
Charakterisierung der Leistungsaufnahme von mobilen
Geräten im laufenden Betrieb

Studienarbeit im Fach Informatik

vorgelegt von

Florian E.J. Fruth
geboren am 26. Januar 1979 in Schillingsfürst

Institut für Informatik,

Lehrstuhl für Verteilte Systeme und Betriebssysteme,

Friedrich Alexander Universität Erlangen-Nürnberg

Betreuer: Dipl.-Inf. Andreas Weißel

Prof. Dr. Wolfgang Schröder-Preikschat

Beginn der Arbeit: 01. November 2004

Abgabedatum: 11. April 2005

Erklärung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer als der angegebe-

nen Quellen angefertigt habe und dass die Arbeit in gleicher oder ähnlicher Form noch keiner an-

deren Prüfungsbehörde vorgelegen hat und von dieser als Teil einer Prüfungsleistung angenommen

wurde.

Alle Ausführungen, die wörtlich oder sinngemäß übernommen wurden, sind als solche gekenn-

zeichnet.

Erlangen, 01. Mai 2005

Run-time Energy Characterization of the Intel PXA

Student Thesis

by

Florian E.J. Fruth
born January 26th, 1979, in Schillingsfürst

Department of Computer Science,

Distributed Systems and Operating Systems,

University of Erlangen-Nuremberg

Advisors: Dipl.-Inf. Andreas Weißel

Prof. Dr. Wolfgang Schröder-Preikschat

Begin: November 1st, 2004

Submission: April 11th, 2005

Abstract

An important issue of mobile devices is energy consumption. There are different approaches on

how to optimize the available energy. One method is to reduce the CPU frequency to save power.

Other methods include scheduling strategies and if possible the complete shutdown of hardware

components.

For power management, energy accounting, battery lifetime estimation and similar approaches

it is necessary to measure how much energy was consumed before and after the changes. The

measurement can be done with external hardware. In cases when there is no developer board

available it can be difficult to measure the consumed energy, e.g. if you want to do tests on a mobile

phone or organizer with embedded processors.

Therefore this thesis is an approach to provide energy consumption estimation without the need

for external measurement hardware. Exemplary the Intel PXA 255 architecture will be used. It has

two performance counters which make it possible to estimate the energy. The first part of this work

is to get an energy consumption per event depending on the current processor and RAM frequency.

The Intel PXA 255 processor supports different CPU and memory speeds. As a consequence there

are different internal CPU voltage settings. So it is necessary to map different events to energy

consumptions depending on the current CPU and memory frequencies.

There are only two performance counters and a variety of different applications with different

usage of memory, processor and I/O. This thesis will show that two performance counters are not

sufficient to estimate all types of programs in an accurate way but it is possible to train the energy

weights for representing specific applications in an accurate way. It also evaluates the approach

to switch the performance counters during runtime. This multiplexing technique gives a virtual

view of more counters. The acquired results lead to the conclusion that the performance counter

multiplexing is not sufficient to represent all types of applications at once but for a larger subset

of applications compared to only two counters. For example it was possible to get an average

estimation error below 2% with three tested real world applications.

vii

Contents

1 Introduction 1

1.1 Overview . 1

1.2 Related Work . 2

2 Test Case 4

2.1 Basic Setup . 4

2.2 Problems with the Test Setup . 6

3 Energy Estimation with Fixed Performance Counters 8

3.1 Implementation . 8

3.2 Determination of the energy weights . 8

3.2.1 Test programs . 9

3.2.2 Analysis . 9

3.2.3 Toolchain . 11

3.2.4 Energy Weight Calculation . 11

3.2.5 Clock Counter Problems . 13

3.2.6 Determined weights . 14

3.3 Evaluation . 15

3.3.1 Test Programs . 16

3.3.2 Benchmarks . 17

3.3.3 Real World Programs . 19

3.3.4 Table of Estimation Errors and Conclusions 19

4 Energy Estimation with Alternating Performance Counters 24

4.1 Implementation . 24

4.2 Estimation . 25

4.3 Evaluation . 26

5 Future Work 35

6 Conclusion 36

Bibliography 38

viii

Chapter 1

Introduction

1.1 Overview

For mobile devices the amount of energy usage is important. There are different approaches to

maximize the device uptime, battery lifetime or the performance. For these methods of resolution

it is necessary to measure the energy consumed by the mobile device.

Naturally it is done by external measurement devices. This means extra costs for the measure-

ment equipment and this is not always possible, e.g., if there is no developer board available or the

form factor of the device under test does not allow measurement hardware to be attached. Addition-

ally if the results are needed for run-time purposes it is necessary to get them back inside the device

and an interface between the operating system and the measurement hardware has to be established.

This thesis shows a way to avoid the need for extra measurement hardware in specific situations. It

is an approach to use the build-in performance counters of the Intel PXA 255 processor for energy

estimation. These performance counters provide a way to measure two out of 14 different events at

the same time.

The first part of this thesis shows how to assign different amounts of energy to the triggered

events. We will show that with the drawback of only two performance counters included in the

PXA processor it is difficult to measure different types of applications and give an exact energy

estimation. To unmake this drawback it is possible to use the two performance counters to count

different events by switching the triggered events during run-time. This makes it possible to mea-

sure more than two events with the drawback that there is overhead for switching the counters.

The second part of this thesis is the evaluation of the measurements. It examines if it is better

to trigger two static events or switch them on run-time. It also shows the error estimation of the

different methods and compares the results of the test programs with benchmarks and real world

applications. This gives a clue that if you trigger the right events for the right application the energy

consumption estimation can be more accurate. But if you trigger the wrong events (e.g. memory

access for an application which uses only registers and many ALU operations) the estimation can

1

2 Chapter 1. Introduction

be improper. This thesis will also investigate if it is possible to train the energy weights that they

represent specific applications in an accurate way.

1.2 Related Work

There are two theses which are closely related to this one. The first is Accounting and control

of power consumption in energy-aware operating systems[17] from Martin Waitz. It introduces

an accounting model based on resource containers. Resource containers represent an accounting

model of used resources. It is a model which makes it possible to always charge the party that

is responsible for resource usage. Waitz uses the performance counters of the Intel Pentium 4

architecture for measuring the consumed energy. This was realized with a Linux kernel patch.

The advantage of the resource containers patch is that it provides an easy way of monitoring the

performance counters on a per container basis. So it is possible to determine which application

used how much energy. This thesis is based on the Intel PXA 255 processor on an Intel XScale

developer board. Ka-Ro electronics[6] patched the Linux kernel 2.6 to make it work on the Intel

XScale board. So the patch from Martin Waitz was ported to the patched Ka-Ro kernel. This

provides the possibility to use the resource containers for energy consumption on a per process

basis together with the PXA 255 processor.

The second related thesis is Event-driven temperature control in operating systems[8] from

Simon Kellner. He used the performance counters of the Intel Pentium 4 processor to estimate

the energy consumption. Based on this power usage estimation he evaluates the temperature of

the processor. The difference from his and my work is that he had more than two performance

counters. Additionally the Intel PXA processor is able to work with different clock speeds. This is

another aspect of estimating the power consumption because a different clock speed also means a

different voltage supply for the processor. And so the event counters do not always represent the

same amount of energy. Instead a triggered counter presents an amount of energy based on the

current clock speed while keeping in mind that the clock speed may be changed at run-time.

Furthermore there is the work of Russ Joseph and M. Martonosi[5] who used the performance

counters for an energy estimation on an Alpha 21264 Simulator and an Intel Pentium Pro. They

show that performance counters are meant to measure performance and not energy. To get accurate

results it would be better to have counters which were meant to measure energy, e.g. they address

the lack of register and memory usage counters. In the Alpha 21264 simulation they used a heuristic

model for mapping the existing performance counters to represent energy counters. They also

used a multiplexing technique to measure more than the two existing performance counters. Their

results show that directly measurable events give errors around 5% while counters which use their

heuristics can lead to errors above 20%. This especially happens with floating point operations and

1.2. Related Work 3

an nondeterministic use of load and store operations. Their tests on a real Pentium II architecture

give errors up to 15%.

Bellosa[2] shows that for an accurate online energy consumption estimation it is necessary to

use extra hardware which represents the current usage of processor and memory. He investigates if

the performance counters are suitable enough for this task. He uses an Intel Pentium III processor

for power usage estimation with a modified version of PAPI[9]. The Pentium III processor also

supports only two performance counters which gives errors within 15% of the real usage. To

analyse if more performance counters would reduce the error the test programs were rerun several

times while measuring different counter types. Five counters were enough to reduce the error ratio

below 5%. The problem were especially counters which represent the usage of different computer

components. For example if a load instruction occurs it is possible that the data is stored in the

first level cache. This means that one event only represents a first level cache read and register

store. On the other hand if the data is not cached but stored in the RAM this needs much more

energy. Bellosa also analyzed the memory energy consumption. Different types of memory show

different energy consumption but he showed that it is possible to use only one counter to estimate

the energy usage within a 3% error. His conclusion is that if there were more counters an accurate

measurement would be possible. And he suggests that not only the processor but all hardware

components should implement performance counters. This would make it possible to get a very

accurate energy model.

