
Friedrich-Alexander-University
Erlangen-Nürnberg, Germany

Franz J. Hauck, Ulrich Becker, Martin Geier,
Erich Meier, Uwe Rastofer, Martin Steckermeier

AspectIX: A quality-aware, object-based
middleware architecture

Technical Report TR-I4-01-04
2001-05-17

Informatik 4 (Distributed Systems and Operating Systems)
Prof. Dr. Fridolin Hofmann



– 0 –

This report was also published as:

F. J. Hauck, U. Becker, M. Geier, E. Meier, U. Rastofer, M. Steckermeier:
AspectIX: a quality-aware, object-based middleware architecture. Work in
Progress.Proc. of the 3rd IFIP Int. Conf. on Distrib. Appl. and Interoperable
Sys.—DAIS (Krakow, Poland, Sep. 17–19, 2001). Kluver, 2001.



– 1 –

ASPECTIX: A QUALITY-AWARE, OBJECT-BASED
MIDDLEWARE ARCHITECTURE

Franz J. Hauck, Ulrich Becker, Martin Geier,
Erich Meier, Uwe Rastofer, Martin Steckermeier
Informatik 4, University of Erlangen-Nürnberg, Germany

Abstract: Quality of service is becoming more and more important in distributed
systems. Current middleware systems lack quality-of-service support
on the application and on the system level.AspectIXis a CORBA-com-
pliant middleware platform that defines generic interfaces to control
quality-of-service and an infrastructure for quality implementations.
AspectIXis based on a fragmented object model that can provide trans-
parent client-side quality implementations. Quality implementations
can be weaved into functional fragments using a hierarchy of Weave-
lets which are modular code-transforming software components. A
distributed policy decision engine allows administrators to influence
object-internal decisions, e.g., decisions about how to implement the
current quality-of-service requirements.

Keywords: Quality of Service, Middleware, Distributed Objects, Programming
Models for Distributed Systems, CORBA, Policy-Enabled Application

1. INTRODUCTION

Quality of service (QoS) becomes more and more relevant for distributed
applications. Not only do multimedia applications need a certain bandwidth
and a well-defined delivery time, but also a broad variety of traditional appli-
cations asks for some quality in terms of accuracy, security, scalability, fault
tolerance, and many more. Most middleware platforms today do not address
quality of service: neither do they support applications in expressing their re-
quirements on services or application components, nor do they provide mech-
anisms to integrate quality implementations into the system. Furthermore,
distributed applications should adapt to domain-local policies that may pre-
scribe certain quality levels and implementation mechanisms, e.g., a certain
encryption algorithm for security reasons.

This paper introduces the ongoing research projectAspectIXthat is about
the design and implementation of a quality-aware middleware platform on the
basis of distributed objects.



– 2 –

2. THE ASPECTIX MIDDLEWARE

AspectIXis a CORBA-compliant middleware system [2]. ThusAspectIX
supports distributed objects that can be transparently invoked in a distributed
system. The interface of an object is described in CORBA IDL [6].AspectIX
integrates quality-of-service awareness on the basis of distributed objects. So,
the clients of an object and the administrators of domains and applications may
want to configure their requirements on an object’s behavior. The object im-
plementation in turn will consider those requirements and use various quality
implementations to not only provide its functional behavior but also the re-
quested quality.

2.1 Quality-of-Service Interface

The client interface of anAspectIXobject has two additional methods that
can be used to configure quality-of-service requirements. This QoS interface
is generic, i.e., it is the same for every quality-aware object regardless which
quality requirements and implementations are supported by the object.

For historical reasons, we name every category of quality an aspect of the
functional object implementation. This relates to the term aspect of aspect-ori-
ented programming [3]. On the basis of object references, a client can provide
aspect-configuration objects that describe the quality-of-service requirements
of the client with respect to certain aspects (e.g., one configuration object for
configuring security, another one for fault tolerance). The client can investi-
gate which aspect configurations are supported by the object. An object can
immediately refuse to accept requirements if it cannot fulfill them.

If the object accepts the aspect-configuration objects of a client, it will im-
plicitly promise to provide the corresponding quality of service. If an object
implementation can no longer fulfill those requirements (e.g., because the net-
work is currently congested) the client will be informed via a callback inter-
face and an exception. In such a case, the client gets not only a list of the failing
aspect configuration objects but also a set of alternative configurations. The
latter can be influenced by the client by assigning priorities to the different as-
pect configuration objects. Configuration objects with higher priority will
preferably not be changed compared to the current configuration whereas oth-
ers with lower priority might be changed to compute an alternative configura-
tion that the object implementation is able to fulfill.

