
Anwendungsspezifische Energiesparverfahren für WLAN

Studienarbeit im Fach Informatik

vorgelegt von

Matthias Faerber
geboren am 21. Februar 1979 in F¨urth (Bay.)

Institut für Informatik,

Lehrstuhl für verteilte Systeme und Betriebssysteme,

Friedrich Alexander Universit¨at Erlangen-N¨urnberg

Betreuer: Dr. Ing. Frank Bellosa

Dipl.-Inf. Andreas Weißel

Prof. Dr. Wolfgang Schr¨oder-Preikschat

Beginn der Arbeit: 3. Juni 2003

Abgabedatum: 19. Januar 2004

ii

Erklärung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer als der angegebe-

nen Quellen angefertigt habe und dass die Arbeit in gleicher oder ¨ahnlicher Form noch keiner an-

deren Pr¨ufungsbeh¨orde vorgelegen hat und von dieser als Teil einer Pr¨ufungsleistung angenommen

wurde.

Alle Ausführungen, die w¨ortlich oder sinngem¨aß übernommen wurden, sind als solche

gekennzeichnet.

Erlangen, 16. Januar 2004

iv

Application-Specific Power Management for Wireless

Networks

Student Thesis

by

Matthias Faerber
born February 21th, 1979, in F¨urth (Bay.)

Department of Computer Science,

Distributed Systems and Operating Systems,

University of Erlangen-N¨urnberg

Advisors: Dr. Ing. Frank Bellosa

Dipl.-Inf. Andreas Weißel

Prof. Dr. Wolfgang Schr¨oder-Preikschat

Begin: June 3rd, 2003

Submission: January 19th, 2004

vi

Abstract

In recent years computer networks have gained importance in many fields. After the success of

wired networks and the internet, radio based wireless networks are spreading. In many cases wire-

less networks are used when it is impossible to connect the computer to a network using a cable or

it is just uncomfortable. This not only applies to network cables but also to power cables and so

most devices are battery powered.

Wireless network adapters that are using the IEEE 802.11b standard are already equipped with a

power management mode. In this power management mode the card continously changes between

a sleep and an awake state. The sleeping interval can be altered by setting the so called beacon

interval.

This work examines how network applications can be identified only with information available

at the network layer. It is shown that statistical information derived from the linux kernel can be

used to characterize and identify applications. For a set of applications such profiles are developed

and explained.

Based on these profiles an algorithm is provided that is capable of detecting applications during

their runtime and adjust the beacon interval of the IEEE Standard. Thus the static behavior of the

power management mode it changed into a dynamic one. The algorithm considers both application

performance and energy conumption and sets the power management to an user-defined trade-off

between both.

The results of the characterization algorithm are evaluated in two tests. First offline tests are

used to analyze the detection rates for one application alone. Second, online tests are used to

analyze the delay between the start of an application and its detection and the impact of false

characterizations.

vii

viii

Contents

1 Introduction 1

2 IEEE 802.11 Standard 3

2.1 Network Topology . 4

2.2 Important Services . 5

2.3 Frame Types . 6

2.4 Power Management . 7

3 Measurement Environment 11

3.1 Energy Measurement/ Platform. 11

3.2 Linux Airo Kernel Drivers . 12

3.3 Wireless Tools . 12

3.4 Cisco Aironet 350 . 12

4 Application Parameters 15

4.1 Parameters . 15

4.2 Applications . 17

4.3 Application Classification .. 17

5 Implementation 21

5.1 Algorithms . 21

5.2 Parameter Mapping . 24

6 Evaluation 27

6.1 Offline Detection Rates . 27

6.2 Online Detection Rates . 28

6.3 Running two Applications in Parallel .. 29

7 Related Work 31

7.1 Algorithms with Hints . .. 31

ix

x Contents

7.2 Modifications of the Transport Protocol . 31

8 Future Work 33

8.1 Improvements in Usability .. 33

8.2 Optimization of Key Figures . 33

8.3 Additional Sources of Information . 34

9 Conclusions 35

Bibliography 37

List of Figures

2.1 Wireless cell in ad-hoc mode . 4

2.2 Wireless cell in infrastructure mode . 5

2.3 Relationship between states and servcies . 7

2.4 Infrastructure Power Management Operation [6] 9

3.1 Measurement Environment. 11

4.1 Application classification .. 18

4.2 NFS performance degrading . 18

6.1 Offline Application Detection Rates . 29

6.2 Online Application Detection . 30

xi

xii List of Figures

List of Tables

2.1 IEEE 802.11 Standards . .. 3

2.2 Beacon frame format 8

2.3 Power Management Modes (as defined in [6]) . 9

3.1 Overhead of Mode Transitions . 13

5.1 Detection Rates Base Version . 22

5.2 Detection Rates Enhanced Version . 22

5.3 Detection Rates Final Version . 23

5.4 Overview of application key figures . 25

xiii

xiv List of Tables

Chapter 1

Introduction

Portable computers, notebooks as well as handhelds are becoming more and more popular. As they

often rely on batteries, their power consumption has become a major issue. In recent years hardware

components have been equipped with capabilities to save energy. They range from processors

supporting multiple speed steppings up to hard drives that shut down when they are not accessed

for a longer period.

The IEEE 802.11 standard for wireless LAN cards was already designed with power manage-

ment in mind. But this algortithm has a flaw that is common for all these standard algorithms, either

for CPUs or network cards. They mostly are static and do not adapt to the application or user.

The power management mode included in the IEEE 802.11 defines two modes of operation

for a wireless node. It can either be in Constantly Awake Mode (CAM) or in Power Saving Mode

(PSP). Whereas in CAM the card is always ready to receive and transmit, the card is asleep most

of the time while it is in PSP mode. Before going to sleep, it has to inform the base station that it

is using power saving mode. While the client card is in power saving mode, the base station may

not transmit any data destined for the client and has to buffer it. Clients that currently have data

buffered at the access point are regularly informed by the base station when data is available for

them and can poll the base station for that data.

In the power saving algorithm of the standard the card is always put to sleep for a fixed period

of time. This time interval cannot be altered dynamically but has to be set by a user if he wants to

adjust it. The sleeping interval has two effects. While it reduces the amount of energy the network

card is consuming, it also can have negative impact on application performance. The performance

penalty differs from application to application. Some applications like multimedia players already

have mechanisms to handle packet losses. Others, for example those that are RPC-based, do not

and suffer greatly from power management.

