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Abstract

The development of processors in recent years with its astonishing increase in speed and complexity

leads to problems in regard to power consumption and cooling. With shorter clock cycles and

increased complexity a modern CPU has to consume far more energy than its simpler predecessors.

The processors are reaching the limit of the current standard CPU-cooling method: fan and heat-

sink.

From a physical point of view the processor takes electric energy and transforms it to heat which

has to be diverted from the processor. Here the development of processors becomes visible: from

the early CPUs up to some types of the i486 wich did not need any real heat sink to cool it up to the

current Pentium 4 and graphic accelerators where an additional fan is necessary just to increase the

heat sink’s efficiency. The upcoming discussion on better cooling solutions like heat pipes, water

cooling and so on also indicates a growing need for thermal processor design.

It is getting difficult in air conditioned server farms with racks containing several computers on

very small space to increase the density of processors. The air conditioning required when using

current CPUs is challenging, so limits on power consumption per rack are introduced to prevent an

overload of the installed air conditioning units.

Modern processors and motherboards allow the measurement of the CPU temperature. This

is a prerequisite of temperature control, either in hardware like the Pentium 4 or various software

methods. All of these methods have drawbacks in either affecting all processes simultaneously or

not being applicable to current processors.

This work provides a process-specific approach to temperature control utilizing performance

counters to account the energy consumption of processes, which can be used to compute the tem-

perature of the processor.

This thermal model allows the computation of a dynamical power consumption limit for the

machine, the enforcement of which keeps the processor temperature lower than a set limit. Com-

bined with the facility of resource containers this approach features flexible task specific throttling

while maintaining a temperature limit.
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Chapter 1

Introduction

Increasing complexity in current processors, especially “desktop”-processors, has its drawbacks in

form of increasing power consumption. As a result, processors are reaching the limit of today’s

standard CPU-cooling solution. This calls for more elaborate and expensive cooling methods and

for a more thermal oriented processor design.

For the latter there exist two alternatives: Either heat spreading and cooling are designed to

handle the unrealistic case of maximum sustained power consumption. Or they are designed to

handle the average expected workload allowing less expensive packaging and cooling solutions.

In the latter case an additional mechanism calleddynamic thermal managementhas to prevent

sustained high workloads.

1.1 Related Work

There are various different approaches to dynamic thermal management working at different levels

of granularity. They can be divided into three categories:

Request management relies on the assumption that energy consuption is primarily caused by

requests sent to a computer, like load-balanced web-servers at Internet data centers. Temperature

control of the cluster and a single machine is done via throttling of the request rate and distribution

of requests [15,11,12,5].

Direct feedback-driven reduction of chip activity is implemented, for example, in the Pen-

tium 4 [9] (called “Thermal Monitoring”). Here a thermal diode embedded in the processor can

trigger a throttling mechanism on reaching a fixed temperature. Throttling is done by skipping

clock cycles and affects all processes running on the processor equally, as well as interrupt la-

tency [6,14,4,17].
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2 Chapter 1. Introduction

Task level throttling as described in [13] only throttles “hot” processes, that is, processes which

consume more than a certain percentage of CPU-activity per time-interval. It is a reactive system

which relies on periodical measurement of processor temperature to trigger the selective throttling

mechanism.

1.2 Contribution of this Work

This work presents an approach in the category of task level throttling: The usage of performance

counters allows an energy consumption estimation at process level. In combination with a thermal

model the overall energy consumption of the processor and knowledge of the ambient temperature

is sufficient to estimate the processor temperature. Reversal of the thermal model and a given CPU

temperature limit yield a dynamic power consumption limit for the processor. This limit can be

enforced using a specific form of resource containers, energy containers, which allow fine grained

control over the throttling of processes based on the information on task level energy consumption.

In contrast to the request management method this work’s approach is applicable to a single

computer. However, no major difficulties are expected in applying this method to a cluster of

machines.

The differences betweeen this work and the thermal monitoring method are the granularity

level and the usage of energy consumption estimation instead of direct measurement. Temperature

control in hardware lacks user control, and CPU temperature measurement with software is rather

slow with current chips and does not provide information on the source of power consumption due

to the large measurement intervall.

Being in the same category, there are less differences between the dynamic thermal management

presented in [13] and the event-driven temperature control in this work. However, the definition of

“hot” processes has to be adjusted as power input and CPU-activity are no longer directly correlated.

This is shown by the test programs used in this work. The approach taken in this work is also a bit

more proactive by computing energy limits for the next time interval and features more flexibility

on process throttling thanks to the concept of resource containers.