There are several projects for reading and accounting the performance counters. The first exam-

ple is PAPI[9]. It provides an interface for multiple architectures including x86, IA-64 and Alpha.

It consists of a kernel and an userspace part. The kernel part is responsible for reading and ac-

counting the events depending on the used architecture. The user space part provides an API which

is independent from the hardware architecture. That makes it easy to port userspace programs to

different architectures which are supported by PAPI. It also includes the possibility of multiplexing

performance counters in hardware and if this is not possible also in software.

Other performance counter tools include perfmon[15] and different versions derived from it.

perfmon also consists of a kernel and an userspace part but only supports SPARC I/II and Intel

Pentium I/II with Solaris. There is another version for the Itanium I/II[3] using Linux with kernel

2.4 and 2.6. perfmon does not support performance counter multiplexing but there is an extension

called vEC[7]. vEC is based on perfmon and supports multiplexing which was used for memory

system energy estimates.

Chapter 2

Test Case

2.1 Basic Setup

The basic setup can be split into the external and internal parts. The external part is represented by

figure 2.1. It shows the Intel XScale Developer Board with an Intel PXA 255 processor[4] which

was used for the tests in this thesis. To measure the energy consumption the measurement device

NI SC-2345[11] was connected to the 3.3V voltage wire. For data acquisition the SC-2345 was

connected to a PCI card of the PC. The PC runs National Instruments Labview[10] for data ac-

quisition. Figure 2.2 shows a screenshot of Labview. It shows which components were used and

how they were put together. The main component is the DAQ assistant which is used to setup the

measurement details. It contains what should be measured, scaling factors, time intervals and other

variables. The output of the DAQ assistant is connected to the signal graph and the write lvm-files

module. The write lvm-files module writes the measured data to a text file. These files include a

header and a tabular separated list of time and measured value pairs. The signal graph output is

shown in figure 2.3 where the x-axis represents the time in seconds and the y axis the used power

in watt. Labview provides an easy graphical user interface for a graphical investigation of the mea-

Figure 2.1: The test setup

4

2.1. Basic Setup 5

Figure 2.2: Screenshot of Labview

Figure 2.3: Screenshot of Labview

6 Chapter 2. Test Case

sured data. For a better evaluation it is possible to write the data in lvm files. The first screenshot

additionally shows two other aspects. The First one is setting the timeout for the DAQ assistant.

The first measurement approach always failed after a few seconds because the default timeout is

set to a very low value. The last module is the box around the others which represents a for loop

currently set to a value of 11000 which represents the approx. three hours of measurement for the

test applications if the DAQ assistant is set to measure one second intervals.

The consumed energy is

PCPU = (USUPPLY −UR)∗UR

R

The NI SC-2345 supports different measurement modules for different voltage ranges. In this setup

the SCC AI-06 module[11] was used which supports input voltages from±10mV . The output range

is ±10V which represents a gain of 100. This leads to the formula

PCPU = (USUPPLY −
UMEASURED

100
) ·UMEASURED

100∗R

With a Resistor of 0,1Ω the final approximation is

⇒ PCPU ≈ 0.33 ·UMEASURED

This value can be directly set in the NI Labview software which makes it possible to directly

measure the power consumption.

The NI SC-2345 measures the voltage on the 3.3V power supply. This power supply is mainly

used by the CPU and the ram. It would be also possible to measure the 12V power supply but as

the performance counters only represent power consumption of the processor this would be more

inaccurate.

The internal part can be summarized to a Linux 2.6.3 kernel modified by Ka-Ro electronics[6]

to run on the Intel Developer Board. The kernel had to be extended to make it possible to setup and

read the performance counters.

2.2 Problems with the Test Setup

There were three main problems with the measurement encountered during this thesis. The first

one is that the whole test program measurement took about three hours. With a data rate of 50,000

samples per second this makes 540 million data records. The initial Labview setup stored all these

records in the memory which didn’t work because there was not enough memory to store the 11GB

2.2. Problems with the Test Setup 7

of data. So the setup was modified that it stores the data after each second while continuing the

measurement. This try also failed. It leaded to gaps in the measurement. After some testing

this problem was partly solved by terminating all other processes beside the Labview program on

the Windows computer. As long as nobody does anything on the PC while the measurement is

running it works. But something as simple as the screen saver could cause a gap again. This

misbehavior could only be solved by starting the measurement and wait three hours to check if it

was a successful measurement without gaps. A Perl script was written to check for gaps. It runs

directly on the Windows computer with cygwin[12]. The cygwin port of GCC made it also possible

to compile the program which sums up the energy on a per second basis for Windows.

The second problem were some random hangups. Sometimes after a measurement was finished

it was not possible to start a new one. It seamed as the process which used the PCI measurement

card still locked it. Trying to find the corresponding process in the Windows process table to shut

it down gave no results. So the only solution was a Windows reboot. At least this hangups did not

happen during measurements.

Another Problem is the automation of the measurement. The measurement was always started

by hand for a predefined time interval. The start could be done by a remote desktop session.

Together with a serial line connection to the developer board the complete measurement process

could be handled via a remote connection. As the XScale board runs Linux it would have been

also possible to login via ssh but that would have falsified the measurements more then the serial

line connection. It would be much easier if it would have been possible to trigger it from inside

the developer board. The XScale developer board has outputs and the SC-2345 supports digital

inputs which should make this possible, but as some tries failed to accomplish this behavior it was

easier to start and stop the measurement by hand. Also in mind that the focus of this thesis is not

the setup of an automated measurement with Labview for the Intel XScale developer board but

on the energy consumption estimation with performance counters. Another aspect is that the start

and stop trigger signals for each test program could lead to other problems. For example when

starting a measurement Labview sometimes took multiple seconds before actually recording data.

This behavior was easily bypassed by the manual start because it is possible to see when Labview

starts the data acquisition. After that start the test programs can be run without losing any data.

Chapter 3

Energy Estimation with Fixed Performance Counters

The Intel PXA 255 supports only two performance counters. This chapter shows how the estimation

is done and how accurate it can be compared to the real consumption.

3.1 Implementation

The basis for the performance counter measurement was a Linux-2.6.3 kernel which was patched by

Ka-Ro electronics[6] to make it run on the Intel XScale board with the PXA processor. This kernel

was extended by the resource containers patch from Marin Waitz[17]. The main part was to replace

the performance counter setup and read calls to fit the ARM architecture of the PXA processor.

The port of the resource containers patch instead of a new implementation was made because the

containers make it easy to account the performance counters and corresponding energy separately

for each program. The resource containers also provide the possibility to group different programs

to the same container or group one process to several containers. The structure is hierarchical

which means the consumed energy is not only added to its corresponding container but also to its

parents. The root of this hierarchy is the root container which stores the used energy of the whole

system. Additionally a clock counter was added to the two performance counters to represent the

base energy usage. The accounting of the resource containers is implemented by modifying the

kernel scheduler and timer interrupt. The modified timer interrupt is responsible for the accounting

and the scheduler was modified to recognize task switches.

3.2 Determination of the energy weights

To estimate the energy weights for the performance counters it is necessary to measure the real

energy consumption and count how often the counters were triggered. These two values can be

used to calculate the weights which are needed for an energy estimation.

8

3.2. Determination of the energy weights 9

3.2.1 Test programs

For an accurate estimation there were test programs written which trigger specific counters again

and again. It is obvious that it’s not possible to trigger only one event at a time. For example a

branch instruction always additionally triggers an instruction executed, program counter change

event and perhaps also some others. The task was to trigger mainly one specific event. It is also

clear that some event counters such as instruction or data cache misses could not be triggered as

often as others.

The test programs were

• level 1 cache reads

• level 1 cache writes

• level 1 cache reads together with writes

• memory reads

• memory writes

• memory reads together with writes

• ALU utilization with add statements

• program counter changes with branch instructions

• a mix of many counters realized with a factorization program

3.2.2 Analysis

The first view on the Labview data records showed further problems with the measurement. As

figure 3.1 shows the average power usage at 100MHz is about 320mW. It also shows the first

problem: there are unpredictable spikes from time to time which get up to 550mW. The second

and even bigger problem can be seen in figure 3.2. There are steady energy fluctuations below the

normal value in an interval of ≈ 0.0171s. Deeper investigation also showed a little peek above

the normal level following the lower peeks by ≈ 0.0079s. The first idea was that this is caused by

the power supply which converts the 230V AC to 12V DC. But switching the power converter to

another model did not change this behavior. Another sign that the power supply might not be the

cause is that the AC has a frequency of 50Hz. This means that the interval would be 0.02s. Another

problem may be the conversion from 12V to 3.3V.

10 Chapter 3. Energy Estimation with Fixed Performance Counters

0.25

0.3

0.35

0.4

0.45

0.5

0.55

10 11 12 13 14 15

Power [W]

Time [s]

Idle Power

Figure 3.1: Energy Spikes

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

Power [W]

Time [s]

Idle Power

Figure 3.2: Short Energy Fluctuations

3.2. Determination of the energy weights 11

3.2.3 Toolchain

The measured values of the energy usage and the number of events triggered during the three hours

of one test run had to be prepared for the energy weight estimation. As the Labview data for this

time period was around 11GB of data it was impossible to split it to pieces by hand. In addition

to this the test programs should be run multiple times to give more accurate results leading to even

more data.