Several algorithms have been proposed to reduce or completely get rid of this static behavior

and adapt power management to the applications. But most either alter the transmission protocol

between two stations or extend the kernel with an API so that applications can reveal information

1

2 Chapter 1. Introduction

about their likely future behavior.

This work shows how the power management algorithm of the IEEE standard can be extended

to a dynamic behavior without having to change the transmission protocol or alter applications.

Instead a heuristic is used to detect running applications and change the power management settings

according to the currently running application.

This work is organized as followed. The IEEE 802.11b standard is explained in chapter two

with its most import features. This includes possible network topologies, important services and

frame types that are relevant to power management. At the end of this chapter the power manage-

ment algorithm of the standard is explained.

The third chapter takes a look at the measurement environment. The setup to record energy

traces, the Linux driver and tools that are necessary to operate a wireless adapter are part of this.

In the fourth chapter the applications that were used to test the performance of the algorithm in

this work are described.

The focus of the fifth chapter lies on the characterization part of the algorithm. It explains the

evolution of the algorithm and how parameters are mapped to applications.

The work ends with an outlook over what can be done to enhance the usability and performance

of the algorithm further. Also other works in the field of power managent are referenced and their

relation to this work is given.

Chapter 2

IEEE 802.11 Standard

The IEEE 802 protocol family was designed to enable the exchange of information between hosts

on a network. The most established protocol of that family is the 802.3. It is used to connect

computers in wired local area networks. The 802.11 protocols are used to connect computers

wireless using radio hardware.

Before the IEEE has adopted the 802.11 standard in 1997 nearly all vendors of network equip-

ment had their own proprietary protocol. Devices of two vendors often were not able to comunicate

with each other. The 802.11 was an effort to solve that problem and create a standard for wireless

communication in local area networks.

In addition to that first 802.11 standard (802.11-1997) other standards for wireless networks

have been developed. But although these later standards are based on the first one they are not

always compatible. A summary of all protocols of the 802.11 family is given in table 2.1.

Standard Range Frequency Bit-Rate
802.11-1997 2.4 GHz 1-2 mbps
802.11a 20-50m 5 GHz 54mbps
802.11b 30-100m 2.4 GHz 11mbps
802.11g 30-100m 2.4 GHz 2-54mbps

Table 2.1: IEEE 802.11 Standards

The 802.11-1997, which was the first to be adopted, had only a limited bitrate. So two en-

hancements were developed: 802.11a and 802.11b. 802.11a offers higher bit-rate than the former

standard, but operates at the 5GHz frequenzy band and is not available in Europe due to radio

frequency regulations. 802.11a compatible networks are used mainly in the United States.

802.11b alters the way data is transmitted in regard to the 802.11-1997 standard and is able to

provide bit-rates of up to 11mbps. As it uses also the 2.4Ghz band, it is mostly compatible with the

older 802.11-1997 standard.

3

4 Chapter 2. IEEE 802.11 Standard

2.1 Network Topology

2.1.1 Ad-Hoc Networks

The most simple configuration of a wireless network is an ad-hoc cell. It is displayed in figure 2.1.

Figure 2.1: Wireless cell in ad-hoc mode

In this configuration no additional hardware except the network cards is necessary to connect

the stations. Every station is directly connected with every other stationin the cell. This can be

compared to an ethernet in the way that there is no central controller. Two stations can communicate

only as long as they are able to see each other. One station can act as a proxy or bridge and connect

the wireless cell with other networks.

2.1.2 Infrastructure Network

An infrastructure network is a more complex configuration of a wireless network. It is displayed in

figure 2.2.

In an infrastructure network every cell is controlled by an access point. The access point is the

center of every cell and can act as a bridge to connect the wireless cell with other networks. Each

station that wants to join the network have to be able to reach the access point. A station always

connects with the access point that has the strongest signal.

A network system with only one access point is called abasic service set(BSS). Several BSS

can be connected via adistribution systemand are then calledextended service set(ESS). Every

BSS or ESS can be identified by a unique number called SSID. Thedistribution systemenables a

station in one BSS to communicate with a station in an other BSS of the same extended service set.

The standard specifies no special distribution system and in practice ethernet is used most often.

In order to communicate with stations in other parts of the network a station must be trackable.

This requires a special service that is provided by the distribution system and is calledassoziation

2.2. Important Services 5

Figure 2.2: Wireless cell in infrastructure mode

(see section 2.2.1). With the help of this service the distribution system is able to route the packets

through the net from the sender to the receiver.

In an ESS a station that leaves one cell (BSS) of the network can join another cell. This is

calledroamingand is transparent to the user. This way wireless networks can be extended beyond

the range of one access point.

2.2 Important Services

2.2.1 Distribution

The distribution service is a key service of an extended service set. It is invoked every time a station

wants to send packets to a station that is localized in a different cell of the ESS. For example: Station

1 in figure 2.2 is not able to directly communicate with station 2 as they are not located in the same

cell. Instead the distribution system that connects the two access points has to be used.

In order to indentify the access point that is responsible for the cell in which a station is located,

a station first has toassociateitself with the access point. One station can at any time be assiciated

with only one access point. But an access point can be assiciated with any number of stations.

To be able to send messages in a wireless network it is necessary for a station to be associated

with an access point.

6 Chapter 2. IEEE 802.11 Standard

2.2.2 Authentication

In wired networks it is relatively simple to control the access to the network. Every station that

is connected to the wire has access, all others don’t. In wireless networks such restrictions do not

apply. As the transport medium is air in principle every station within the range of the access point

can join the network.

IEEE 802.11 provides control to LAN access via theauthenticationservice. Although no partic-

ular authentication scheme is required in the specifications in most cases shared key authentication

is used. In shared key authentication schemes both adapters have the same key. The access point

sends the station a request (challenge) and the station as to respond with the correctly encrypted

request message. The same key is also used to encrypt transmitted data. This encryption is not

considered to be safe and was intended to provide about the same security as a wire in ethernets

does. Therefore it is calledWired Equivalent Privacy(WEP).

2.2.3 Interrelationship of Association and Authentication

Directly after activating a network adapter, a station is not connected to a network. First it has to

associate with an access point and authenticate itself. In this process only the following three states

are possible:

1. Unauthenticated & Unassociated

2. Authenticated & Unassociated

3. Authenticated & Associated

States 1 and 2 are only used during the registration procedure. In state 3 the station is in logged

on to the network and can exchange data with all other stations.

The interrelationship of the services and states is shown in figure 2.3.

A detailed description of all services can be found in [6] and an overview of wireless LANs

in [9] and [10].

2.3 Frame Types

In a network during transmission data is split into packets and is send in TCP frames over the net.