Chapter 2

Energy Estimation

Energy estimation methods of most devices use information about how long a device has been in

a certain state, associating a constant power consumption with each state. With modern processors

this scheme is not applicable. Power consumption running several test programs ranges from 30W

to 50W with a CPU-activity of 100% each.

Therefore more information has to be taken into account. Such information is provided by

performance counters which are able to count various processor-internal events. Compared to its

predecessors, the Pentium 4 processor features an extensive set of events which can be monitored

with performance counters (PCs).

2.1 Approach

The basic idea is to find a subset of events that refer in some way to the energy consumption of the

processor. Additionally it should be possible to monitor this event subset simultaneously, to allow

an on-the-fly estimation of energy consumption.

One problem is obviously the way in which the events refer to energy consumption. In this

work a simple linear approach is used. This choice was made mainly for practical reasons: Since

such linear problems are well understood, there already exist many programs which solve a variety

of these problems. Therefore it is sufficient to formulate this linear problem and find a program to

solve it.

Besides, a linear approach is quite plausible. If the occurence of an event indicates some amount

of energy consumption directly, this correlation has certain linear characteristics. Even dependen-

cies can be taken into account: If eventa induces eventb, and “b with a” and “b withouta” indicate

different amounts of consumed energy, the correlation’s linear properties remain.

The other problem lies within the performance counter architecture itself. For performance

reasons Intel decided to place the counters near the various units which can be monitored. Thus, an

event can only be counted in a counter lying next to the unit responsible for this event.

3



4 Chapter 2. Energy Estimation

This results in 4 groups of PCs and events (3 groups with 4 PCs and 1 group with 6 PCs),

meaning that no more than 4 or 6 interesting events can be monitored simultaneously per group,

reducing the number of possible event-PC assignments. Since the “interesting” events are not

distributed evenly among the 4 groups, this grouping is problematic. Additionally, for each event

in a group there are only 2 or 3 PCs that can be used to count this event. There exist some special

events with even more specific requirements reducing the choice of events further.

2.2 Test Configuration

2.2.1 Event Counting

For event counting the programsbrink andabyss [18] were used in the beginning of this work.

brink is a rather large Perl-script which takes a well formed XML description of the Pentium 4’s

performance counting architecture and a description of an experiment consisting of a set of test

programs and a set of events, again in well formed XML. It then assigns the events to PCs and passes

this information to theabyss program which takes care of PC initialization and event measurement

of one test program. Both programs have a disadvantage, though.

The event assignment method of brink is inconvenient, so it was patched to produce far more

possible assignments than the original implementation, although not in every case, especially with

some tagging events.

The measurement method used by abyss includes the startup code from the dynamic linker in

the measurement, which is not insignificant in case of programs running only for 1-3 seconds. In

later tests, the PC setup and measurement was done within the test programs themselves, including

the setup and measurement code using a preprocessor. Included in this code are instructions to

trigger a signal for the A/D-converter to synchronize the beginning and end of measurement.

2.2.2 Energy Consumption Measurement

The motherboard of the Pentium 4-computer (ASUS P4B266E) uses the 12V-sources from the

power supply for the processor exclusively. By introducing an accurate low measurement resis-

tor between the power supply and the processor (figure 2.1), measurement of the current power

consumption of the processor (PCPU) becomes possible:

UR1 +UCPU = 12V

I =
UR1

R1

PCPU = (12V−UR1)
UR1

R1
≈ 12V ·UR1

R1
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R1

R1

U

GND

12V

CPU
supply
power

Figure 2.1: The measurement resistor
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CPU
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PIII  1GHz

par. port

Figure 2.2: The measurement assembly

The A/D-converter is able to generate 5000 samples per second, retrieved by a second computer

running at 1 GHz. A device driver in the second computer attaches to each sample the current value

of the time-stamp counter.

The energy consumption of a test program is computed by integrating numerically over all

power samples with a set trigger bit.

2.3 Test Programs

Due to the limitations of the performance counter architecture it is unlikely that a general energy

model can be found quickly. In this work, the focus was on “normal” programs: C-programs that

contain little or no architectural dependent code which is often found in highly optimized programs.

The test programs consisted of three groups:

• ALU — programs which operate entirely on registers and use only ALU-instructions like

adc, bswap, xor, . . .