Three Perl scripts edited the data to get the energy weights. The first one splits the 11GB of

measurement data into pieces corresponding to the several test programs. The problem shown in

figure 3.2 made this more complicated then it had to be. The easy approach that an energy around

the idle level means idle and everything above it represents a test program was useless because the

energy fluctuations which happened while a test was running went below the idle energy level. The

same with the energy peeks in idle mode which were above the work energy level. The solution for

this problem was a hysteresis like energy level detection.

The second Perl script is a wrapper for a C program which accounts the energy of each produced

log piece. Finally a last Perl script used this data in conjunction with the measured event counters.

As most of the tools were written in Perl and only the energy calculation was written in C it was

possible to run these tools on Windows and Linux. First the tools were run on the measurement

computer on Windows. But as the calculation also took about two hours it was better to copy

the 11GB of data to a computer with a better performance running Linux. During the calculation

process on the Linux computer it was possible to run the next test on the Windows computer.

The sophisticated part was to use the gathered data to calculate the actual weights. That topic

is discussed in the next section of this thesis.

3.2.4 Energy Weight Calculation

The Energy weight calculation can be represented by solving the equation

counter1 ∗weight1 + counter2 ∗weight2 + · · ·+ countern ∗weightn = energy

where n is the number of available performance counter types. In the case of the Intel PXA 255

processor (n = 14). This equation has to be solved for each program. The counter values can be

determined by running each programs with each counter. As there are two counters this means that

every program has to be run seven times with different counter pairs to get all counter values. Now

the problem is that at run time it is not possible to measure all 14 counters but only two and the

clock counter. This simplifies the equation to

per f counter1 ∗weight1 + per f counter2 ∗weight2 + clockcounter ∗weight3 = energy

12 Chapter 3. Energy Estimation with Fixed Performance Counters

Determining the clock counter is easy. The clock counter should represent the base energy that is

always used even if the processor does nothing. It is specified by measuring how much energy is

used if the processor is idle. Then divide the measured energy by the clock counter.

weight3 =
energyidle

clockcounter

The calculation of weight1 and weight2 can be easily solved for each program itself. The difficult

part is to find weights which match for every program with the least possible deviation. This extends

the problem to find a solution for
counter1,1 counter2,1 clockcounter1

...
...

...

counter1, j counter2, j clockcounter j

∗
 weight1

weight2
clockweight

 =

energy1

...

energy j

where j is the number of programs. It is obvious that this equation could not be solved but it can

be demanded to find values which minimize the total error. The following table lists all possible

performance counter types for which these equations had to be solved.

Counter Description

0x00 instruction cache miss

0x01 instruction cache can not deliver

0x02 data dependency stall

0x03 instruction tlb miss

0x04 data tlb miss

0x05 branch instruction executed

0x06 branch mispredicted

0x07 instruction executed

0x08 data cache full stall (every cycle)

0x09 data cache full stall (only first occurrence)

0x0A data cache accesses

0x0B data cache misses

0x0C data cache write-back

0x0D software changed the PC

The first approach to get a solution was to use the same programs that Simon Kellner[8] did.

Several approaches to get plausible values failed. lrslib[1] and dgels (part of netlib[14]) always

calculated some values below zero. There was no way to tell these programs to only search for

positive values. From the mathematical point of view this behavior is intentional because it is

obvious that there is a bigger change of minimizing the overall deviation if you use positive an

3.2. Determination of the energy weights 13

negative values. The third program which is also part of netlib was dqed. dqed also calculated

negative weights but luckily it has the option to set upper and lower boundaries for the results.

Unluckily if setting the lower boundaries to a non-negative value represented by zero did not give

the expected results. When setting a lower boundary to zero it changed every value which was

below zero before to exactly zero.

As the equation to solve contains only two unknown variables, an iteration over an appropriate

range should be feasible with only little overhead. From early appraisals it was known that the

weights would be between about 10−12 and 10−6. That means 1012 passes for each counter pair.

After 24 hours without the first result it was obvious that this approach had to be improved. After

multiple rounds of improvements the algorithm was able to calculate the needed weights in about

60 seconds. These improvements include

• only calculate the weights for energy pairs which were determined to give reasonable results

• check if the initial counter weights are big enough that the target energy can be reached with

weights between the predefined range

• check if the initial counter weights are small enough that the target energy can be reached

with weights between the predefined range

• instead of searching through the complete range in steps of 10−12 first use steps of size 10−10

and if the value is near a minimum error refine the step up to 10−12

• if the minimum for weight2 was passed continue with the next value for weight1 instead of

testing all possible values for weight2

• instead of calculating the equation for every program with each step the counter values and

energies are summed up first and only one addition plus one multiplication has to be done

per step

3.2.5 Clock Counter Problems

Kellner ran into the problem that the processor still consumes power even if it is idle. This is

the same with the PXA255 processor. His approach to give the clock counter an energy weight

which represents the idle consumption was easily added to the kernel. Just to identify an important

difference between the Pentium 4 processor he used and the PXA 255 processor used for this thesis:

The PXA processor is targeted for mobile battery supply. So the main task is to save power. To

achieve this objective the processor tries to do as much idle cycles as possible. Now the problem

is that the built-in clock counter does not count the idle cycles as clock cycle. This means that this

approach did not change anything on the idle consumption estimation error. Observing the system

14 Chapter 3. Energy Estimation with Fixed Performance Counters

time getting changed even if there were many idle cycles it was apparent that there must be a way

to get an accurate time counter. After some approaches failed when using the time in seconds, the

kernel jiffies and the clock from the developer board the use of the kernel nano seconds counter was

successful.

3.2.6 Determined weights

The only reasonable counter pairs for an accurate estimation were determined to be:

Counter Description

0x02 data dependency stall

0x05 branch instruction executed

0x07 instruction executed

0x0A data cache accesses

The other performance counters were not triggered often enough which means it needs an

unreasonable high weight to get the total energy. For example one data write back event presents a

unpredictable amount of data cache reads and writes. This makes it difficult to foretell how much

data cache writes are represented by one data cache write back event. It is better to compensate the

write back energy usage by a slightly too big data cache access weight.

The calculated values for the optimum weights for the set of test programs is shown in the fol-

lowing table. It shows the calculated values in [nJ] for the different frequencies and combinations.

100MHz 200MHz 300MHz 400MHz

0x02 1759 1572 2390 2086

0x05 4120 3310 1400 5310

0x02 1970 1711 1930 1082

0x07 430 350 420 1250

0x02 1221 1666 1876 1157

0x0A 2120 1000 1200 3220

0x05 350 7500 8500 11800

0x07 1320 300 330 340

0x05 1361 3312 4843 8041

0x0A 3200 2230 2140 2200

0x07 165 810 515 212

0x0A 3200 1200 2430 4430

Clock 314569 332394 364850 387110

3.3. Evaluation 15

0.3

0.35

0.4

0.45

0.5

0.55

100 200 300 400 500 600 700

Power [W]

Time [s]

Used Power
Estimated Power

Figure 3.3: Test Programs with Event Counters 0x02 and 0x07

It shows that for different counter pairs the same event got different weights. This is due to the

lack of more counters. As there are only two these two must also represent the other events. For

example if a branch instruction is executed this also means ”instruction executed” and ”program

counter changed” events. In case of using the counter pair 0x05 (branches) and 0x07 (instructions)

the branch weight does not need to contain the energy of the instruction itself. In the other cases it

does.

3.3 Evaluation

The energy weights have been determined. It is now necessary to examine how exact they are.

As a first check the test programs which were used to calculate the weights are run again. The

Labview measurement part is the same. The difference is that the kernel does not only count the

events triggered by the programs but also calculates the estimated energy usage. A program reads

the estimated energy every second. It calculated the difference to the value measured before and so

it was possible to have a log which showed the estimated energy for each second. The data from

the Labview log was also added up to show the energy consumption on a per second basis. Now

these two logs could be compared to show how accurate the energy usage estimation is.

16 Chapter 3. Energy Estimation with Fixed Performance Counters

0.3

0.35

0.4

0.45

0.5

100 200 300 400 500 600 700

Power [W]

Time [s]

Used Power
Estimated Power

Figure 3.4: Test Programs with Event Counters 0x05 and 0x07

3.3.1 Test Programs

The figures 3.3 and 3.4 show the results with the counter pairs 0x07 (instructions executed) and

0x02 (data dependency stall) respectively 0x05 (branch instructions executed). Each high-level area

is one test program. Figure 3.3 points out that the weights are nearly perfect for the accumulator

program (fourth plateau). Though it also shows that the estimation may be below or above the real

consumption for different program types because the used counter types are not optimal for all of

these applications.