In wireless networks three frame types exist:

• Data frames

• Control frames

• Management frames

2.4. Power Management 7

Figure 2.3: Relationship between states and servcies

All stations that want to participate in a wireless network have to be able to understand and send all

these frame formats.

Data framesare the most common type of frames in a wireless network. They are used to

exchange application data between stations in a network.Control framesare used to regulate the

access to the medium (air). They include among others the request to send, clear to send and

power save poll frames.Management framesare used to control infrastructure aspects of a wireless

cell. Most of the services offered by a network (like those in section 2.2) depend on management

frames. Possible management frames are, for example, association and disassociation frames, their

responses and authentication frames. A special management frame is the beacon frame, its contents

are displayed in table 2.2. It is transmitted continuously by the access point to inform all stations

about changes in the network. Beacon frames play an important role in power management as all

stations have to listen to them in predefined intervals. Each station may set its own interval. In the

following chapters it will be shown how this interval can be changed to save energy.

2.4 Power Management

As most stations that use wireless adapters are battery powered, an additional power management

mode was included in the IEEE standard. Two modes of operations are defined:

• Active Mode

• Power Saving Mode

8 Chapter 2. IEEE 802.11 Standard

Information Length Meaning

Timestamp 8 Bytes Time of the sender to synchronize the clocks of all stations
in a cell

Beacon-Interval 2 Bytes Time between to beacon frames. With the clock time, every
station can evaluate the time for the next beacon and thus
detect the missing of a beacon frame

Capability 8 Bytes Information about the cell: Ad-hoc or infrastructure mode,
encryption, ...

Address 6 Bytes Address of the cell, in infrastructure mode it is the address
of the access point

... 18-23 Bytes
...

TIM 4 Bytes Transmition Indication Map to controll power management
modes

Table 2.2: Beacon frame format

A station that is in active mode, is alwaysawakeand can send and receive data at any moment. A

station in power saving mode, on the other hand can assume an additionaldozestate. In this state

the station is not able to receive or transmit any data and consumes very few power.

Before a station may go to power saving mode it has to inform the access point. This is neces-

sary as the station is virtually offline while it is in doze state. The access point has to buffer all data

that is destined for a station in power saving mode. A station on the other hand has to periodically

listen to beacon frames. As shown in table 2.2, the access point informs all stations whether data is

available or not. Upon determining that data is available at the access point, a station may poll the

access point for it and receive the data in response.

The transitions between these two states are described in the power management modes, which

are summarized in table 2.3.

As an access point has to know whether a station is in power saving or active mode, a station

may not change modes without successfully informing the access point about the change.

The traffic indication map (TIM) of a beacon frane is used to notify stations that data is available

for them at the access point. There are two types of TIM messages: TIM and DTIM. DTIMs

(delivery traffic indication map) are special TIM messages as the access point can send broadcast

and multicast messages for staions in the cell.

Figure 2.4 illustrates the data exchange between an access point and two stations. Both stations

have different polling interval settings. A ramp-up indicates that the station is powering up and

2.4. Power Management 9

Active mode or AM Station may receive frames at any time. In Active mode, a
station shall be in the Awake state. [...]

Power Save or PS Station listens to selected beacons (based upon the Listen-
Interval parameter [...]) and sends PS-Poll frames to the
access point if the TIM element in the most recent bea-
con indicated a directed MAC service data unit (MSDU)
buffered for the station. The access point shall transmit
buffered directed MSDU to a station in powersave mode
only in reponse to a PS-Poll from that station [..] In PS
mode, a station shall be in Doze state and shall enter the
Awake state to receive selected beacons, to receive broad-
cast and multicast transmissions following certain received
beacons, to transmit, and to await responses to transmitted
PS-Poll frames [...].

Table 2.3: Power Management Modes (as defined in [6])

switching from doze to awake state. At the first arrow in the figure station one receives a beacon

frame with a TIM indicating that data is available. The station sends a poll frame and data is

transmitted from the access point to the station. If the medium is already used by another station,

beacon frames may be delayed. Every station can decide itself how long it wants to stay in doze

state. But the longer a station is in doze state, the higher is the latency to receive a packet.

Figure 2.4: Infrastructure Power Management Operation [6]

10 Chapter 2. IEEE 802.11 Standard

Chapter 3

Measurement Environment

3.1 Energy Measurement/ Platform

The network card for which the Linux kernel driver was adapted, was a Cisco Aironet 350 wireless

LAN adapter [5]. The card was used with an IBM Thinkpad 600 notebook that ran a Debian GNU/

Linux. The operating system was a Linux standard kernel version 2.4.18. In order to measure

the energy consumption of the network adaptor it was connected to the computer via an PCMCIA

extender. The extender has several contacts to monitor the card. Figure 3.1 shows a diagram of the

measurement setup.

Figure 3.1: Measurement Environment

The network card is supplied with 5V. A small resistor was attached to the power supply line.

The resistor is connected via a A/D converter to the parallel port of another computer. The A/D

converter is able to sample up to 20000 values per second. With the fall of voltage at the resistor

UR1 and the size of the resistorR1 it is possible to compute the power consumptionPLAN of the

network card using the formula:

PLAN ≈ 5V ·UR1

R1

11

12 Chapter 3. Measurement Environment

3.2 Linux Airo Kernel Drivers

Drivers for the Cisco Aironet 350 are already included in the Linux kernel. During the development

of this algorithm several versions of the Linux kernel up to 2.4.21-pre5 have been tested. Finally

kernel version 2.4.18 was chosen as it was the only one that has proved to be reliable.

The kernel driver is composed of two modules. While theairo cs.o module is responsible for

interfacing with the pcmcia bus, theairo.o module is the actual driver. Theairo.c source file

contains all the code that is necessary to operate the hardware.

3.3 Wireless Tools

The Wireless Extensionsare an extension to the Linux kernel and provide a generic API to ma-

nipulate and query various settings of network adapters. These include the SSID of the network

cell, transmission power, encryption keys and the power management configuration.Wireless Ex-

tensionsare included in the kernel and every driver that wants to make use of it needs to implement

it.

While theWirless Extensionsare an API in the kernel, thewireless toolsare a reference im-

plementation and provide user space tools. The central tool is callediwconfig. It is a command

line interface to alter basic settings. The others areiwlist, iwspy andiwpriv and allow access to

more private settings.