• MEM — programs which operate on registers and memory (including caches, read/write

instructions)

• other programs which perform various algorithms for a few seconds (checksum, factor, heron,

SHA-1, RIPEMD-160, . . . )

As stated before, the programs take care of proper initialization of the counters, measurement of

the events and of triggering the A/D-converter.
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2.4 Methods of Analysis

The selection of an event subset which correlates to energy consumption was done manually. For

each of these subsets (containingn events), them test programs were run and their energy con-

sumption recorded. The data gained from such a test consists of:

• energy consumption form processes:~eT = (e1, . . . ,em), and

• n performance counter values for each of themprocesses:A= [ai, j ] (1≤ i ≤m,1≤ j ≤ n).

The remaining problem is to find a vector~xT = (x1, . . . ,xn) with these properties:

A·~x−~e≥ 0, ‖A·~x−~e‖ minimal

In other words, a scalar multiplication of a performance counter vector (PCV) with a vector~x should

be at least as large as the energy consumption of the corresponding process, but not much larger.

Based on the accuracy of each estimation, the subset of events was extended or reduced. It was

reduced in cases where the accuracy without an event was better than with or if the corresponding

coefficientxi was not stable in another test with the same event subset. The idea behind the last

criterium is to remove events the analysis programs tended to use as “dummies”: events that don’t

have anything to do with energy consumption but the analysis program uses anyway to produce a

better result.

Indications of such “dummy events” are: a corresponding coefficient which is exceptionally

larger than the others, and fluctuation between two similar tests (which produce slightly different

energy and performance counter values).

This procedure was started with the set{time stamp counter,global power events}.
time stamp counter is not a real performance event. It was included because a halted Pen-

tium 4 does not trigger performance events, but consumes approximately 12.5 Watts in this state.

Additionally, measurement of this event does not allocate precious performance counter resources.

global power events is the most basic event related to energy: it counts the number of clock

cycles the CPU has been active.

2.4.1 Analysis withlrslib

What is left to describe are the analysis programs used. The first one,lrslib [2], is included here

because it was used for a long time and helped compose a first working event subset.

lrslib is a library which solves linear programming problems. The description of these prob-

lems is nearly identical to our problem here which is whylrslib was the first program used in this

work for analysis.lrslib was chosen in particular because it can be linked against the GNU mp

library (gmp [7]) for arbitrary precicion arithmetics.
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Given a(m,n)-matrix A′, a vector~b and alinear functiong(x1, . . . ,xn), lrslib finds the mini-

mum of g on the set of points~x∈
{
~x∈ Rn | A′ ·~x−~b≥ 0

}
. The only difference to our problem is

the restriction ong to be linear.

With m test programs andn events, the input tolrslib was constructed as follows:

• ~b←

(
~e

−(1+β)~e

)

• (2m,n)-matrixA′ =
[
a′i, j

]
with a′i, j =

{
ai, j , if i ≤m

−a(i−m), j , if i > m

• g(x1, . . . ,xn) = ∑i xi

The duplication of~e andA and the parameterβ need some explanation:A′ and~b form a vector of

2m equations. The purpose of the first m equations is to establish the measured energy values as a

lower bound for energy estimations. The other equations make sure the estimation is not too high.

More precisely, the relative error of the estimation does not exceedβ.

No attention was paid tog, because with a minimumβ the search space for a possible minimum

of g becomes very small, and vectors~x obtained with different functions forg do not differ much.

The analysis program was run several times withβ0 = 0.5 as a starting value. The minimumβ
was found using binary search. While not being the optimal analysis program for this problem, the

values obtained from it are quite satisfying.

2.4.2 Analysis withdqed

The program used to find the final set of events and coefficients isdqed [8], a FORTRAN routine

found at netlib [1], a large collection of mathematical software. It does a good job trying to solve

the following problem:

For functions g1, . . . , gm : Rn → R (not necessarily linear), find a vector~x minimizing the

length of the vector(g1(x1), . . . ,gm(xm))T . Additional linear and slightly non-linear constraints can

be placed on the vector~x, like 2x1−3x3≤ 5.

The advantage of this method overlrslib is the minimization of a vector length, that is, the

sum of squares, rather than only the sum of the elements. This ensures an approximately equal

fitting to them test programs.