Together with figure 3.4 the last program (memory writes) shows significant differences on

accuracy. This is obvious because memory writes tend to cause more data dependency stalls and

less branch instructions. So the 0x02 and 0x07 counter pair represents programs with many data

accesses in a better way.

Examining the 0x07 and 0x0A counters results gives another interesting aspect. The add pro-

gram there shows a too low estimated power. So there are 3 different states of the estimation

depending on the used counters. 0x02 gives the exact energy, 0x05 a energy which is too high and

0x0A one that is too low. The same behavior can be noticed with the memory writes. They are too

low for the 0x07 and 0x05 pair and twice to high with the other combinations. This is an indication

that the performance counter multiplexing which is described in the second part of this thesis might

be an improvement for this type of applications. Despite of this the values for the level 1 cache

reads were always a bit too high and for writes too low.

3.3. Evaluation 17

0.33

0.34

0.35

0.36

0.37

0.38

0.39

0.4

0.41

0.42

0.43

0.44

300 400 500 600 700 800

Power [W]

Time [s]

Used Power
Estimated Power

Figure 3.5: Event Counters 0x02 and 0x07

3.3.2 Benchmarks

The next step of evaluation was to run the benchmarks mibench[13] and unixbench[16]. Mibench

is a free, commercially representative embedded benchmark suite. It consists of six categories of

benchmark types. These categories include up to eight benchmarks. So this benchmark includes

different micro benchmarks which use different components of the processor and other external

hardware like I/O operations. The complete list of benchmarks included in mibench and unixbench

are shown in the following tables.

mibench

Industrial Consumer Office Network Security Telecomm

basicmath jpeg ghostscript dijkstra blowfish enc. CRC32

bitcount lame ispell patricia blowfish dec. FFT

qsort mad rsynth CRC32 pgp sign IFFT

susan (edges) tiff2bw sphinx sha pgp verify ADPCM enc.

susan (corners) tiff2rgba stringsearch blowfish rijndael enc. ADPCM dec.

susan (smoothing) tiffdither rijndael dec. GSM enc.

tiffmedian sha GSM dec.

typeset

18 Chapter 3. Energy Estimation with Fixed Performance Counters

0.32

0.34

0.36

0.38

0.4

0.42

0.44

300 400 500 600 700 800

Power [W]

Time [s]

Used Power
Estimated Power

Figure 3.6: Event Counters 0x07 and 0x0A

unixbench

arithmetic system misc dhry

double-prec. whetstone system call overhead compile and link dhrystone 2 w/o regs

arithmetic overhead pipe throughput calculations with dc dhrystone 2 with regs

register arithmetic pipe context switch recursion

short arithmetic process creation

int arithmetic execl call

long arithmetic filesystem throughput

float arithmetic

double arithmetic

Three test programs of the mibench suite failed to complete their execution by giving an Illegal

instruction error. This includes ghostscript, tiff2bw and tiff2rgba. The result of the mibench run is

shown in figures 3.5 and 3.6. There are three flat areas and two areas with many changes. The three

flat area represent the run of lame, rsynth and FFT. The areas with the changes correspond to the

programs between these three programs. These figures substantiate that the multiplexing might get

correct results for this benchmark while the results for unixbench were not so promising. The cause

may be that mibench mainly uses the processor and unixbench also performs many I/O operations

for benchmarking.

3.3. Evaluation 19

3.3.3 Real World Programs

For further evaluation some real world programs have been tested. This includes:

• Gnu C Compiler v2.95.4 to compile the test programs used before

• GZip v1.3.2 to compress and decompress a 10MB random data file

• pdfTeX (Web2C 7.3.7) 3.14159-1.00a-pretest-20011114-ojmw to convert a small latex file to

pdf

The real world programs results were bad news. Nearly every combination of performance

counters gave values which were too low. Half of the tested combinations showed estimated values

which differ from the real usage by over 25%. This showed that the test programs and benchmarks

do not represent the real energy consumption of normal programs. The main problem is that the real

world programs do not mainly use the CPU but also other components of the board. This includes

memory accesses which in cooperation with the data caches give an nondeterministic behavior.

A possible solution for this problem might be to exchange the initial basic test programs by real

world applications and rerun the measurement and counter calculations again. But nevertheless it

is assumed that the test programs and benchmarks than will be wrong. It is also feasible that the

event counter multiplexing will change this situation. Another aspect is that it is possible to train

the energy weights with a subset of real world programs. For example if the weights are calculated

on base of GCC test runs the errors should decrease when using these weights for measuring other

program compilations with GCC.

3.3.4 Table of Estimation Errors and Conclusions

All tested programs with all used counter pairs at four frequencies give the following errors in %.

A positive value means that the estimated energy was too high, a negative represents a too low

value. The real world average row is the average of the three real world programs GCC, GZip and

pdfTeX which is calculated by the following formula.

error(realworldavg) =
error(GCC)+ error(GZip)+ error(pd f TeX)