3.4 Cisco Aironet 350

For the experiments in this thesis, a Cisco Aironet 350 Wireless LAN adapter has been used. This

card offers three different power saving modes:

• CAM (equal to AM mode)

• PSP (equal to PS mode)

• PSPCAM

In addition to switching from CAM to PSP (or PSPCAM) the adapter also has the ability to change

the beacon interval. Switching between two modes or changing the listen interval costs both time

and energy. Table 3.1 summarizes the costs with Aironet 500.

To overcome these costs, Cisco has introduced a new power saving mode that is called PSP-

CAM. PSPCAM differs from PSP in the manner that after being in awake state, it does not imme-

diately fall back to doze state but stays in awake state for a short period (approx. 200ms).

3.4. Cisco Aironet 350 13

mode transitions time energy

PSP to CAM 320ms 280mJ
CAM to PSP 317ms 283mJ
change beacon interval333ms 300mJ

Table 3.1: Overhead of Mode Transitions

This additional mode reduces some of the shortcomings of the power saving mode of the stan-

dard. But as it is a proprietary mode, and not likely to be implemented in cards of other vendors, it

is not regarded any further in this work.

14 Chapter 3. Measurement Environment

Chapter 4

Application Parameters

4.1 Parameters

The data source in the Linux kernel was chosen so that it causes as few overhead as possible.

This includes both programming overhead during the implementation and runtime overhead. The

Linux kernel already contains data structures with information about traffic on a network interface.

This information is maintained within the driver instruct net device stats. In an unmodified

kernel the contents of this structure can be viewed for example with theifconfig command.

Among other information it contains the following:

• Received packets

• Transmitted packets

• Received bytes

• Transmitted bytes

Within kernel spacestruct net device stats is accessible via theget stats operation.

Periodically this operation is called and the information containing the amount of data transmitted

in the last period is written to a log file.

The data from the log file is read by a program that computes a series of derived key figures.

These key figures should satisfy two rules.

1. The key figures should be stable for one application. Stable in this context means that the

key figure should differ as little as possible for the whole runtime of the application. But

stable also means that it should be independent of the polling interval if the card is operated

in power management mode.

15

16 Chapter 4. Application Parameters

2. The key figures should vary for two distinct applications. Vary means that the distance for

two values for two different applications of the same key figure is as large as possible. The

further one key figure is distributed, the better is its success rate during the characterization.

The program that performs the characterization will be called from now on characterization

module. In this characterization modules seven key figures were used to identify applications.

1. Average size of received packets

2. Average size of transmitted packets

3. Ratio of inactive to active periods

4. Ratio of average size of received to average size of transmitted packets

5. Amount of transmitted bytes

6. Standard deviation of average sizes of received packets

7. Standard deviation of average length of inactive periods

Theaverage size of received packetsand those for transmitted packets can be used to distinguish

whether an application causes a lot of network traffic or rather few one. Targeted at another aspect of

network applications is theratio of inactive to active periods. It is a measure whether an application

transmits data continously or has periods with delays. A similar key figure is thestandard deviation

of average length of inactive periods. It can be used to distinguish interactive applications from non-

interactive ones. For interactive applications it is more likely to have periods of inactivity that vary

in their length then for batch applications due to user think time.

In addition to the previous seven key figures that were finally included into the characterization

module a number of other figures were evaluated. This included:

• Standard deviation of average sizes of transmitted packets

• Ratio of standard deviations for the sizes of received and transmitted packets

• Standard deviation of average lengths of active periods

Although these key figures could be easily computed as results from the previous key figures, they

were not included in the characterization module. They were either not stable for one application

or grouped around one single value and thus were omitted.

4.2. Applications 17

4.2 Applications

To test the characterization algorithm it was necessary to select a set of applications that is common

to run on a wireless node. One proposed scenario included research activity in the Internet, finding

and editing of some files that are mounted on a remote share using NFS like file systems and a

remote session on a host using SSH.

In another scenario it a user listens to a radio stream on the internet or watches live videos on

the internet. Also the download of larger files should be identified.

To cover the proposed scenarios, the following applications were chosen to test the characteri-

zation module and profiles for them were created:

• Web browser (Mozilla)

• Download (FTP-Client)

• Low-bandwidth stream (Real Audio Stream/ mp3 Stream)

• High-bandwidth stream (Real Video Stream)

• RPC based service (NFS)

• Terminal session (SSH)

In addition to these six application a number of others would also be possible. Not included in the

list above are for example an email client, a chat program and a news ticker. As an application like

an email client is called only very rarely (once about every 10min) power management for them

alone is not necessary. Chat programs and news tickers on the other hand are often based on the

http protocol and should fit into the web browser profile. So again no seperate profile is necessary.

4.3 Application Classification

Application can be classified into four categories regarding power management. They can beinter-

activeor non-interactiveand power managementfriendlyor unfriendly. Friendly applications show

little or no performance loss if power management is turned on, unfriendly applications do. Figure

4.1 classifies the six test applications within this scheme. Audio and video streams are combined

into one single profile.

Mozilla and SSH belong to the second group of applications. Although performance is a critical

issue, both applications tolerate power mangement. The intervals for which a user is able to recog-

nize delay vary. Whereas for the secure shell beacon intervals above 100ms are disturbing, a web

browser can tolerate beacon intervals up to 300ms and even more.

18 Chapter 4. Application Parameters

Figure 4.1: Application classification

NFS belongs to the first as well as to the third group of applications. NFS falls into to first group

if the interactive part dominates. Examples would be sessions in which a lot of shell command like

ls, find or grep are used and the user has great influence on the workflow. The compilation of a

Linux kernel would be an example where NFS falls into the third group. Workflows in this group

are triggered by the user but then run on their own for a longer period.

The network file system uses RPC services of the operating system and is very unfriendly in

regard to power management. This has been examanined in detail by [2]. Our own tests show that

performance for NFS with power management enabled decreases performance extremely. Figure

4.2 shows a copy operation on an NFS mounted filesystem. The operation finished after a few

seconds when power management was turned off (0sbeacon interval), but took more than 1000s for

a beacon interval of 1000ms. Therefore the profile for NFS disables power management completely.

Figure 4.2: NFS performance degrading

4.3. Application Classification 19

FTP-Client falls into the third group. It is a batch application and mostly independent of user

input. It is different in so far as it utilizes the complete bandwidth of the wireless network. In the

profile for FTP power management was switched off.

Audio and video streams are the only ones from the set of test applications that fall within the

fourth category. The transfer protocols for web stream were designed so that they can cope with

interrupts in the transfer for a short time. This is done by prefetching data at the client and playing

the stream with a short delay. Activating power management is nothing else than introducing an

artificial delay. For all test applications the audio and video play could tolerate the biggest polling

interval. In the profile it was set to 500ms.