The input fordqed was computed as follows:

gi(~x) = ∑n
j=1ai, jx j −ei (1≤ i ≤m)

constraints: gi(~x)≥ 0 (1≤ i ≤m)
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The analysis program was run several times, with randomized starting values for~x, providing a little

bit more accuracy than a fixed starting point. The resulting final events and their corresponding

coefficients (weights) are:

event
weight

[nJ]

maximum rate

(events per cycle)

time stamp counter 6.17 1.0000

unhalted cycles 7.12 1.0000

µop queue writes 4.75 2.8430

retired branches 0.56 0.4738

mispred. branches 340.46 0.0024

mem retired 1.73 1.1083

mob load replay 29.96 0.4165

ld miss 1L retired 13.55 0.2548

2.5 Evaluation

With both analysis methods, the accuracy of the estimation differed with the programs. The 25 test

programs finally could be partitioned into several groups:

• 8 programs with nearly perfect estimations (approx. 10−3% relative error),

• 3 programs with very good estimations (approx. 1% relative error),

• 9 programs with a relative error below 10%,

• 4 programs with a relative error below 20%, and

• 1 program with a relative error of 29%.

The last program shows that a linear combination of performance counter events is not generally

applicable to energy estimation with current restrictions on event counting.

Figure 2.3 shows the real power consumption of 17 test programs, the error bars indicate the

estimated power consumption. Some test programs were omitted because of similarities to the

shown programs.

The energy estimator was also tested with a set of real-world applications, consisting of:

• 3 benchmarks: perl-bench, jvm98 and caffeine 2.5,

• 2 interactive programs: Mozilla 1.0.0 and OpenOffice 1.0.2, and

• a compilation of the Linux 2.5.64 kernel.
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The resulting energy overestimation is:

application
estimation error of

energy consumption

perl-bench 4.95%

Linux 2.5.64 kernel build 4.16%

jvm98 1.03 2.20%

mozilla 1.0.0 -0.56%

OpenOffice 1.0.2 -0.69%

caffeine 2.5 6.09%

The test shows that this energy estimation procedure could be applicable to real-world programs if

the selection of simultaneously countable events was less restrictive. A closer look on the run of

jvm98 (figure 2.4) illustrates this. jvm98 consists of several sub-benchmarks, and one of them, the

database benchmark, consumes considerable more energy than estimated.

A measurement of this benchmark with various sets of events reveals the difference to the test

programs: its number of second-level cache misses is higher than any other program in the test set

by orders of magnitude.

Unfortunately, the Pentium 4 performance counter architecture does not allow a distinction

between the first- and second-level cache misses when they are counted simultaneously. Since the

correlation of the second-level cache misses to the energy consumption of the test programs is only

marginal, this event was omitted in favor of the first-level cache misses.



Chapter 3

Temperature Estimation

In this chapter the attention turns from energy consumption estimation towards temperature esti-

mation. The goal is to compute the CPU temperature using data from the energy estimation. An

additional restriction on this computed temperature value is to never be less than the actual proces-

sor temperature.

The CPU is treated as a black box with energy input and output. The energy input consists only

of the electrical energy being consumed. For energy output there are several ways available to the

CPU: heat radiation and convection.

3.1 Approach

Heat radiation is not considered in this work, because its effects become noticable with high tem-

peratures only, whereas the temperature of the CPU in this work ranges from 20°C to 60°C. Addi-

tionally the aluminium heat sink was not designed to emit a large part of heat energy via radiation.

The remaining methods of energy transportation are: The input of electrical energy and the output

of heat energy in form of convection.

The energy input can be formulated asdT = (cM)−1 ·dQ, and the two constantscM are then

merged intoc1. The energy output is basically formulated asdT = κA(T−T0)dt, whereT0 is the

temperature of the air surrounding the heat sink andκ is a material-dependent constant. Again,

the constatsκA are merged into another constantc2. Together, these two equations form the basic

approach to temperature estimation taken in this work:

dT = [c1P−c2(T−T0)]dt (3.1)

The ambient temperatureT0 is assumed to be constant throughout the thermal models. This is a

rather annoying problem in a non air-conditioned room which is subject to temperature fluctua-

10



3.2. Test Configuration 11

tions. Therefore every thermal model provides a parameter for adjusting to the current ambient

temperature.

3.2 Test Configuration

The only requirement for creating a temperature estimation model for a CPU is the measurement of

both power consumption and temperature of the CPU. For power consumption measurement, the

resistor from section 2.2.2 was used.

The temperature was read from the CPU’s internal temperature-diode via the motherboard’s

health monitoring chip. The allowed resolution of this chip regarding processor temperature is only

0.5°C. To increase the temperature range of the CPU, the heat sink’s fan was slowed down, allowing

the CPU to reach 60°C.

lm sensors [10], a program to read data from this type of chip, detects a wrong chip for

which it has no support, due to lack of documentation from the manufacturer. A similar program,

mbmon [16] was able to read from this chip, but only after a kernel module fromlm sensors

had activated it. This incident reveals a situation where temperature estimation with performance

counters could be needed: if the chipset is undocumented, deactivated or damaged.