3

20 Chapter 3. Energy Estimation with Fixed Performance Counters

100MHz 0x02-0x05 0x02-0x07 0x02-0x0A 0x05-0x07 0x05-0x0A 0x07-0x0A

L1 read 7.3% 7.9% 12.5% 4.8% 12.6% 13.9%

L1 rw -12.1% -14.5% -8.3% -13.3% -5.2% -4.9%

L1 write -11.8% -13.0% -9.0% -12.9% -5.6% -4.5%

add -10.5% 0.1% -10.3% 23.1% -10.0% -7.1%

branch 14.5% 6.9% 10.9% 7.5% 15.0% 14.2%

factor 1.3% 3.4% 3.4% 7.7% 3.5% 4.6%

mem read 6.8% 1.9% 3.1% 6.5% 6.3% 5.4%

mem rw 15.4% 7.2% 7.2% 2.5% 6.4% 5.2%

mem write 0.0% 3.8% -6.0% -24.4% -23.3% -21.7%

mibench -4.5% -4.5% 0.7% -1.6% 4.8% 4.1%

unixbench -2.6% -2.9% -3.1% -4.8% -4.4% -4.3%

gcc -7.0% -3.8% -9.0% -19.7% -15.0% -15.7%

gzip -6.4% -5.1% -8.7% -20.0% -17.1% -16.8%

pdftex -2.9% -0.8% -2.5% -13.6% -8.0% -9.1%

real world avg -5.4% -3.2% -6.7% -17.8% -13.4% -13.9%

200MHz 0x02-0x05 0x02-0x07 0x02-0x0A 0x05-0x07 0x05-0x0A 0x07-0x0A

L1 read 7.0% 7.7% 11.7% 3.4% 13.3% 12.2%

L1 rw -14.6% -17.0% -12.0% -8.1% -3.9% -6.2%

L1 write -14.6% -17.1% -12.6% -8.8% -4.7% -7.7%

add -17.1% -3.3% -16.7% -4.9% -15.8% 16.6%

branch 15.0% 5.2% 8.1% 32.2% 22.4% 14.8%

factor 2.0% 0.7% 2.9% 1.9% 4.8% 12.4%

mem read 5.7% -1.3% 0.1% 20.9% 11.3% 8.1%

mem rw 18.6% 7.8% 11.4% 24.5% 10.0% 4.3%

mem write 10.4% 15.2% 13.6% -30.7% -29.8% -28.6%

mibench -6.9% -7.0% -4.0% -5.2% 1.4% -2.0%

unixbench -2.2% -2.2% -6.8% -4.8% -4.7% -4.8%

gcc -5.2% -1.1% -1.3% -21.5% -15.5% -22.6%

gzip -4.7% -2.8% -2.6% -26.7% -24.3% -24.1%

pdftex 0.2% 1.2% 3.0% -18.7% -12.7% -12.0%

real world avg -3.2% -0.9% -0.3% -22.3% -17.5% -19.6%

3.3. Evaluation 21

300MHz 0x02-0x05 0x02-0x07 0x02-0x0A 0x05-0x07 0x05-0x0A 0x07-0x0A

L1 read 10.1% 11.2% 16.0% 5.1% 15.0% 22.7%

L1 rw -19.6% -19.1% -14.0% -9.5% -5.1% -0.7%

L1 write -20.3% -18.8% -15.8% -8.6% -8.3% -2.8%

add -23.9% -4.3% -22.6% -8.3% -20.3% 0.6%

branch 9.2% 8.9% 10.2% 44.8% 29.3% 26.0%

factor -5.3% 5.3% 0.8% 11.5% 1.5% 11.3%

mem read -0.5% -1.7% -0.4% 25.5% 15.4% 8.1%

mem rw 19.6% 11.8% 15.0% 34.3% 13.4% 10.9%

mem write 27.9% 22.5% 15.2% -35.9% -35.7% -32.3%

mibench -10.6% -10.0% -5.7% -8.0% -0.9% 0.0%

unixbench -1.4% -2.1% -2.1% -5.3% -4.8% -4.9%

gcc 5.5% -0.1% 0.0% -25.2% -17.5% -26.6%

gzip 5.7% -1.4% -0.9% -32.3% -30.1% -27.8%

pdftex 9.4% 2.3% 0.4% -22.8% -17.3% -6.0%

real world avg 6.9% 0.3% -0.2% -26.8% -21.6% -20.1%

400MHz 0x02-0x05 0x02-0x07 0x02-0x0A 0x05-0x07 0x05-0x0A 0x07-0x0A

L1 read 2.3% 4.8% 18.6% 1.6% 11.5% 33.2%

L1 rw -19.3% -18.0% -6.0% -4.4% -2.2% 13.5%

L1 write -20.7% -18.1% -9.7% -3.1% -7.3% 9.8%

add -31.9% 32.5% -29.5% -17.2% -25.7% -27.0%

branch 14.8% 6.5% 12.3% 57.1% 34.4% 35.7%

factor -3.2% 5.3% -0.8% 4.3% 14.2% 8.2%

mem read 4.5% 1.2% 0.6% 34.6% 21.6% 15.9%

mem rw 23.1% 3.8% 6.8% 44.8% 13.9% 16.2%

mem write 32.3% 10.1% 1.3% 47.7% 46.5% 8.6%

mibench -11.8% -11.6% -1.7% -12.1% -5.7% 1.5%

unixbench -2.2% -27.1% -26.2% -28.1% -28.5% -28.9%

gcc -1.0% -6.4% -6.6% -26.3% -7.9% -30.8%

gzip 0.9% -17.7% -12.7% -38.4% -36.1% -32.4%

pdftex 5.3% -9.7% -8.9% -27.7% -13.9% -9.6%

real world avg 1.7% -11.3% -9.4% -30.8% -19.3% -24.3%

22 Chapter 3. Energy Estimation with Fixed Performance Counters

The following conclusions can be made when investigating the table of errors.

• L1 cache reads get always too high values because the read and write accesses can not be

measured on their own. So one data cache access represents the probability of a data cache

read mixtured with a data cache write.

• L1 cache writes get too low values for the same reason. Additionally the L1 cache read and

write program gets a too low value because it is more probable that data is read than written.

So the program with an equal amount of reads and writes has a value estimated too low.

• The add program gets too low values with the data counters because it does unusual heavy

CPU usage and low memory usage.

• The branch program gets a too high value. Paradoxically this especially happens when mea-

suring the branch and instruction counter. This can be certified by the fact that these too

counters need to represent all other counters in normal operation. But with the branch test

program there are few other counters triggered which leads to a too high estimation.

• Factor gets a good average error for all counter pairs because it is a mixture of many of them

• The memory programs seam to be very unpredictable. These can be due to the available

caches.

• Mibench and unixbench work very well because they are also a mixture of programs. As seen

in the figures 3.5 and 3.6 the different programs even out the too low and too high estimations.

• The real world programs are nearly all estimated with a too low energy. This is because they

heavily use the memory and there are no appropriate event counters.

• In general GZip gets higher error rates than GCC and pdfTeX. The cause could be that GZip

needs to move more data in the memory and the other programs tend to mainly use the CPU.

• Column three in the 200MHz table shows that it is possible to get the real world estimation

errors of all three programs within a 3% range. But it also shows that this involves higher

errors for other applications.

• The average of the real world programs gives the lowest errors with the performance counter

0x02 (data dependency stall) and one of the others depending on the frequency.

• There is always one counter pair combination which gives an average error below 5% but

there is no pair which is always the best.

3.3. Evaluation 23

• Another issue seen in the table is that higher frequencies corresponds to higher errors.
This may be due to the fact that the test programs need less time to finish and so the
impreciseness can increase. Another possible cause is that a higher CPU frequency
corresponds to a higher RAM frequency with a higher cache miss penalty. And as the
RAM accesses can not be measured directly this impreciseness corresponds to a higher
energy estimation error.

• Memory accesses correspond to higher error rates because they can not be measured
directly.

• There is always one counter pair for each program with an error below 7%. This
means it is possible to train two counters for specific applications but not for all possible
program types at once.

Another interesting issue is if it is possible to train the counters not only for a specific ap-

plication but also a subset of applications. To investigate this additional tests were made. These

tests were based on program compilations. Three test programs were chosen for the energy weight

calculation: compilation of GZip, TCSH and WGet which included the execution of make, GCC,

LibTool and others. The results showed that the counter pair 0x05 (branches) and 0x0B (data cache

misses) had the smallest deviation. These weights were used to estimate the energy usage of the

test programs and additionally the compilation of MC. To test if these counters are also feasible for

other applications a GZip test run was also included. The estimation errors for 100MHz:

make gzip make tcsh make wget make mc gzip file1 gzip file2

0x05-0x0B 5.9% 6.2% 6.6% 3.44% -4.6% -6.4%

These errors show that it is possible to train the energy weights for a subset of applications. The

estimation errors are all within a +10% to -10% range around the measured energy. Additionally

the GZip estimation is also in this range. The problem is that no counter pair was found which

gives errors below 10% for all types of programs. Every type of program has a specific counter pair

which is best to get an accurate estimation. The next chapter will show if it is possible to use the

software multiplexing of the performance counters to extent the variety of applications that can be

measured without calculating new energy weights.

Chapter 4

Energy Estimation with Alternating Performance
Counters

This chapter shows a possible way to improve the energy consumption estimation. Bypassing the

drawback of only two available performance counters is done by switching them in fixed time

intervals. That makes it possible to not only count two events but more. The current patch allows a

maximum of six events to be monitored. It is possible to change the maximum by modifying two

single statements in the kernel.

With the evaluation I will investigate if this multiplexing technique gives a more accurate esti-

mation.

4.1 Implementation

The implementation was done by changing the resource container account procedure in the kernel.

Normally the kernel updates the resource containers every tick. A tick is generated by a timer

interrupt. This timer interrupt is hardware dependent. For example for a IA-32 architecture the

value is 1000 times per second. For the used ARM architecture it is 100 times per second. After

the change the update procedure does not only store the counter usage since the last tick but also

sets new counter pairs to be measured until the next tick occurs.

As stated above a limitation of six maximum counters was chosen. The reason is that more

counters mean more overhead. Furthermore using more counter pairs also means that it takes

more time till the first two counters are used again. It would be possible to use all 14 available

counters but there are some counters which are not very feasible for the energy estimation used in

this thesis. Using all 14 counters and solving the energy weight equation for it gives the possibility

to implement another approach. This approach would be to calculate the weights and use seven

different counter pairs which leads to seven time slices. After seven time slices all 14 counters

were counted at least once. The problem with this approach is that it would take at least seven

24

4.2. Estimation 25

kernel ticks before an accurate estimation can be done and depending on the scheduler it is possible

that one program is always represented by one counter pair. To prevent this behavior it would be

necessary to store the last used counters for each process. This would mean additional overhead

and a higher latency of the scheduler. That is the reason why this approach was not used.

4.2 Estimation

As there are still only two event counters present in hardware and the patched kernel only gives a

virtual view of up to six counters, the estimation of the performance counter weights is the same as

in the previous chapter. There are always two pairs of performance counters and the clock counter

which represent the current use of energy. This makes it possible to read the energy estimation

at any time and it is not necessary to wait till a time slice with all combinations of counter pairs

passed.

There are multiple combinations of performance counters possible. For an deeper investigation

the following three combinations of counters were chosen:

• 0x02 - 0x07 (data stall - instructions) alternating with 0x05 - 0x07 (branches - instructions)

Combination 0x02 - 0x07 and 0x05 - 0x07

100MHz 200MHz 300MHz 400MHz

0x02 1970 1711 1930 1082

0x07 430 350 420 1250

0x05 350 7500 8500 11800

0x07 1320 300 330 340

Clock 314569 332394 364850 387110

• 0x02 - 0x05 (data stall - branches) alternating with 0x07 - 0x0A (instructions - data cache

misses)

Combination 0x02 - 0x05 and 0x07 - 0x0A

100MHz 200MHz 300MHz 400MHz

0x02 1736 1593 2390 2086

0x05 4300 3230 1400 5310

0x07 167 811 1296 1708

0x0A 3200 1200 340 400

Clock 314569 332394 364850 387110

26 Chapter 4. Energy Estimation with Alternating Performance Counters

• 0x02 - 0x07 (data stall - instructions) alternating with 0x05 - 0x07 (branches - instructions)

and 0x0A - 0x07 (data cache misses - instructions)

0x02 - 0x07 and 0x05 - 0x07 and 0x0A - 0x07

100MHz 200MHz 300MHz 400MHz

0x02 1970 1711 1930 1082

0x07 430 350 420 1250

0x05 350 7500 8500 11800

0x07 1320 300 330 340

0x0A 3200 1200 340 400

0x07 167 811 1296 1708

Clock 314569 332394 364850 387110

4.3 Evaluation

To get a better impression on how much the accuracy has been improved respectively declined it

was necessary to compare the errors. As there are many values which had to be compared it was

easier to write a Perl script which does the work automatically. The script uses the table of errors

from the non-multiplex error table, calculates an average and compares them with the multiplex

error table.

The average error calculation is done in two ways. The first way is to take the pairs from the

multiplex table and only use these pairs for the average error calculation. These values are shown

in the two/three pairs columns of the error improvement table.

