruction ‘XMEM’. The main disadvantage of the spinlocks is the ‘busy-wait’ per-
formed by the processor. This occurs if the process fails to obtain the lock and must
wait for the lock to become free. To minimize the effects of programming errors on
other applications, a time-out must be specified, after which the application is ter-
minated (there is a system-imposed maximum for this time-out).

12

Transport. The transport mechanism was designed to allow for high volume and
fast data transfer between any two processors in the system. The operating system
is free to choose the method and the path this data is to be transferred on (using
shared-memory, FDDI-ring or bus). It can take into account the current load of the
processing elements and data paths.

I/O. Traditional UNIX-I/O is supported. Each processing element has a local data
storage area. There is one global data storage area which is common to all process-
ing nodes.

Parallelism. To express parallelism the programmer has to create multiple pro-
cesses on each processing element by a special variant of the system call ‘fork’.

Parallelism between nodes is handled by the configuration to be defined: One ini-
tial process is started by the application environment on each node that the applica-
tion should run on. In the current implementation these processes are identical on
all nodes.

Information. The processes can obtain various information from the system re-
garding their positions in the whole system and the state of their own or other nodes.

4.2 Development

The programming model is open for extensions which will be based on experiences
we gain from real applications. Specific problems will show whether additional
mechanisms for communication and coordination are needed and how they should
be defined.

5 Operating System Architecture

Various considerations have been made as to which operating system should be cho-
sen. Basically there are two choices:

• Design and implement a completely new operating system or
• use an existing operating system and adapt it to the new hardware.

By designing a new operating system the whole hardware can be completely inte-
grated and supported. Better fitting concepts than those found in existing implemen-
tations can be developed. But it must not be underestimated, that implementing a
new operating system requires a lot of time and effort. The second choice offers a
nearly ready-to-run operating system, in which only the adaptions to the additional
hardware have to be made.

For MEMSY the second choice was taken and Unix was chosen as the basis for
MEMSOS, the operating system of MEMSY. Unix supplies a good development en-
vironment and many useful tools. The multitasking / multiuser feature of Unix is
included with no additional effort.

13

On each processor node we use the UNIX SYSTEM V/88 Release 3 of MOTOR-
OLA, which is adapted to the multiprocessor architecture of the processor board.
The operating system has a peer processor architecture, meaning that there is no
special designated processor, e.g. master processor. Every processor is able to exe-
cute user code and can handle all I/O requests by itself. The kernel is divided into
two areas. One area contains code that can be accessed in parallel by all processors,
because there is either no shared data involved or the mutual exclusion is achieved
by using fine grain locks. The second area contains all the other code that can not
be accessed in parallel. This area is secured with a single semaphore. For example,
all device drivers can be found here. In SYSTEM V/88 the usual multiprocessor
concepts are implemented, such as message-passing, shared-memory, interproces-
sor communication and global semaphores. See [8] for more details.

5.1 Extensions

For the implementations of the above mentioned multiprocessor concepts the as-
sumption has been made that all processors share a global main memory. But the
operating system is not able to deal with distributed memory such as our communi-
cation memory. Therefore certain extensions and additions have been made to the
operating system. Only little changes have been made to the kernel itself. Standard
Unix applications are runnable on MEMSY because the system-call interface stayed
intact.

Integration of the additional hardware, particularly the communication memories
and the distributed interrupt-system, was one of the first steps. One of the next steps
made was the implementation of basic mechanisms for all sorts of communication
and coordination, which depend on the shared-memory. On top of these mechanisms
most of our other extensions are built. The Unix system-call interface was extended
by additional system calls, as described in section 4.1.

In the following sections only some of the extensions are described. Our concept
for support of user programs and a hierarchy of communication mechanisms using
the distributed shared-memory is introduced.

Support of Distributed User Programs. Various demands on high-performance
multiprocessor systems are made by the users. A system should be highly available
and easy to use. There should be as little interference with other user programs as
possible and the computing power should always be the maximum available. For
their programs users demand the usual, or even an enlarged functionality, short
start-up times and the possibility of interactive testing.