Latermbmon was extended by the temperature estimation model, providing synchronized pairs

of real and estimated temperature values. As a normal userspace program, it also has the ability to

use floating point arithmetic.

3.3 Models

3.3.1 Initial Model

The first temperature model tested is the one described in equation 3.1. It is included here because

it shows the steps necessary to find the model parameters and it is the common ancestor of all the

other models. The yet unknown valuesc1, c2 andT0 are treated as constants:

dT = [c1P−c2(T−T0)]dt c1, c2, T0 const. (3.2)

The variablesP anddt are available via the energy estimator from the previous chapter and the time

stamp counter of the Pentium 4.T can be initialized with any value and adjusts itself to the real

temperature if the constants and the estimated input power are correct.

Equation 3.2 is a simple form of a differential equation and is easily solved:

dT = [c1P−c2(T−T0)]dt
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dT
c1P−c2(T−T0)

= 1dt

−1
c2

∫ −c2

c1P−c2(T−T0)
dT =

∫
1 dt

−1
c2

ln (|c1P−c2(T−T0)|) = t +C

c1P−c2(T−T0) = e−c2(t+C)

T =
−1
c2

(
e−c2(t+C)−c1P−c2T0

)
=

−c̃
c2

e−c2t︸ ︷︷ ︸
dynamic part

+
c1

c2
P+T0︸ ︷︷ ︸

static part

(3.3)

So the process of adjusting to a new temperature determined by the input power is exponential and

can be compared to charging and discharging a capacitor. Obviously onlyc2 has influence on the

speed of the adjustment, while the resulting temperature depends onP, c1, c2, andT0 and is linear

in P.

The first constant to be measured isc2. For this, the temperature increase of the processor from

a halted state to continuously running one of the test programs was recorded usingmbmon (figure

3.1), and then, withxmgrace’s ablility of “non-linear curve fitting”, an exponential function was

fitted to the data. The coefficient in the exponent was taken to be the value ofc2.

For c1 andT0, the various static temperatures produced by running different test programs and

their corresponding power consumption were measured (figure 3.2). Fitting a linear function to

these values makes it possible to compute the values ofc1 andT0 by comparing coefficients with

the static part of equation 3.3. This linear function has to be fitted above all these values to avoid an

underestimation of CPU-temperature. For adjustment to the current ambient temperature the model

parameterT0 can be used.

This model basically works, but it is inaccurate either at the idle or maximum power consump-

tion, depending on the linear fitting function.

3.3.2 Dual Model

The next model tried has two different heat sinks: the heat sink on the CPU and the air in the

computer case forming a secondary heat sink. It is based on the observation that the ambient

temperature does change slightly (and slowly) between idle and maximum power consumption,

according to the health monitoring chipset.
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Figure 3.1:CPU temperature on a constant power in-
put (idle and 50 Watt)
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Figure 3.2:power consumption and static tempera-
tures of the test programs

dT = [c11P−c12(T−T1)]dt c11, c12 const.

dT1 = [c21(T−T1)−c22(T1−T0)]dt c21, c22, T0 const.

This model does not work as intended. It was designed to produce a better estimation for the idle

temperature, but it only works if the value forc22 is larger thanc12. The largerc22 is, the more

accurate the idle temperature estimation.

A largec22 means the secondary heat sink has a low heat capacity thus reacting faster than the

primary heat sink. This is in contradiction to the observation leading to this model.

With an infinitely largec22, the model is equivalent to a better fitting of the values in figure 3.2,

which is the reason behind the next model.

3.3.3 A More Dynamical Model

The idea of this model is to use a better function to be fitted to the energy/temperature values in

figure 3.2. For this purpose, thedqed program was modified to fit polynomial functions to values

with the restriction on the function to be an upper limit for the values.

A quadratic function,Ts(P), was found to fit these values better than a linear function with the

same restrictions (figure 3.3). The fitting to the idle temperature is very accurate, whereas for the

other values the accuracy of the interpolation is changed only slightly.