For example using the counter pairs 0x02-0x05 alternating with 0x07-0x0A leads to the average

calculation formula:

averageerror =
|error(0x02−0x05)|+ |error(0x07−0x0A)|

2

This comparison is done to get an impression if the multiplexing technique improves the es-

timation by using the same weights for the same programs. This should be especially work very

well if the two counter pairs had errors with opposite algebraic signs. This means if one counter

pair produced a too high estimation and the other a too low estimation the multiplexing of these

two should be nearly zero. Or when speaking of errors: a negative error and a positive error should

add up to zero with the multiplexing. For example the add program at 200MHz had an error of

-17.1% with the 0x02-0x05 counter pair and an error of +16.6% with the 0x07-0x0A counters. The

multiplexing of these two counter pairs gives an error of -0.4% which is nearly the sum of the both

values.

4.3. Evaluation 27

As second approach the six errors from the first estimation are used all together (All Pairs

column). This gives a better overview of the total error.

averageerror =
|error(0x02−0x05)|+ |error(0x02−0x07)|+ . . .+ |error(0x07−0x0A)|

6

It will show if it is better to stick with two counters or if it is wise to use the multiplexing scheme.

As both ways provide possibilities of further improvement this should show the better one.

To give an overview of the results the table on the next two pages shows the errors with the

multiplexed counters followed by the table of improvements and declines.

28 Chapter 4. Energy Estimation with Alternating Performance Counters

100MHz 0x02-0x07 X

0x02-0x05 X 0x07-0x0A 0x02-0x07 X 0x05-0x07 0x05-0x07 X 0x07-0x0A

L1 read 10.1% 6.6% 8.6%

L1 rw -9.5% -12.7% -11.8%

L1 write -8.4% -13.1% -11.3%

add -8.3% 11.9% 5.9%

branch 14.1% 6.8% 9.1%

factor 3.0% 4.5% 4.6%

mem read 5.9% 4.0% 4.3%

mem rw 10.1% 4.9% 4.7%

mem write -11.0% -10.5% -15.1%

mibench 0.2% -2.9% -0.4%

unixbench -3.6% -3.7% -3.7%

gcc -10.1% -11.4% -12.4%

gzip -12.2% -12.4% -14.1%

pdftex -4.6% -5.5% -7.3%

real world avg -9.0% -9.8% -11.3%

200MHz 0x02-0x07 X

0x02-0x05 X 0x07-0x0A 0x02-0x07 X 0x05-0x07 0x05-0x07 X 0x07-0x0A

L1 read 8.7% 5.8% 6.6%

L1 rw -11.3% -13.5% -13.8%

L1 write -11.4% -12.7% -14.6%

add -0.4% -3.9% 2.5%

branch 13.8% 17.9% 14.7%

factor 2.9% 2.1% -1.9%

mem read 6.1% 8.8% 4.4%

mem rw 10.5% 15.9% 9.8%

mem write -8.4% -7.9% -16.4%

mibench -4.3% -5.9% -4.4%

unixbench -3.7% -3.7% -3.8%

gcc -9.8% -7.8% -12.6%

gzip -14.7% -14.8% -19.2%

pdftex -8.6% -8.2% -9.6%

real world avg -11.0% -10.3% -13.8%

4.3. Evaluation 29

300MHz 0x02-0x07 X

0x02-0x05 X 0x07-0x0A 0x02-0x07 X 0x05-0x07 0x05-0x07 X 0x07-0x0A

L1 read 10.3% 6.9% 5.4%

L1 rw -16.4% -16.0% -15.2%

L1 write -16.0% -15.4% -16.6%

add 8.2% -6.7% 10.0%

branch 12.5% 23.0% 23.1%

factor 5.5% -1.1% 10.8%

mem read 3.4% 9.6% 12.3%

mem rw 11.0% 20.6% 16.8%

mem write -0.1% -9.0% -19.9%

mibench -8.6% -9.1% -8.1%

unixbench -3.4% -4.1% -4.0%

gcc -5.4% 0.5% -14.7%

gzip -12.8% -16.4% -21.8%

pdftex -7.6% -9.4% -10.1%

real world avg -8.6% -8.4% -15.5%

400MHz 0x02-0x07 X

0x02-0x05 X 0x07-0x0A 0x02-0x07 X 0x05-0x07 0x05-0x07 X 0x07-0x0A

L1 read 5.4% 1.7% 4.0%

L1 rw -14.6% -15.0% -13.1%

L1 write -14.3% -14.1% -13.0%

add 10.9% 6.4% 25.8%

branch 17.1% 25.3% 29.5%

factor 4.5% -6.0% 24.2%

mem read 7.6% 13.1% 13.2%

mem rw 10.2% 19.1% 15.9%

mem write -16.4% -13.2% -15.3%

mibench -11.2% -12.7% -11.4%

unixbench -17.9% -17.8% -18.1%

gcc -2.5% 0.1% -11.9%

gzip -18.4% -26.5% -31.3%

pdftex -12.4% -8.7% -12.3%

real world avg -11.1% -11.7% -18.5%

30 Chapter 4. Energy Estimation with Alternating Performance Counters

The previous table leads to the following table of improvements/declines.