The Application Concept. In MEMSOS most of the users’ needs are supported by
the realization of ourapplication concept. We define the set of all processes belong-
ing to one single user program as anapplication. An application can be identified
by a uniqueapplication number. Different applications running on MEMSY are dis-
tinguishable by that number. Single application processes, calledtasks, inherit the

14

application number and are assigned atask number, which is a serial number unique
for this application and processor node. So an application task can be identified by
its application number, task number and node number.

At system initialization time one outstanding application is created. This initial
application, themaster application, is made up of application daemons running on
each node and a single master application daemon, which may be distributed. All
daemons communicate with each other. It is the purpose of these daemons to create
the user applications on demand and to keep track of them. For each new application
the master daemon allocates a free, unique application number. As the first task of
each application the applicationleader task is started on each node by the other dae-
mons. The leader task creates the application environment and all subsequent tasks.
It supervises the execution of the application tasks on that node it is running on and
communicates with all leader tasks of the same application. The leader tasks act as
agents to the master application.

This simple application concept makes it possible to easily control and monitor
distributed user programs. Because single applications can be distinguished from
one another, more than one application can be allowed to run in parallel on MEMSY.
By changing the processor binding and process/task scheduling more efficiency can
be achieved.

Processor Binding and Process Scheduling. In the SYSTEM V/88 operating sys-
tem each processor can have its own assigned process run queue which it prefers to
use. Each Unix process is bound to a certain run queue. During a process switch the
binding can be changed. The run queue, bound to a processor, can also be changed
depending on system work load. In the original implementation (R32V3.0) there
was only one run queue for all processors assigned, although more run queues could
have been possible. See [7] for more details.

To support applications more efficiently the processor binding and the number of
run queues was altered. In our implementation there exists onesystem run queue for
all system processes, which is bound to one of four processors. For each application
running on a node anapplication run queue, local to that node, will be created.
These application run queues are handled by the remaining processors. The binding
is not static and can be changed dynamically.

Additionally a new concept calledgang scheduling has been realized. Each ap-
plication is assigned an application priority. The tasks of the application with the
highest priority will be scheduled first. The application priority can change dynam-
ically, depending on the system work load. The system workload is supervised by a
distributed scheduler process, which will change application priorities and proces-
sor binding accordingly.

Interrupt Mechanism. As shown in section 3.2 the access time to the communi-
cation memory is higher than, for example,. to the local memory. To use polling
mechanisms on the communication memory is therefore very inefficient and must
be avoided, at least in the kernel. Because of this an interrupt connection between

15

nodes is necessary. This connection is made only between those immediate nodes
which share a communication memory. We use a special hardware, supported by
software, to generate these inter-node interrupts.

With every interrupt triggered a word is provided at a defined memory location
in the communication memory owned4 by the triggering node. The interrupt hard-
ware recognizes the port on which the interrupt occurred and the software can locate
the corresponding node number and communication memory, from which the sup-
plied word can be read.

The interrupt word consists of two parts. The first part is 8 bit wide and represents
the interrupt type, the second part, thedata-part, is 24 bit wide and is free for other
use. The interpretation of the type depends on the data-part.

An interface is provided by the interrupt module, so that it can be used by other
kernel modules5. A module has to reserve interrupt types as needed and register a
callback function for every reserved type. Some types are already reserved by the
interrupt module itself. They are used e. g. for establishing an initial connection or
for state information important for other nodes. For a kernel module the reserved
types must be system-wide identical. A singleinterrupt-send routine is provided to
initiate an interrupt. Parameters of this function are the destination node number,
the interrupt type, the data-part and a time-out value. With this time-out value one
can switch between time-out mode, blocking and non-blocking mode.

In case of an interrupt the interrupt mechanism reads the supplied interrupt word,
extracts the type and then calls the registered callback function with the senders
node number, the interrupt type and the data-part as parameters.