20 Chapter 4. Application Parameters

Chapter 5

Implementation

5.1 Algorithms

The implementation of the algorithm for the Linux operating system consists of two parts, the

collector module located inside the kernel and the characterization module in user space.

5.1.1 Collector Module

The kernel part of the system is responsible for retrieving data from the network interface level.

The Linux kernel already maintains a data structure that contains statistical data about the traffic

for each network interface. Thus no additional overhead is implied on the system to obtain the

necessary information. The collector module periodically (100ms) retrieves the number of bytes

and packets that have been received and transmitted during the last time slot. It takes the data from

the kernel structure and passes the statistics to user space via the/proc interface.

5.1.2 Characterization Module

The characterization module is responsible for mapping the network statistics to an application.

The final version has evolved in several steps.

5.1.2.1 Base Version

To perform the identification, the characterization module maintains tables containing the target

values for all parameters (dimensions) and applications. Periodically the collector module reads the

data and calculates the parameters newly. Then the calculated values are compared with those in

the tables. For every parameter the application with the minimum difference between the calculated

and the stored value is chosen as a candidate. The application that is most often represented in that

set of candidates is selected.

21

22 Chapter 5. Implementation

Although detection rates are quite good as shown in table 5.1, too many other wrong applica-

tions are still detected.

5.1.2.2 Enhanced Version

To reduce this problem another selection algorithm was introduced. The set of candidate applica-

tions is choosen as described in 5.1.2.1. But instead of simple majority, it is now necessary for

an application to be selected as winner to have absolute majority. That is, more than half of all

candidates indicate the same application. If there is no application that has absolute majority, the

characterization module retains the decision of the last period and returnunknownfor that time slot.

Detection rates of the algorithm are summarized in table 5.2.

Despite the improved detection rates, another factor was introduced.Unknownindicates how

many times no decision could be made and the former decision was retained. This way a large part

of theunknowndecisions can be added to thecorrectones.

Application detected

Mozilla 79%
Video 81%
Radio 86%
SSH 88%
NFS 78%
FTP 100%

Table 5.1: Detection Rates Base Version

Application detected unknown

Mozilla 97% 61%
Video 94% 63%
Radio 99% 36%
SSH 92% 52%
NFS 99% 88%
FTP 100% 0%

Table 5.2: Detection Rates Enhanced Version

5.1.2.3 Final Version

To address the problem of the highunknownrate, another modification was introduced into the

detection algorithm.

In table 5.4 it can be seen that for two applications, it is possible that key figures are very close

to each other. In algorithms 5.1.2.1 and 5.1.2.2 only one candidate application may be selected for

one parameter although other applications may be located very close.

To reduce this problem a level of uncertainity was introduced. All applications whose calculated

value lie near the stored sample are also selected as candidates. Experiments have shown that a

circle with a diameter of 1.2 times the distance between the closest candidate and the sample yields

the best results.

A second modification was made to the selection algorithm. Whereas in algorithm 5.1.2.2 it

was necessary to have absolute majority, it now suffices for one application to be selected to have

two times more candidates in the set than the application with second most candidates. Detection

rates are shown in table 5.3.

5.1. Algorithms 23

Application detected unknown

Mozilla 96% 36%
Video 97% 58%
Radio 99% 37%
SSH 98% 32%
NFS 99% 79%
FTP 100% 18%

Table 5.3: Detection Rates Final Version

5.1.3 Characterization Module Implementation

The characterization module was implemented in the Perl programming language. Perl was cho-

sen, because it supports the rapid development of small modules and parsing of text files. But

the characterization module is not language dependend and could be written in any programming

language.

The characterization is composed of mainly four steps. First data is extracted from the log file,

then the parameters are calculated. Based on these parameters applications are detected and the

polling intervall of the network adapter is adjusted.

The first step, extracting the values from the log file is easily done in Perl. The logfile is broken

up using thesplit command and is stored into an array.

Based on this array, active and inactive periods are determined. This task is executed in its own

method. Slots of inactivity, where no data is transmitted can be identified as all their values are

zero. The length of each period of inactivity or activity are counted and their history is stored in an

array with 100 entries. From this array, the average length of inactive and active periods and their

standard deviations are calculated. After the lengths of inactive and active periods, the parameters

that are connected to the package sizes are calculated. Again this is done in an method of its own.

Average packet sizes are calculated using the data of active slots only, so that packets with a size of

zero do not alter the result.

Then applications need to be identified. For each parameter that was computed in the previous

step all applications are examined and chosen as candidates if the stored value in their profile lies

within the range around the calculated value. In the range algorithm (5.1.2.3) for every parameter

several candidate applications are possible. All candidates are stored into an array. Then based on

this array of possible candidate applications the running application is identified. The result of the

identification can also be that no application has been detected and the valueunknownis returned.

Finally the polling interval of the network adapter has to be adjusted to the policy for that

application. If the application that has been detected in this slot is already running or the result of

the identification was that no application could be identified the polling interval does not need to

be altered. If in contrast a new application was detected, the interval needs to be adjusted. This is

24 Chapter 5. Implementation

done using theiwconfig (section 3.3) operation. It is also checked whether the last change in the

polling interval has happend more than 10s ago to prevent the card from frequently switching the

polling interval if many applications are identified in a short period of time.

5.2 Parameter Mapping

Chapter 4.1 introduced the parameters that are used to identify applications. To obtain values for

them, the applications (Mozilla, NFS operations, FTP client, Real Player, SSH session) were run

on the test computer and trace files were recorded from the kernel. This was repeated for several

beacon interval settings. The beacon intervals were: No power management and sleep intervals of

100, 200, 300, 400, 500, 750 and 1000ms. The trace files were analyzed afterwards and the key

figures for all parameters were calculated.

The following values were used in the evaluation of the characterization module. They were

computed using an analyzing tool that is similar to the characterization module but lacks the last

stage and performs no identification. Instead it lists the values of each parameter. Like the charac-

terization module the analysis tools computes values for every timeslot. To obtain one value for all

timeslots the average is computed and used as key figure.

• Theaverage size of received packetsranges from 58 bytes per packet for the Mozilla profile

up to 1380 bytes for FTP transfers. The distribution of the key figures is relatively even and

the distance between two key figures is at least 98.

• Theaverage size of transmitted packetsstarts at 48 bytes for text based web pages and ends

with 161 bytes for NFS operations. The Real Player audio stream, the video stream and the

FTP client lie close together ranging from 54 to 55 bytes.