The valuesc1 andT0 are computed like before, only this time from a tangent to the quadratic
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Figure 3.3: the quadratic functionTs(P) fitted to the test program characteristics

function in the point(P,Ts(P)). The complete calculation is shown below:

Ts(P) = a2P2 +a1P+a0 a2, a1, a0 const.

dT = (c1(P)P−c2(T−T0(P)))dt c2 const.

P const. :T(t) =
−c̃
c2

e−c2t +
c1

c2
P+T0 (equation 3.3)

c1(P)
c2

= T ′s(P) = 2a2P+a1→ c1(P) = c2T ′s(P)

T0(P) = Ts(P)−T ′s(P)P

dT = (c1(P)P−c2(T−T0(P)))dt

=
[
c2(2a2P+a1)P−c2(T− (a2P2 +a1P+a0− (2a2P+a1)P))

]
dt

= c2
[
2a2P2 +a1P−T +a2P2 +a1P+a0−2a2P2−a1P

]
dt

=
[
a2P2 +a1P+a0−T

]
c2dt

= [(a2P+a1)P+a0−T]c2dt

While the original idea to this model seems a bit more complex, the value ofdT can be computed

using only 4 multiplications and 3 additions, which is only slightly more than in the initial model

with 3 multiplications and 2 additions.

In this model, the parameter for adaption to ambient temperature isa0, the constant of the

quadratic functionTs(P). A change of this parameter eventually causes the same amount of change

on the estimated temperature.

This model works almost perfectly, it has only one problem: it is a little too slow on a temper-

ature increase, and a little too fast on a temperature decrease, so that the predicted temperature is

always a little bit lower than the actual temperature.
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3.3.4 Final Model

The final model used is only a minor extension from the previous model. On a sudden power

increase, the model should react more quickly, and more slowly on a power decrease. The only

parameter controlling the speed of temperature adjustment isc2, so two new parameters are used

instead:c2,up andc2,down (with c2,up > c2,down andc2,up≈ c2≈ c2,down).

The constantc2,up is used if the last computed value ofdT was≥ 0, indicating a raise in

temperature,c2,down in the other case. The algorithm for this model is shown in algorithm 1.

Algorithm 1 Temperature estimation
T← 35.5 {in °C}
up← true
loop
{e.g. the main loop ofmbmon}
if up then

c2← c2,up

else
c2← c2,down

end if
computeP, dt {done in energy estimator}
dT← [(a2P+a1)P+a0−T]c2dt
T← T +dT
if dT ≥ 0 then

up← true
else

up← false
end if

end loop

3.4 Evaluation

The accuracy of the estimated static temperatures of the test programs using the final thermal model

without energy estimation can be seen in figure 3.3. The thermal model is designed not to under-

estimate the temperature of the test programs, which is obviously achieved. The highest occuring

overestimation is 1.2°C with one of the program at 48 Watt, resulting in a relative error of 2.12%.

In the mode using the combined power and thermal model, however, errors from the power

model propagate through the thermal model, resulting in a larger temperature overestimation. This

can be seen in figure 3.4 where the estimated and measured static CPU-temperature on a run of

some test programs are displayed. The programmbmon with the combined energy and temperature
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Figure 3.4:temperature estimation errors of
the test programs
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Figure 3.5:dynamic view on the model’s ac-
curacy

estimator was used to produce these measurements. These programs are the same as in figure 2.3

to allow comparisons.

Here the highest temperature difference is about 8.7°C on running the test program

ripemd-160, which is the test program with an energy consumption overestimation of 29%. There-

fore the temperature overestimation is not surprising. The overestimation on the programs alu-mov-

inc-add, mem-store and mem-load/store-alu can be explained partly by their energy consumption

overestimation, too.

The dynamic properties of the thermal model can be seen in figure 3.5. It shows a sequential run

of the test programs alu-add, mem-load, heron and mem-inc, selected because of their particular

low temperature overestimation. Each program is run at most 2000 seconds to allow the CPU to

reach a static temperature. The run of the first program (alu-add) clearly demonstrates the necessity

of this length. This experiment supports the decicion to separate the constantc2 into c2,up and

c2,down to keep the estimated above the actual temperature.

Of the real-world applications tested in the last chapter only perl-bench and kernel compilation

are suited for an unattended 2000 second run. The accuracy of the combined energy/temperature

estimation on these programs is shown below:

program
measured

temperature

relative error of

temperature estimation

kernel compilation 52°C 3.8%

perl-bench 54°C 8.5%



Chapter 4

Temperature Control

With a working energy and temperature estimation it is not difficult to implement temperature

control of the machine. This could be done, as in [13], by additional code in the scheduler.