100MHz 0x02-0x07 X

0x02-0x05 X 0x07-0x0A 0x02-0x07 X 0x05-0x07 0x05-0x07 X 0x07-0x0A

2 Pairs only All Pairs 2 Pairs only All Pairs 3 Pairs only All Pairs

L1 read 0.5% -0.3% -0.2% 3.2% 0.3% 1.2%

L1 rw -1.0% 0.2% 1.2% -3.0% -0.9% -2.1%

L1 write -0.2% 1.1% -0.2% -3.6% -1.2% -1.8%

add 0.5% 1.9% -0.3% -1.7% 4.2% 4.3%

branch 0.2% -2.6% 0.4% 4.7% 0.4% 2.4%

factor -0.1% 1.0% 1.0% -0.5% 0.6% -0.6%

mem read 0.2% -0.9% 0.2% 1.0% 0.3% 0.7%

mem rw 0.2% -2.8% -0.1% 2.4% 0.3% 2.6%

mem write -0.2% 2.2% 3.6% 2.7% 1.5% -1.9%

mibench 4.1% 3.2% 0.1% 0.5% 3.0% 3.0%

unixbench -0.1% 0.1% 0.1% -0.0% 0.3% -0.0%

gcc 1.2% 1.6% 0.3% 0.3% 0.7% -0.7%

gzip -0.6% 0.2% 0.2% -0.0% -0.1% -1.7%

pdftex 1.4% 1.5% 1.7% 0.6% 0.5% -1.2%

real world avg 0.7% 1.1% 0.7% 0.3% 0.4% -1.2%

200MHz 0x02-0x07 X

0x02-0x05 X 0x07-0x0A 0x02-0x07 X 0x05-0x07 0x05-0x07 X 0x07-0x0A

2 Pairs only All Pairs 2 Pairs only All Pairs 3 Pairs only All Pairs

L1 read 0.9% 0.5% -0.2% 3.4% 1.2% 2.6%

L1 rw -0.9% -1.0% -0.9% -3.2% -3.4% -3.5%

L1 write -0.2% -0.5% 0.3% -1.8% -3.4% -3.7%

add 16.5% 12.0% 0.2% 8.5% 5.8% 9.9%

branch 1.1% 2.5% 0.8% -1.6% 2.7% 1.6%

factor 4.3% 1.2% -0.8% 2.0% 3.1% 2.2%

mem read 0.8% 1.8% 2.3% -0.9% 5.7% 3.5%

mem rw 1.0% 2.3% 0.2% -3.1% 2.4% 3.0%

mem write 11.1% 13.0% 15.0% 13.5% 8.4% 5.0%

mibench 0.2% 0.1% 0.2% -1.5% 0.3% 0.0%

unixbench -0.2% 0.5% -0.2% 0.5% 0.1% 0.5%

gcc 4.1% 1.4% 3.5% 3.4% 2.5% -1.4%

gzip -0.3% -0.5% -0.1% -0.6% -1.3% -5.0%

pdftex -2.5% -0.6% 1.8% -0.2% 1.0% -1.6%

real world avg 0.4% 0.1% 1.7% 0.9% 0.7% -2.7%

4.3. Evaluation 31

300MHz 0x02-0x07 X

0x02-0x05 X 0x07-0x0A 0x02-0x07 X 0x05-0x07 0x05-0x07 X 0x07-0x0A

2 Pairs only All Pairs 2 Pairs only All Pairs 3 Pairs only All Pairs

L1 read 6.1% 3.0% 1.2% 6.4% 7.6% 7.9%

L1 rw -6.2% -5.1% -1.7% -4.7% -5.4% -3.9%

L1 write -4.4% -3.6% -1.7% -3.0% -6.5% -4.2%

add 4.1% 5.1% -0.4% 6.6% -5.6% 3.3%

branch 5.1% 8.9% 3.8% -1.6% 3.5% -1.7%

factor 2.8% 0.5% 7.3% 4.8% -1.4% -4.9%

mem read 0.9% 5.2% 4.0% -1.0% -0.5% -3.7%

mem rw 4.2% 6.5% 2.4% -3.1% 2.2% 0.7%

mem write 30.0% 28.1% 20.2% 19.2% 10.3% 8.4%

mibench -3.3% -2.7% -0.1% -3.2% -2.1% -2.2%

unixbench -0.2% 0.0% -0.4% -0.7% 0.1% -0.6%

gcc 10.7% 7.1% 12.2% 12.0% 2.6% -2.2%

gzip 3.9% 3.6% 0.4% -0.0% -1.3% -5.4%

pdftex 0.1% 2.1% 3.2% 0.3% 0.3% -0.4%

real world avg 4.9% 4.3% 5.3% 4.1% 0.5% -2.7%

400MHz 0x02-0x07 X

0x02-0x05 X 0x07-0x0A 0x02-0x07 X 0x05-0x07 0x05-0x07 X 0x07-0x0A

2 Pairs only All Pairs 2 Pairs only All Pairs 3 Pairs only All Pairs

L1 read 12.3% 6.6% 1.5% 10.3% 9.2% 8.0%

L1 rw 1.8% -4.0% -3.8% -4.4% -1.1% -2.5%

L1 write 0.9% -2.8% -3.5% -2.6% -2.7% -1.5%

add 18.5% 16.4% 18.5% 20.9% -0.2% 1.5%

branch 8.1% 9.7% 6.5% 1.5% 3.6% -2.7%

factor 1.2% 1.5% -1.2% 0.0% -18.3% -18.2%

mem read 2.6% 5.5% 4.8% -0.0% 4.0% -0.1%

mem rw 9.4% 7.9% 5.2% -1.0% 5.7% 2.2%

mem write 4.1% 8.0% 15.7% 11.2% 6.8% 9.1%

mibench -4.5% -3.8% -0.8% -5.3% -3.0% -4.0%

unixbench -2.3% 5.6% 9.8% 5.7% 9.9% 5.4%

gcc 13.4% 10.7% 16.2% 13.1% 9.3% 1.3%

gzip -1.8% 4.6% 1.5% -3.5% -1.8% -8.3%

pdftex -5.0% 0.1% 10.0% 3.8% 3.4% 0.2%

real world avg 2.2% 5.1% 9.2% 4.5% 3.6% -2.3%

32 Chapter 4. Energy Estimation with Alternating Performance Counters

The results of the performance counter multiplexing gave error values which were not as good

as expected. In some cases it is better, in some cases it is worse. The best improvements can

be notified with the add and memory write test programs. One main improvement is that the

estimation in total is better. For example the worst case of two counter pairs was the branch test

program measured with the counters 0x05 and 0x07. This gave an estimation error of 57.1%.with

multiplexing this error was decremented to a 29.5% estimation error.

Looking at the error table shows one important issue. All programs making use of the memory

writes tend to get a higher error ratio. This may be because the 3.3V power supply is also used by

the memory. Now the problem is that there is no counter available to measure memory accesses

but only counters for instruction and data caches. At least there is one counter for data write back

(counter 0x0C). This counter was not considered for investigation because it did not trigger very

many events and so it is very unfavorable for the energy usage estimation. Nevertheless the previous

results showed that for a better estimation it is necessary to count memory accesses. Even if the

data write back counter only counts memory access in one direction the other direction is already

covered by the data dependency stall counter (0x02). As the memory read operations were covered

in the above tests there were no multiplexing tests covering the memory writes.

The next step was to investigate this behavior. All programs were run again with the counter

combination 0x02-0x07 (data stall - instructions) alternating with 0x05-0x07 (branches - instruc-

tions) and 0x07-0x0C (data cache write back - instructions). The results amplified the initial as-

sumption. The data write back counter is not very convenient for estimation. For write accesses the

estimated usage is far too low for all frequencies. When using memory read and write operations

together it gives too high values.

Further conclusions:

• Higher frequencies also correspond to higher error ratios. Especially at 400MHz the errors

get above 30% while the biggest error for 100Mhz is only 15.1%. That is the same behaviour

as seen without multiplexing.

• The error table shows that the multiplexing technique can not compensate the drawback of

only two counters because there are still errors +15% and -15% percent. But the errors are

not as big as without multiplexing. This means with multiplexing it is possible to train the

energy weights for a larger variety of program types but still not for every one.

• Many programs show improvements with the multiplexing but there are still some with a

worse estimation.

• There is no counter pair combination that shows the best improvements for all tested appli-

cations.

4.3. Evaluation 33

• The average of the real world programs shows improvements for nearly all counter combi-

nations. The only exception is the triple 0x02-0x07, 0x05-0x07 and 0x07-0x0A. If the mul-

tiplexed error estimation is compared to the three single errors there is also an improvement

but when compared to all counter pair estimation errors there is a decline.

As chapter 3 showed the combinations which include the data dependency stall (0x02) per-

formance counter showed the best estimation for the real world programs. As the combinations

investigated in this chapter did not include only these combinations it is necessary to evaluate if

these pairs give a smaller error. Exemplary the triple combination 0x02-0x05, 0x02-0x07 and

0x02-0x0A have been tested. The results of the real world programs are shown in the following

error table.

0x02-0x05 X 0x02-0x07 X 0x02-0x0A

100MHz Errors Improvements/Declines

3 Pairs only All Pairs

gcc -4.3% 2.3% 7.4%

gzip -7.2% -0.5% 5.2%

pdftex -4.0% -1.9% 2.1%

real world avg -5.2% 0.0% 4.9%

200MHz Errors Improvements/Declines

3 Pairs only All Pairs

gcc 0.5% 2.0% 10.7%

gzip 0.2% 3.2% 14.0%

pdftex 1.0% 0.5% 7.0%

real world avg 0.6% 1.9% 10.6%

300MHz Errors Improvements/Declines

3 Pairs only All Pairs

gcc 1.1% 0.8% 11.4%

gzip 0.9% 1.8% 15.5%

pdftex 3.4% 0.6% 6.3%

real world avg 1.8% 1.1% 11.1%

400MHz Errors Improvements/Declines

3 Pairs only All Pairs

gcc -0.1% 4.6% 13.1%

gzip 0.4% 10.0% 22.6%

pdftex 2.1% 5.9% 10.4%

real world avg 0.8% 6.8% 15.3%

34 Chapter 4. Energy Estimation with Alternating Performance Counters

The results show that if the right counter pairs are used together with the correct weights it is

possible to get very accurate estimations. The real world average error is only for the 100MHz

measurement slightly above 5% and for the other frequencies always below 2%. The problem is

that this counter pair combination works well for the real world programs used in this thesis but

not for all available application types. The memory read and write accesses for the real world

programs are also balanced and not single sided like the memory write only or memory read only

programs. This emphasizes that it is possible to train the counters for specific applications but not

for all available types. For example programs which heavily use the processor, or only do memory

read accesses but no writes or vice versa get inaccurate results with these counter settings. These

results correspond to the conclusion of Bellosa[2] that the accuracy is limited by the number of

counters. The multiplexing extends the set of applications that can be measured at once but two

event counters are still not enough to get more accurate results for all possible applications. There

are always programs which can produce an estimation error above 15%. This is the same for the

PXA processor used in this thesis and for the Pentium Pro processor used by Martonosi[5].

All these results lead to this conclusion:

The performance counter multiplexing technique is good for compensating the lack of
only two counters for measuring all types of applications. But there are still errors above 15%
for lower and 30% for higher frequencies which leads to the conclusion that the performance
counters have to be trained for specific applications to get accurate results. At least the
multiplexing technique makes it possible to measure a larger variety of applications without
recalculating the energy weights. Even higher accuracy for a wider range of applications
can be achieved if there would be more than two performance counters and different counter
types available.

Chapter 5

Future Work

There are a few ways to improve the estimation. The first way is to use other hardware with more

performance counters. For example the successor of the processor used for this thesis is the Intel

PXA 270. There are two versions of this processor, one of them supporting four event counters.

Using these four counters together with the multiplexing technique shown in chapter four gives a

good chance of decreasing the errors. Though the event types stay the same which again may make

an estimation difficult if many memory accesses occur.

Another possible way is to change the calculation of the energy weights. This thesis always uses

the weights of two counters which represented the whole set of counters for a fixed time period. It

is also possible the calculate weights for the complete set of counters together. Then set the kernel

to measure each counter pair for one time period and multiply the results by seven. After seven time

periods every counter was counted once. By multiplying the scores this should give exact results.

The problem of this approach may be that it takes very long until all counters get to the same level.

If there are process switches during this time they have to be considered by the resources containers.

There is also the possible improvement to patch the kernel together with the compiler. The

compiler knows if it creates code which will make much CPU load or likely more memory accesses.

This gives the possibility to create code statements which tell the resource containers that a program

is of a specific type. For example there could be statements for monitoring ten times more the data

events then the instructions if an application mainly uses the memory. And vice versa for programs

which use mainly the processor. This allows optimizing the measurement for specific applications

to give exact results.

This approach could be also realized in a more automated way. It does not require programming

statements or a patched GCC. To achieve this goal it should be feasible to measure which counters

are used by a program if it is started. For example always use one second after a program start for

counter type determination. After that period only use the little subset of counters which were used

the most by the program for the remaining energy calculation.