• The ratio of inactive to active periodsranges from 1.7 up to 31. The non interactive appli-

cations Realplayer (for both radio and video stream), FTP and NFS are grouped between 1.7

and 2.9. SSH has a ratio of 3.4 and the web browser 6.4 for web pages with many figures and

31 for pages that contain mainly text.

• Theratio of average size of received to average size of transmitted packetsranges from 1.91

up to 25.56. The values are distributed evenly across the whole range, only Mozilla (when

viewing text pages) and NFS operations have almost the same ratio of 1.92 resp. 1.91.

• The amount of transmitted bytesranges from 1.23 up to 60.76. SSH, Mozilla and NFS lie

close to each other at 1.23, 1.8 and 1.84.

• The standard deviation of average sizes of received packetsranges from 67.26 to 246.60.

Again, the values are distributed well, but the Real Player video and radio streams are hard

to distinguish.

5.2. Parameter Mapping 25

• Thestandard deviation of average length of inactive periodsspans from 0.36 to 36.64. But

it has to be noted that only Mozilla has values above 3. The rest of the applications is spread

from 0.36 to 2.56 only.

The most significant parameters and their mapping to applications together with key figures is

given in table 5.4.

parameter very small small medium large very large

size of received
packets [byte]

(< 250)
SSH

(250-800)
Browser,
Radio,
NFS

(800-1300)
Video

(> 1300)
Download

size of sent packets
[byte]

(100-200)
NFS

ratio of the last two
values

(< 12)
SSH

(12-20)
Radio,
Video

(> 25)
Download

ratio of inactive to
active periods

(< 0.2)
Download

(0.2-2)
NFS

(2-6)
SSH

(> 6)
Browser

standard deviation
of the length of
inactive periods

(0-2)
Radio,
Video

(> 30)
Browser

Table 5.4: Overview of application key figures

While one parameter on its own is unable to distinguish between two applications, a combina-

tion of them provides good detection rates.

26 Chapter 5. Implementation

Chapter 6

Evaluation

In the first part the characterization algorithm is analyzed offline. That means, that the traces were

recorded first and afterwards in a second step the characterization module was run. In this test, no

change in the polling interval takes place.

In the second part, the module is analyzed online. This means that while the application is

running, the characterization module is analyzing the traces and adjusting the polling interval ac-

cording to a predefined policy.

6.1 Offline Detection Rates

In the offline test, detection rates for the various applications are evaluated after having recorded

the traces. The traces were analyzed afterwards by the characterization module. For the offline tests

the characterization module was equipped with a mechanism to know in advance which application

the trace belonged to. The module differentiates between three results:

1. Direct (positive identification based on key figures)

2. Unknown positive (positive identification, but only because no other is identified)

3. False (identification of a wrong application, either direct or indirect)

Figure 6.1 displays the results of the offline tests. The dark grey part of the columns means that

an application has been identified directly while the light grey that the result of the characterization

was unknown but still positive. The parenthesis denotes the polling interval for that test run. For

all test runs two factors will be evaluated. They aredetection rateandcertainty. Certainty in this

context does not mean that applications were characterized wrong, but it indicates the proportion

of direct and unknown positive identifications.

The two Mozilla runs were of equal length, both of about 5 minutes. In testcase ”Mozilla 1”

a web page that consisted mainly of pictures was viewed. Detection rates and certainty for that

27

28 Chapter 6. Evaluation

testcase are very high with 98% resp. 95%. The second Mozilla test case, with text web pages, has

a lower certainty (47%) but equally high detection rate (96%).

Testcases ”NFS 1” and ”NFS 2” have a length of 7 and 9 minutes. In these testcases, afind

command was executed on a directory that was mounted using NFS. The difference in certainty

between 59% for the first testcase and 96% for the second test case cannot be explained with the

change in the polling interval. Rather differences in the network environment should be responible.

Actually certainty atCAM polling interval should be higher as the network card is not put to sleep.

In testcases 3 and 4 thechmod was used to changed the access rights of a directory recursively.

Detection rates and certainty of both test cases are at about the same level.

For the radio testcase, an audio stream was played for 12 minutes. Whereas detection rate is at

99%, certainty is only at 50%.

A terminal session on a remote computer was started for each of the two SSH testcases ”SSH

1” and ”SSH 2”. This session was used to perform administrative tasks on that computer like listing

a directory, finding files and editing text files. While for both testcases roughly the same operations

were executed, detection rate for the second testcase is at 96% and only at 62% for the first testcase.

Certainty is at 39% for the ”SSH 1” and at 58% for ”SSH 2”. In a third SSH testcase, a X-Window

program was started on the remote computer and forwarded to the local. The detection rate for

this testcase (16%), can be explained with the change in the application profile (transfer of text

information to transfer of X-Window information). A new profile describing X-Forwarding via

SSH should lead to higher detection rates.

The video in the last testcase is only recognized at a rate of 53% and a very low certainty of 3%.

In another testcase not displayed in the diagram, a video that was transmitted using a low bitrate

was never characterized correctly. Instead the web radio profile was detected at a rate of 64% and

a certainty of 15%. This might be an indicator that an application profile for low and high bitrate

multimedia stream might produce better results than profiles for audio and video streams.

6.2 Online Detection Rates

In the test, the applications were executed sequentially. Approximately every 2 minutes the ap-

plication was changed. The test started with browsing internet pages for two minutes. Following

a terminal session on a remote computer was started using the SSH. After two minutes more, a

find command was exectued on a directory that is located on a NFS share. The last two minutes

realplayer was used to play a netradio transmission.

Figure 6.2 displays the energy trace, that was taken while executing the test. The test started

with the Mozilla web browser. It was correctly identified execept for 14s starting at timestamp 74s.

During this period the characterization module identified SSH. The following two applications

SSH and NFS were identified correctly and no other applictations were found in this period. The

6.3. Running two Applications in Parallel 29

Figure 6.1: Offline Application Detection Rates

characterization module needed about 10s to realize that the application had changed and switch

the profile. Starting at timestamp 394s the realplayer was activated. For the first 11s of its runtime

Mozilla was identified falsely. But after this period the profile was switched to radio and was kept

for the rest of the test.

6.3 Running two Applications in Parallel

Detection rates when two applications are running and particularly transmitting data over the net-

work device concurrently are low. The characterization module was tested by running two applica-

tions in parallel.

In the first test, netradio and Mozilla were run in parallel. In this testrun both applications

were detected, but the characterization mode switched frequently between them. In the second test,

SSH and Real Player were run in parallel. This time, the characterization module could reach no

decision.