Administrators can influence the QoS behavior of objects by providing so-
called policy rules. Such rules contain small decision programs that provide a



– 3 –

decision for a certain decision type, e.g., shall a communication link send en-
crypted messages and what encryption algorithms shall be used. As we will
see later, the object will request those policy decisions and thus consider the
administrators wishes, especially their demands on the QoS behavior of an ob-
ject.

2.2 Application Programming Model
AspectIXadopts a partitioned or fragmented object model for programming

applications. A distributed object is partitioned over multiple hosts. Every cli-
ent that has bound to a distributed object gets a fragment of the object in its
local address space. This fragment serves as a local access point to the object.
The fragment will communicate with other fragments of the same object in or-
der to locally implement the object’s functionality. In case of modelling a stan-
dard CORBA object, most fragments have simply CORBA-stub behavior
whereas there is one designated server fragment that is contacted by all the
stub fragments.

When it comes to quality-of-service requirements by the client, a simple
stub may be not enough, as it can only communicate with a single server using
CORBA’s remote invocation protocol. For several quality requirements there
is a need for other protocols (e.g., real-time protocols) or for some communi-
cation with multiple other fragments (e.g., for implementing fault tolerance
and scalability by replication).

The local fragment is dynamically loaded by the ORB when a client binds
to an object the first time. This binding process is completely transparent to
the client. A client just uses CORBA’s standard binding techniques
(string_to_object and reference passing via method calls). The local frag-
ment implementation is also able to transparently replace itself by another im-
plementation. Repositories and location services help in loading fragment im-
plementations and in locating the other fragments of a particular object.

Client-side quality-of-service requirements can be expressed on a per-frag-
ment basis. For the client, all object references to the same local fragment own
the same set of aspect configuration objects. There may be multiple fragments
of the same distributed object in a local address space, so that different require-
ments to the same object can be expressed by having an own fragment for each
of them.

For all kinds of strategic decisions inside of the object’s fragment imple-
mentations, a policy decision engine is consulted. Instead of hard-wiring deci-
sions into the fragment code, they are strictly separated from the correspond-



– 4 –

ing mechanisms and expressed as policy rules. For every necessary decision
type, the fragment and object developers provide a dedicated policy rule that
can decide eventually by considering system conditions and the result of que-
ries to external services. The decision of those developer-provided rules can
be delegated to policy rules from administrators. Thus, administrators are al-
lowed to influence not only the quality-of-service but also the object’s strate-
gic behavior. We call this conceptpolicy-enabled application [5].

2.3 Object-Based Quality Implementations

We assume that fragment implementations contain the quality implementa-
tions they need, e.g., consistency protocols for replication and encryption al-
gorithms for security. By replacing the local fragment implementation, the
distributed object may switch to alternative quality implementations accord-
ing to current system conditions and client requirements.

However, interlocking the functional code with different quality implemen-
tations is intricate and requires deep knowledge of the quality implementation
from the developer of a service. TheAspectIXapproach to that problem is to
allow quality implementors to describe a code transformation process that
converts quality-unaware functional code into a fragment implementation in-
cluding the required quality implementations. The object developer just has to
write the functional code which is then automatically converted to a fragment
implementation. Of course, there is some need for additional parameters to be
given by the object developer. Those can be used to control and influence the
conversion process. Examples are the tagging of methods as read or write
methods, the tagging of variables as transient or persistent, etc.

The code conversion is similar to the weaving process of aspect-oriented
programming (AOP) [3]. With AOP, an aspect weaver generates code from
both, a functional program and an aspect program. An aspect program con-
tains the concise code for describing an aspect of the functional program
which otherwise would need code scattered over the whole functional pro-
gram. Thus, the aspect program compares to the additional parameters an ob-
ject developer has to provide for generating fragment implementations. As
weaving is a complex process,AspectIXsupports the quality implementor in
defining it. The weaving process is modularized in a hierarchical way. The
units of composition are called Weavelets which are internally represented as
objects. Elementary Weavelets are provided by theAspectIXcode generator.
They can add new code at the beginning or end of a method, add new vari-
ables, change parameters and exception declarations, etc. Complex Weavelets



– 5 –

are built by using elementary and other composite Weavelets. A top-level
Weavelet finally describes the complete process of integrating a certain qual-
ity implementation with functional code. Weavelets create not only code but
also skeletons for the policy rules that are necessary to decide on the decision
requests inserted into the quality implementations. The skeletons have to be
filled with decision code by application developers. As an alternative, the de-
cision code can be provided as additional information to the weaving process.