Certain enhancements have been implemented to increase the robustness of the
interrupt mechanism. The interrupt mechanism automatically tries to establish con-
nections to all immediate neighbours which are accessible. It monitors these con-
nections and reports changes in status to the kernel modules by using the callback
functions. By using a FIFO queue, the interrupt mechanism is able to smooth short
peaks in the interrupt frequency.

Message-Passing Mechanism. The message-passing mechanism was implement-
ed as one of those kernel modules using the interrupt mechanism.

A message consists of the message header and the message body, which can hold
six words (24 bytes). For the messages a static buffer pool is allocated in the com-
munication memory modules which the node owns. A special buffer management
was implemented. It has the responsibility of keeping track of each buffer sent. This
is very important for maintaining consistency of the buffer pool.

The interface of message-passing module is constructed in the same way as the
interface of the interrupt module. One has to reserve message types and register a
callback function for each type reserved. To actually send a message a singlemes-
sage-send function is provided.

4. To provide a uniform structure of the communication memory, the physical mem-
ory may be divided into logical parts, which may be assigned to different nodes.

5. We call each of our implemented kernel extensions a module.

16

If the message-send routine is called, the message-passing mechanism allocates
a buffer for the message, fills in the message header and copies the message body.
Some processor nodes may have more than one logical communication memory, so
the buffer is allocated in that memory module which the receiver or the routing node
has access to. The message-passing mechanism then calls theinterrupt-send func-
tion with parameters destination node, type and index of the allocated message buff-
er.

Message buffers sent to an immediate neighbour are not sent back immediately,
but are gathered by the receiver. This is done to reduce the interrupt rate. There are
three events in which accumulated buffers are sent back:

• A certain amount is exceeded. The limit is a tunable parameter.
• A message is sent in the opposite direction. The accumulated buffers belonging

to the receiver are simply added to the message.
• A neighbour requests the return of the used buffers.

A simple protocol guarantees that a message is received by the destination node.
Additional protocols assure that a received message is accepted by the destination
kernel module.

Shared-Memory Mechanism. Another communication mechanism, beside the
message-passing mechanism, is the shared-memory mechanism. In the following
section we introduce our implementation of this mechanism.

The shared-memory mechanism consists of two parts. These are the communica-
tion memory manager which provides the linkage to the physical shared-memory
and, as main part, the shared-memory manager. The shared-memory manager imple-
ments the necessary protocols to maintain the consistency of allocated
shared-memory segments. It also supplies a simple interface useable by other kernel
modules.

Communication Memory Manager. To allocate or free pages6 from the communi-
cation memory, the shared-memory mechanism uses calls to the communication
memory manager. The pages available for shared-memory are numbered consecu-
tively and linked by using a table containing one entry for each page. The entries
determine the number of the following page, which need not be the one physically
following. What distinguishes this memory manager from others is the lack of au-
tomatic memory mapping or unmapping. Therefore a call to theallocate function
does not return the start address of the allocated memory, but a pointer to a table
containing the page numbers. The information about the pages is essential, because
the address space mapping may not be the same on all nodes. All tables are situated
in the communication memory itself so that they are accessible by
immediate-neighbour nodes. Additional calls exist for calculating addresses out of
page numbers and for mapping and unmapping the allocated memory into and out
of the kernel address space.

6. The hardware only supports pages of 4K byte granularity.

17

Shared-Memory Manager. The shared-memory manager provides the functional-
ity used for communicating with immediate neighbours and keeps track of allocated
pages to allow their re-integration in case of faults on neighbouring nodes. On allo-
cation of a shared-memory segment, the memory manager validates provided pa-
rameters and chooses that communication memory which the destination node has
access to. If an immediate neighbour wants to share an allocated memory segment,
the memory manager provides upon request the offset to the corresponding page ta-
ble. For the inter-node communication the message-passing mechanism is used. On
the destination node the shared-memory manager is able to locate the page table and
to map the shared segment into the kernel address space.