35

Chapter 6

Conclusion

This thesis shows that it is possible to use the performance counters of the Intel PXA 255 processor

for energy estimation. It also shows that it is not enough for a very accurate estimation because

some specific applications may differ up to 30% of the real usage. The main problem is that the

event counters are good enough to characterize the processor itself but not the hardware that is used

by the CPU. The cause is that the performance counters are meant to measure performance and not

energy. There are only two counters but the technique of switching them in fixed interval gives the

possibility for accurate measuring of the processor. The problem is that the processor depends on

other resources. The best example is the main memory. The memory also consumes much energy

(when there is some data to read from or write to it) and there are no event counter types that could

directly measure the RAM usage. A compensation of this lack was tried by investigation of the

data stall and data cache write back counters. As normal programs mostly do not only use the CPU

with it’s registers it is difficult to do a good estimation. The data caches which cause unpredictable

memory access are also difficult to deal with.

To get better results the approach to optimize the performance counters on real world applica-

tions was investigated. This gives a bigger error for programs which mainly use the CPU and less

for real world applications. For a good estimation that would make external measurement devices

useless it would be necessary to have

• more performance counters

• more event types that could be monitored by the counters

The potential of the work provided in this thesis is that it is possible to trim the performance

counters for a specific application or a subset of applications. This means it is possible to measure

an application once with external hardware and from then on the performance counters can estimate

the energy consumption in a representative way if the energy weights are set to the correct values.

The multiplexing technique provides a way to measure a larger variety of applications without the

need for recalculating the energy weights again. They also minimize the error if the performance

36

37

counters are used to measure all types of applications but there are still some applications possible

which produce estimation errors up to 15% for 100Mhz and up to 30% for higher frequencies.

The further investigation of the real world programs showed that it is possible to get an average

estimation error below 2% if the performance counters and energy weights are optimized for these

applications. The multiplexing extends the subset of applications that can be measured at once but

for measuring all programs there need to be more performance counters present in hardware.

Bibliography

[1] AVIS, D. lrslib. http://cgm.cs.mcgill.ca/∼avis/C/lrs.html.

[2] BELLOSA, F. The case for event-driven energy accounting. Tech. Rep. TR-I4-01-07, Univer-

sity of Erlangen, Department of Computer Science, June 2001.

[3] ERANIAN, S. The perfmon2 interface specification. Tech. Rep. HPL-2004-200R1, HP Labs,

February 2005.

[4] INTEL. Intel XScale® Microarchitecture Technical Summary, July 2000.

[5] JOSEPH, R., AND MARTONOSI, M. Run-time power estimation in high-performance mi-

croprocessors. In The International Symposium on Low Power Electronics and Design

ISLPED’01 (August 2001).

[6] KA-RO ELECTRONICS GMBH. Ka-ro electronics triton starter kit. http://www.

karo-electronics.de/.

[7] KADAYIF, I., CHINODA, T., KANDEMIR, M., VIJAYKIRSNAN, N., IRWIN, M. J., AND

SIVASUBRAMANIAM, A. vEC: virtual energy counters. In Proceedings of the 2001 ACM

SIGPLAN-SIGSOFT Workshop on Program Analysis For Software Tools and Engineering

PASTE’01 (June 2001).

[8] KELLNER, S. Event-driven temperature-control in operating systems. Department of Com-

puter Science, student thesis SA-I4-2003-02, April 2003.

[9] MUCCI, P. The performance API PAPI. White Paper of the University of Tennessee, March

2001.

[10] NATIONAL INSTRUMENTS. National Instruments Labview. http://www.ni.com/

labview/.

[11] NATIONAL INSTRUMENTS. SCC Series User Manual, September 2000.

[12] VARIOUS AUTHORS. Cygwin. http://www.cygwin.com/.

38

http://cgm.cs.mcgill.ca/~avis/C/lrs.html
http://www.karo-electronics.de/
http://www.karo-electronics.de/
http://www.ni.com/labview/
http://www.ni.com/labview/
http://www.cygwin.com/

Bibliography 39

[13] VARIOUS AUTHORS. mibench. http://www.eecs.umich.edu/mibench/.

[14] VARIOUS AUTHORS. netlib. http://www.netlib.org/.

[15] VARIOUS AUTHORS. Perfmon - performance monitoring tool. http://www.cse.msu.edu/
∼enbody/perfmon.html.

[16] VARIOUS AUTHORS. unixbench. http://www.tux.org/pub/tux/benchmarks/System/

unixbench/.

[17] WAITZ, M. Accounting and control of power consumption in energy-aware operating sys-

tems. Master’s thesis, Department of Computer Science 4, January 2003. DA-I4-2003-02.

http://www.eecs.umich.edu/mibench/
http://www.netlib.org/
http://www.cse.msu.edu/~enbody/perfmon.html
http://www.cse.msu.edu/~enbody/perfmon.html
 http://www.tux.org/pub/tux/benchmarks/System/unixbench/
 http://www.tux.org/pub/tux/benchmarks/System/unixbench/

Charakterisierung der Leistungsaufnahme von mobilen
Geräten im laufenden Betrieb

Diese Studienarbeit zeigt, dass es möglich ist, mit Hilfe der Performance Counter des Intel PXA

255 Prozessors, die verbrauchte Energie abzuschätzen. Es wird jedoch auch deutlich, dass die

Genauigkeit von mehreren Faktoren abhängt. Sowohl die Tatsache, dass der Prozessor nur zwei Per-

formance Counter besitzt, als auch die Einschränkung nur bestimmte Ereignisse zählen zu können,

wirkt sich negativ auf die Genauigkeit aus. Wichtige Ereignistypen wie z.B. das Zählen von Ar-

beitsspeicherzugriffen fehlen komplett.

Durch das Umschalten der Performance Counter in regelmäßigen Abständen (Multiplexing)

ist es möglich diese Unvollkommenheit etwas auszugleichen. Hierdurch werden die Ergebnisse

genauer. Jedoch sind trotzdem noch Abweichungen möglich die bei 100MHz bis zu 15% betra-

gen, bei höheren Frequenzen sogar bis zu 30%. Dies führt zu dem Schluß, dass es zwar nicht

möglich ist die verbrauchte Energie für sämtliche Programmtypen mit einer bestimmten Kombi-

nation aus Performance Counter und Energiegewicht vorauszusagen, es jedoch durchaus machbar

ist die Counter auf ein Programm oder einige Programmtypen zu optimieren. Somit ist es möglich

eine Testanwendung einmal mit externer Hardware zu messen und ab diesem Zeitpunkt kann für

dieses Programm auf die externe Meßhardware verzichtet werden. Als Beweis wurden die Energie

Gewichte mit Hilfe von drei verschiedenen Programmübersetzungen (hauptsächlich bestehend aus

GCC, Make, LibTool) ausgerichtet. Anschließend wurde ein weiteres Programm übersetzt und

zusätzlich ein Testlauf mit GZip durchgeführt. Diese Programme zeigten einen maximalen Fehler

von knapp über 5%. Desweiteren zeigte sich, dass mit Hilfe des Multiplexings der durchschnittliche

Fehler von Testläufen mit GCC, GZip und pdfTeX für die Frequenz 100MHz mit einem Fehler von

5,2% abschätzen lies. Bei höheren Frequenzen lag der Fehler sogar jeweils nur bei unter 2%. Dies

zeigt, dass die richtige Wahl der Performance Counter Typen und Gewichte für die Abschätzung

wichtig sind und diese auf bestimmte Programmtypen abgestimmt werden können. Das Multiplex-

ing erhöht die Anzahl der Programmtypen die ohne Änderung der Performance Counter mit einer

geringen Fehlerrate abgeschätzt werden können, ein gänzlicher Verzicht ist jedoch nicht möglich.

Hierfür wären mehr Event Counter und andere Event Counter Typen erforderlich.

Es sind verschiedene Erweiterungen dieser Arbeit denkbar. Zum einen, dass zum Bestimmen

40

der Gewichte ein anderer Ansatz erfolgt. Unter anderem wäre es möglich Compiler-Anweisungen

einzuführen die dem Kernel mitteilen welche Counter Typen für das aktuelle Programm am besten

geeignet sind. Außerdem wäre es möglich, dass der Kernel zuerst alle Counter für ein spezielles

Programm beobachtet und ausgehend von dieser Beobachtung sich für die besten Zähler entschei-

det.

41

	Introduction
	Overview
	Related Work

	Test Case
	Basic Setup
	Problems with the Test Setup

	Energy Estimation with Fixed Performance Counters
	Implementation
	Determination of the energy weights
	Test programs
	Analysis
	Toolchain
	Energy Weight Calculation
	Clock Counter Problems
	Determined weights

	Evaluation
	Test Programs
	Benchmarks
	Real World Programs
	Table of Estimation Errors and Conclusions

	Energy Estimation with Alternating Performance Counters
	Implementation
	Estimation
	Evaluation

	Future Work
	Conclusion
	Bibliography