Still, the interlocking of the functional code with the quality implementa-
tions is an intricate process. However, instead of scattering quality implemen-
tations over the functional code, the application developers are asked to define
the necessary weaving process. This process is expressed by Weavelets. Thus,
the knowledge about the weaving process is collected, preserved, and can be
reused for other applications. The definition of a weaving process will become
the easier the more suitable Weavelet implementations already exist.

Inside of a fragment, the quality implementation has to provide means to
monitor and react on changes of the current quality characteristics. This pro-
cess is supported byAspectIXin form of so-called QoSlets. QoSlets are code
sections that can be activated by internal events, e.g., on communication fail-
ures, incoming and outbound messages, time-triggered events, etc. A QoSlet
manager takes care about the correct execution of QoSlets. An activated QoS-
let implements certain reactions with respect to the required quality of service,
e.g., re-establishing a communication link, metering and monitoring timing
and usage behavior, etc. Thus, the code of many QoSlets can be reused in dif-
ferent environments and forms a building block for quality implementations.
Special Weavelets can insert QoSlets and QoSlet managers into a fragment
implementation and thus automate the integration process.

2.4 Middleware-Based Quality Implementations

Some quality-of-service implementations have to be put into the middle-
ware or the operating system as they touch inherent system behavior like me-
mory management, thread scheduling and communication protocols. So far,
AspectIXonly supports protocol modules that can be dynamically loaded into
the ORB in order to adapt it to varying application demands.

To make protocol modules accessible from the application, AspectIX intro-
duces the notion of communication end points (CEPs) that form a well-defined
system-independent interface for communication via arbitrary protocols. So
far three different kinds of CEPs are supported: message-based, connection-
based and invocation-based CEPs.



– 6 –

The distributed policy decision service introduced in Section 2.2 provides
the evaluation of policy rules on request of a fragment implementation or even
of the system itself. The core of this service consists of a distributed rule base
that distributes the necessary policy rules to every location on which a decision
request may be necessary. The rule base maintains rules of administrators for
all locations that belong to the administrators domain. Thus, domain-depen-
dent decisions are supported.

3. CONCLUSION

We introducedAspectIX, a CORBA-compliant middleware system that
supports quality-of-service on a per object basis.AspectIXcompares to some
related systems:MAQS[1] andQuO [7] also integrate quality-of-service im-
plementations into CORBA, but do not have transparent object binding, if the
object should immediately use quality implementations.AspectIXhas trans-
parent binding, as does theSquirrel system [4]. UnlikeSquirrel and QuO,
AspectIXhas well-defined interfaces to negotiate quality-of-service require-
ments. Unlike any of the other systems,AspectIXespecially supports automat-
ic interlocking between functional and QoS implementation by a modular
weaving process.

A complete prototype ofAspectIXis still under construction. However, a
first part, theAspectIXIDL compiler IDLflex will be released in May 2001.
The prototype components have been developed entirely in Java. The current
status of the project can be looked up at:http://www.aspectix.org .

REFERENCES

1. C. Becker, K. Geihs: Generic QoS specifications for CORBA.Proc. of Kommunikation in
Verteilten Systemen—KiVS. Informatik aktuell. Springer, 1999.

2. F. J. Hauck, E. Meier, et.al.: A middleware architecture for scalable, QoS-aware and self-
organizing global services.Proc. of the USM Conf. 2000. LNCS 1890, Springer, 2000.

3. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, J. Irwin:
Aspect-oriented programming.Proc. of the ECOOP Conf. LNCS 1241, Springer, 1997.

4. R. Koster, T. Kramp: Structuring QoS-supporting services with smart proxies.Proc. of the
Middleware 2000 Conf.. LNCS 1795, Springer, 2000.

5. E. Meier, F. J. Hauck:Policy-enabled applications. Tech. Report TR-I4-99-05, IMMD IV,
Univ. Erlangen-Nürnberg, July 1999.

6. Object Management Group, OMG:The Common Object Request Broker: architecture and
specification. Rev. 2.4.2, OMG Doc. formal/01-02-33, Feb. 2001.

7. P. Pal, J. Loyall, R. Schantz, J. Zinky, R. Shapiro, J. Megquier: Using QDL to specify QoS-
aware distributed (QuO) application configuration.Proc. of the 3rd ISORC Symp., 2000.


	1. Introduction
	2. The AspectIX Middleware
	2.1 Quality-of-Service Interface
	2.2 Application Programming Model
	2.3 Object-Based Quality Implementations
	2.4 Middleware-Based Quality Implementations

	3. Conclusion