This work, however, uses resource containers which provide more flexibility in accounting and

limitation of processes and the machine. The temperature dependent adaption of a machine-level

energy limit is sufficient to enforce a given temperature limit on the processor.

4.1 Resource Containers

Resource containers were introduced by Banga [3] to provide a data structure for accounting and

controlling various resources like CPU-time, energy consumption, network bandwidth, etc. In this

work an implementation of resource containers in the Linux kernel 2.5.58 by Martin Waitz [19] was

used. It consists of a hierarchy of containers and is currently able to account and limit the resources

CPU-time and energy using the time stamp counter and the energy estimator of this work.

Each process is associated with a resource container. Consumed resources are accounted to

the current process’s resource container and all of its parent resource containers. Thus, the root

resource container hold the accounted resource consumption of the entire machine.

The implementation ensures that limits placed on a container and its parents are never exceeded.

A process is allowed to run if all resources of the associated container and its parents are available.

If no process is runnable, the CPU is put into the halt state with a low power consumption, resulting

in a reduction of CPU temperature.

In the case of energy, the implementation features simultaneous limits on two different time-

slices (128 ms and 1024 ms per default) on every container. This is useful, because short CPU

bursts do not have an immediate effect in temperature. Therefore, the sum of the limits in the short

time-slice can safely exceed the longer time-slice’s limit, as long as every limit holds.

Access to resource containers, like reading the contents or setting a new limit, is available via

an additional system call. Another system call can be used to modify the container hierarchy. These

17



18 Chapter 4. Temperature Control

two system calls provide a flexible way of manipulating every aspect of resource containers from

userspace.

4.2 Computing Energy Limits and Implementation

The approach to temperature control taken in this work is to use the thermal model to compute an

energy limit for each time-slice for the whole computer (= root container), based on the current

estimated temperature and the temperature limit:

dT = [(a2P+a1)P+a0−T]c2dt ≤ Tlimit −T

This forms the quadratic inequation

a2P2 +a1P+a0−T ≤ Tlimit −T
c2dt

Becausea2 < 0, the solution to this equation is:

P2 +
a1

a2
P+

a0

a2
− T

a2
≥ Tlimit −T

a2c2dt

P2 +
a1

a2
P+

(
a1

2a2

)2

≥ 1
a2

(
Tlimit −T

c2dt
+T−a0 +

a2
1

4a2

)
(

P+
a1

2a2

)2

≥ 1
a2

(
Tlimit −T

c2dt
+T−a0 +

a2
1

4a2

)

P ≥ −a1

2a2
+

√
1
a2

(
Tlimit −T

c2dt
+T−a0 +

a2
1

4a2

)
∨ (4.1)

P ≤ −a1

2a2
−

√
1
a2

(
Tlimit −T

c2dt
+T−a0 +

a2
1

4a2

)
(4.2)

The solution 4.1 can be ignored because it would enforce a minimum power consumption limit in

order to reduce CPU temperature, in contradiction to fundamental laws of physics.

The code for limiting the root container was added tombmon. To avoid problems with the pro-

cessmbmon getting throttled too much to be able to set a new limit, thembmon-process is accounted,

but never throttled.

4.3 A Note on Flexibility

The claimed task-level specific flexibility of this temperature control method is derived from the

flexibility provided by the resource container concept and implementation, and as such does not
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Figure 4.1: Example of Flexible Limitation

lie within the scope of this work. However, an experiment is included here to demonstrate this

flexibility.

It consists of an apache web server running under a Linux kernel with resource container sup-

port. Different clients send CGI-requests which result in the execution of a test-program used in

this work. Depending on the client IP, a forked apache process is attached to one of two special

resource containers on the machine. The two containers are limited to 30% and 70% of the total

power consumption limit. Note that no modification to the apache web server was necessary (see

details in [19]).

The estimated power consumption of the processes attached to the two resource containers and

the root container is shown in figure 4.1. Initially, the total power consumption limit is infinite,

so the processes attached to each of the two containers are able to consume the maximum power

available. At the beginning of the limitation, the relative limits of the two containers are enforced.

It can be seen that the relation of the two containers’ power consumption is near 30 : 70.

The power consumption of the root container is higher than the sum of the two other containers,

because energy consumption of the halted CPU is accounted only to the container of the idle process

and its parent, the root container.

4.4 Evaluation

4.4.1 Accuracy

The accuracy of the implemented temperature control method can be seen in figure 4.2. It shows

the estimated temperature during a run of one of the test programs with the temperature limit set to

40°C, between the first and the last temperature values exceeding the limit.