On top of the shared-memory manager a system-call interface (as described in
[6]) is established. This interface allows an efficient use of the shared-memory
mechanism by the application programmer.

In MEMSOS we want to examine certain aspects of different communication mech-
anisms. In section “Message-Passing Mechanism” the basic message-passing mech-
anism was introduced. This mechanism was built on top of the interrupt mechanism
described above. In this section we have described the shared-memory mechanism.
In this shared-memory mechanism we use the message-passing mechanism as the
basis for communication. This was done because the amount of communication
needed and the time used for it is fairly small in comparison with the data trans-
ferred and the time needed for reading and writing the data.

6 Conclusions

In this paper the MEMSY project was introduced. MEMSY belongs to the class of
the shared-memory multiprocessors. Viewed from the hardware level massive par-
allel systems with global shared-memory have not been realizable up to now. A
compromise has to be made between an efficient system on one side and a general
purpose system on the other side.

MEMSY offers tightly coupled processor nodes arranged in a hierarchy of grids.
The sharing of memory is only between nearest-neighbour nodes. It was shown that
with the additional hardware, called coupling units, it is possible to reduce the
amount of necessary connections without too much loss in efficiency. Because of
the constant complexity of inter-connections and the modular concept the system is
easily scalable.

An easy to use programming model which offers even a great variety of para-
digms used in the programming models of other high-performance multiprocessor
systems was introduced. Because of this programming model many existing user
programs are easily portable to our system. Currently some programs are ported to
the MEMSY system. By examining these programs we hope to gain more informa-
tion about the system performance and be able to take valid measurements.

Our application concept was introduced. It offers a way to supervise distributed
user programs. It is the basis for further work to be done in the area of user support
and load balancing.

18

Because MEMSY is an experimental multiprocessor system it was tried to imple-
ment as many communication mechanisms as possible. An important aspect in do-
ing this was to be able to compare their usefulness and performance and therefore
be able to validate our multiprocessor concept.

References

1. [1]M. Dal Cin et al., “Fault Tolerance in Memory Coupled Multiprocessors”; in
this volume

2. [2]G. Fritsch et al., “Distributed Shared-Memory Architecture MEMSY for High
Performance Parallel Computations”;Computer Architecture News, Vol. 17,
No. 6, Dec. 1989, pp. 22 - 35

3. [3]W. Händler, F. Hofmann, H.-J. Schneider,“ A General Purpose Array with a
Broad Spectrum of Applications”;Computer Architecture, Informatik
Fachberichte, Springer Verlag, No. 4, 1976, pp. 311-335

4. [4]U. Hildebrand,Konzeption, Bewertung und Realisierung einer dynamischen
Netzwerkkomponente für speichergekoppelte Multiprozessoren, Dissertation,
Arbeitsberichte des IMMD, Univ. Erlangen-Nürnberg, Band 25, No. 5, 1992

5. [5]R. Hofmann, “The Distributed Hardware Monitor ZM4 and its Interface to
MEMSY”; in this volume

6. [6]Kardel, W. Stukenbrock, T. Thiel, S. Turowski,Anleitung zur Benutzung des
MEMSY-Programmiermodells für Anwender; interner Bericht, IMMD 4, Univ.
Erlangen-Nürnberg, Oktober 1991

7. [7]Karl J. Rusnock,Multiprocessor SYSTEM V/88 Release 3 Design Specification;
Motorola, Confidential Proprietary, May 1989

8. [8]K. Rusnock, P. Raynoha,“ Adapting the Unix operating system to run on a
tightly coupled multiprocessor system”;VMEbus Systems, Oct. 1990, Vol. 6,
No. 5, pp. 8-28

9. [9]K. Rusnock,The Multiprocessor M88000 RISC Product; Motorola
Microcomputer Division, Tempe, AZ 85282, 1991