As the trace data was extracted at network level, packets could not be associated with single

applications, but the two or more applications running in parallel were treated as one, adding the

network traffic.

If it is necessary that two applications which are running in parallel were recognized, a new pro-

file that consists of both should be added. Another option would be to disable power management

if the characterization module can reach no decision or to switch to a default profile.

30 Chapter 6. Evaluation

Figure 6.2: Online Application Detection

Chapter 7

Related Work

Several techniques have been proposed to reduce energy consumption of wireless network adapters.

Generally works in the field of wireless power management follow two different approaches. One

approach relies on applications that are cooperative in respect of power management and implement

a special API to give hints about their intended behavior. The other tries to modify the transmission

protocol so that less energy is needed.

7.1 Algorithms with Hints

The works of Flinn et al. [2] propose a self-tuning wireless power management. They introduce an

API so that applications can give hints about their future behavior to the power management layer.

Their API is composed of the following commands:TransferHintBegin, ListenHintBegin,

HintEnd, SetKnob andSetBasePower. All hints are passed to an algorithm that decides whether

power managemant can be used or not. Programs that want to use this application specific power

management have to implement the API.

Kravets et. al [8] not only propose a API to make predictions about application behavior but

also suggest a new transport layer protocol. While in 802.11 the control over a network cell and the

transmission of data lies at the access point, Kravets argues the a client has more knowledge about

application and therefore should decide about transmission windows.

7.2 Modifications of the Transport Protocol

The Bounded Slowdown Protocol [7] modifies the time the network adapter is awake after a packet

is transmitted. The work is oriented at theRound Trip Time(RTT) of packets. Krashinsky and

Balakrishnan introduce a factorp that represents an upper limit of delay. In the Bounded Slowdown

Protocol two timeoutsTawake andTsleep exist. After a packet is send, the adapter stays awake for

Tawake. Then the adapter is sent to sleep and awakes afterTsleep to check for a response for his

31

32 Chapter 7. Related Work

perviously sent packet. If no packets have arrived the card is again put to sleep, but this timeTsleep

is extended by the factorp.

Bertozzi et al. [3] also propose improvements to the transport protocol. But instead of looking

at round trip times they use TCP buffer occupancy to identify periods in which power management

can be used. They identify two situations when the card can be put to sleep. The first situation

occurs when the receive buffer is full and azero windowmessage is sent to the server, the card can

be powered down until thenon-zeromessage is sent as the TCP protocol takes care that no data is

transmitted. The second situation is when the receive buffer is not utilized due to inactivity on the

network device.

Chandra and Vahdat [4] examine in their work the influence of power management on several

multimedia data streams. To enhance performance of multimedia applications they propose two

new proxies, one at the server side of the wireless network and one at the client’s side. The function

of these proxies is to buffer larger amounts of data at the server side proxy and transmit them to

the client side proxy. The client side proxy stores the data and delivers it to the client application.

By sending the data in one large packet instead of several smaller ones, windows of inactivity are

created and can be used to power down the network adapter.

Chapter 8

Future Work

8.1 Improvements in Usability

So far it is complicated to add new application profiles to the characterization module. Generally it

is done in two steps. First, the application has to be run and traces for it have to be recorded. Then

these traces have to be analyzed, parameters have to be computed and finally the characterization

module has to be altered. This is not just time-consuming, but also prone to errors. As the source

code of the characterization module has to be altered directly, only experienced users could do it.

But more important, a trace that is recorded in a test run is likely to differ from one that is recorded

during work.

A more user friendly method would be to maintain these tables with a dedicated user tool.

This tool could have a start and an end of recording button and output the recorded and analyzed

session in a description file containing the parameters. This description file could be the input of

another tool that makes the new parameters available to the characterization module. In a first

implementation a command line interface would be enough, but a more elaborated tool could use a

GUI.

A key feature of any user configuration tool is that a user can customize the behaviour of the

characterization module. A user must be able to set the speed (polling interval) of the network

adapter. If the user feels that the default policy does not fit his needs, he should be able to alter it

and adjust it to his needs. The configuration tool should also be able to activate and deactivate the

characterization module and use the standard power management algorithm instead, either in CAM

or PSP mode.

8.2 Optimization of Key Figures

In this work key figures were computed in a very simple manner. After calculating the key figures

for every slot, the average was computed for all slots and this value is taken for the characterization

33

34 Chapter 8. Future Work

module. Another method would be to take the median (element in the middle of the sorted array)

of all values. Both have about the same detection performance. For the tests in this work manually

tuned key values were used. As this involves a lot of work, an optimization algorithm to compute

key figures from traces would be valuable. Such an optimization algorithm would have to consider

all other applications and compute key figures so that the distance for the same figure but two

applications is maximal.

8.3 Additional Sources of Information

For the characterization algorithm other sources of information would be possible. Network con-

nections always include a port number. This port number is standardized for most applications and

could be used as source for applications. Port 80 for example indicates the the network connections

belong to a web browser. On UNIX systems the a mapping of port numbers to applications can

be found/etc/services. Another source of information that is available and can be used is the

TOS-flag in the IP header. This flag indicates the type of service the network packet is belonging

to. For example0x4 stands for ftp data and0x8 for telnet (SSH) data [1]. This flag is set by most

applications and is another hint that can be used and although not many variations are possible it is

another hint.

A possible place for an implementation would be the netfilter layer. Netfilter is the firewall

implementation for Linux and is already equipped with mechanisms to filter for ports or TOS-flags.

The LOG-target that is currently used to write log messages to the command line or the log files

could be altered to report to the characterization module. Such an implementation would have

minimal overhead as only a new module for the kernel part of netfilter and a library module for the

user part would be necessary.

Chapter 9

Conclusions

This work presents a new approach to power saving for wireless network adapters. Using a power/

performance tradeoff it offers more flexibility to the user than previous algorithms.

It was shown how data available to the kernel can be instrumented to identify network applica-

tions and adjust the existing IEEE power management so that it will be adequate for both application

performance and power management.

Previous algorithms were targeted at the redesign of the transmission protocol or the network

stack. This involves big overhead, as either the operating system or network applications had to

be rewritten. The algorithm in this work is nonintrusive in the way that only minimal changes to

the kernel have been made and none to the network infrastructure or applications. Instead it uses

existing infrastructure and data whenever possible.

Based on data from the kernel driver of the network adapter several key figures are calculated

and mapped to applications using profiles. It was shown that such profiles can be added easily. In

addition a user may adjust the energy saving profiles with a speed knob to his own needs.

The algorihm was implemented and tested with several network applications. Their perfor-

mance was tested in offline as well as online tests. Offline tests show that applications were iden-

tified successfully for more that 85% of the running time. In online tests applications were also

characterized correctly for most of the time. The online tests show that wrong applications can be

identified. But these false identifications were all corrected after a short period of time.

As the algorithm is oriented at the applications it outperforms all static algorithms that are

implemented in network adapters.

35

36 Chapter 9. Conclusions

Bibliography

[1] Philip Almquist. Rfc 1349 - type of service in the internet protocol suite.http://www.faqs.

org/rfcs/rfc1349.html.

[2] Manish Anand, Edmumd B. Nightingale, and Jason Flinn. Self-tuning wireless network power

management. InProceedings of the 9th Annual International Conference on Mobile Comput-

ing and Networking (MOBICOM ’03), September 2003.

[3] Davide Bertozzi, Anand Raghunathan, Luca Benini, and Srivaths Ravi. Transport protocol op-

timization for energy efficient wireless embedded systems. InProceedings of the conference

on Design, Automation and Test in Europe (DATE 2003), March 2003.

[4] Surendar Chandra and Amin Vahdat. Application-specific network management for energy-

aware streaming of popular multimedia format. InProceedings of the 2002 USENIX Annual

Technical Conference, June 2002.

[5] Cisco Systems, Inc.Cisco Aironet Wireless LAN Client Adapters Installation and Configura-

tion Guide for Linux.

[6] IEEE Computer Society LAN MAN Standards Committee.IEEE 802.11: Wireless LAN

Medium Access Control and Physical Layer Specifications, August 1999.

[7] Ronny Krashinsky and Hari Balakrishnan. Minimizing energy for wireless web access with

bounded slowdown. InProceedings of the Eighth Annual ACM/IEEE International Confer-

ence on Mobile Computing and Networking (MOBICOM 2002), September 2002.

[8] Robin Kravets and P. Krishnan. Application-driven power management for mobile commu-

nication. ACM/URSI/Baltzer Wireless Networks (WINET) special issue of Best Papers from

MobiCom’98, 1998.

[9] Axel Sikora. Wireless LAN. Addisson-Wesley, 2001.

[10] Jean Tourrilhes.Linux Wireless LAN Howto, August 2000.

37

38

Anwendungsspezifische Energiesparverfahren für WLAN

In den letzten Jahren hat die Verbreitung von Computernetzwerken immer mehr zugenommen. Mit

der Entwicklung von Funknetzwerkkarten gewann auch der Aspekt eines Energiesparmodus immer

mehr an Bedeutung, da viele der Ger¨ate die Funknetzwerkkarten benutzen batteriebetrieben sind.

Funknetzwerkkarten, die den IEEE 802.11b Standard benutzen, besitzen bereits einen solchen

Energiesparmodus. Dabei wird die Karte, wenn sie den Sparmodus benutzt, in regelm¨assigen

Abständen aus einem Schlafzustand aufgeweckt um mit der Basisstation in Kontakt treten zu

können. Diese Abst¨ande können mit dem sogenannten ”Beacon Interval” ver¨andert werden.

Der Energiesparmodus des IEEE Standards hat, wenn er aktiv ist, zwei Auswirkungen. Zum

einen wird der Energieverbrauch der Funknetzwerkkarte deutlich gesenkt, zum anderen wird aber

auch die Anwendungsausf¨uhrung beeintr¨achtigt. Diese Beeintr¨achtigung ist abh¨angig von der Art

der Anwendung. So sind Multimedia Anwendungen oft mit Mechanismen ausgestattet um kurzzeit-

ige Paketverluste auszugleichen und der Energiesparmodus hat keine Auswirkungen auf die An-

wendung. Andere Anwendungen hingegen, zum Beispiel das Netzwerkdateisystem NFS, werden

sehr stark beeintr¨achtigt.

Diese Arbeit untersucht, wie verschiedene Netzwerkanwendungen von einander unterschieden

werden können und wie der IEEE Energiesparmodus auf sie abgestimmt werden kann. Dazu wer-

den mit Hilfe von Informationen ¨uber gesendete Datenpakete aus dem Linux Kernel verschiedene

statistische Kennzahlen entwickelt. Es wird gezeigt, dass diese Kennzahlen hinreichend eindeutig

sind um verschiedene Programme von einander unterscheiden zu k¨onnen. F¨ur eine Menge von An-

wendungen werden solche Kennzahlenprofile erstellt und erkl¨art. Die Profile enthalten neben den

Kennzahlen auch noch eine f¨ur die Anwendung geeignete Einstellung des Energiesparmodus.

Basierend auf den Anwendungsprofilen wird ein Algorithmus vorgestellt, mit dessen Hilfe

Anwendungen unterschieden werden k¨onnen. Dazu werden zur Laufzeit errechnete Kennzahlen

mit den Anwendungsprofilen verglichen. Diejenige Applikation, deren Laufzeitkennzahlen am

nähesten bei den vorher berechneten liegen, wird von dem Algorithmus erkannt. Anschliessend

wird der Energiesparmodus der Funknetzwerkkarte noch wie im Profil gespeichert eingestellt.

Auf diese Weise verliert der Energiesparmodus des IEEE Standards seinen statischen Charakter

und kann dynamisch an verschiedene Applikationen angepasst werden. Dabei betrachtet der Al-

gorithmus sowohl den Energieverbrauch als auch die Anwendungsqualit¨at (Performance) und setzt

39

den Energiesparmodus so, dass ein Kompromiss zwischen den beiden Gr¨ossen gefunden wird.

Abschliessend werden die Ergebnisse der Arbeit in zwei Tests ausgwertet. Zuerst werden in

Tests Log-Dateien ausgewertet um die Erkennungsraten f¨ur eine Anwendung zu ermitteln. Danach

wird in Laufzeit Tests die Zeitdauer zwischen dem Starten der Anwendung und ihrer Erkennung,

als auch der Einfluss von falschen Erkennungen untersucht.

In Zukunft könnte der Erkennungsalgorithmus um weitere Datenquellen erweitert werden. Mit

Hilfe einer Schnittstelle zur Paketfilter Implementierung des Linux Kernels liesen sich zum Beispiel

die IP-Port Adresse oder die Type-of-Service Markierung der Datenpakete gewinnen. Diese In-

formationen unterscheiden sich ebenfalls bei verschiedenen Anwendungen und sie k¨onnen als

zusätzliche Hinweise auf eine Anwendung genutzt werden.

40