The highest transgression of the limit is near the beginning and lies only 0.036°C above the

limit. Statistical analysis yields an average temperature of(40−0.00102)°C and a standard devi-
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Figure 4.2:Closeup view on the estimated
temperature being limited to 40°C
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Figure 4.3: Different temperature limits

ation of 0.0073°C. The slight exceeding of the limit can be explained by the reactive nature of the

resource container limitation code which is only invoked on a limit transgression.

As the limitation of the estimated temperature is quite precise, the accuracy of the real temper-

ature limitation essentially depends upon the accuracy of the thermal model. This can be seen in

figure 4.3. After reaching a static situation, the difference between the estimated and the real tem-

perature remains constant under different limits within the scope of the health monitoring chip’s

limited exactness.

4.4.2 Overhead

Overhead evaluation was done measuring the execution time of a long running process in different

environments. The test was run using the modified Linux 2.5.68 kernel with resource container

support provided by Martin Waitz [19].

resource container

support

temperature

measurement

temperature

control

average

time [s]

overhead

(normalized)

X X X 1528.0880 0.00%

X V X 1603.5450 4.94%

V X X 1537.1560 0.59%

V X V 1537.2185 0.60%

V V X 1613.2570 5.57%

V V V 1613.2915 5.58%

The environment to which these overhead values are normalized consists of the modified

Linux 2.5.68 kernel with the resource container support switched off, which is equivalent to a

standard Linux 2.5.68 kernel, without any temperature measurement or control. The overhead
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values seem to be additive: the resource container support adds∼ 0.6% of overhead, periodical

measurement∼ 5%. This can be explained by the fact that each temperature measurement takes

approximately 8.5ms in contrast to 40ns for the reading of a performance counter.

The overhead of the temperature control method alone cannot be measured exactly with a pro-

gram running only∼ 1500s, because it is lower than the exactness of measurement. So it is esti-

mated to be≤ 0.04% which is two times the maximum observed fluctuation relative to the average

run length. Therefore the total overhead of this temperature control method on the system is∼ 0.6%

in contrast to the∼ 5% overhead of periodical measurement.



Chapter 5

Future Work

5.1 Energy Estimation

Analysis Methods Although the analysis withdqed provided satisfying results, the program itself

is rather old (written in 1985). Analysis using better algorithms could provide more accurate energy

models, but a leap in accuracy is not expected.

Energy Models The power model presented in this work uses only direct event-energy correla-

tion, which results in this linear approach. However, non-linear combinations of events, such as

the ratio of computedµops and clock cycles, could be useful, too. Non-linear energy models could

provide more accurate estimations or could be applicable to a wider range of applications.

Energy Counters The worst problem of this work are the restrictions incorporated into the per-

formance counter architecture, severely limiting the set of simultaneously countable event sets.

Less restrictions in the performance counter architecture or the introduction of energy related events

would greatly enhance the exactness of task specific energy consumption estimation. A small delay

in the propagation of event occurence to the counter register is acceptable, because the accounting

is done continuously and the heat sink also has a delaying effect on the temperature.

5.2 Temperature Estimation

Thermal Models The thermal models presented in this work, especially the final model, is rather

ad hoc than physically correct. A more elaborate and physically correct model could provide better

temperature estimations, although the computational costs are expected to be significantly higher.

For example, the addition of thermal radiation to the model could provide a better temperature

estimation, but the differential equation (like equation 3.1) would be much more difficult to solve.

22
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Ambient Temperature Throughout this work, the ambient temperature was considered constant.

While this assumption is acceptable in case of air-conditioned computer rooms, it does not hold in

case of a normal room or failure of the air-conditioning unit. This has to be incorporated into the

thermal models, possibly by measuring the ambient temperature and adjusting the corresponding

parameter.

5.3 Temperature Control

Implementation Issues The disadvantage of temperature control from user-space, as presented

in this work, is that the controlling program has to be scheduled, and therefore is not run in a

deterministic fashion. Thus a kernel implementation would be desireable, and since temperature

estimation only needs an update every second, the time-consuming floating-point arithmetic or

integer emulation of the same should be acceptable.

Cluster Support The most useful application of this temperature control method is expected to

be in computing centers. As shown in section 1.1, quite an amount of research has been spent on

this topic, concentrating on request management. Energy estimation of incoming requests can be

rather difficult in general, unless the events have a very simple form.

Applying this work to computer clusters means that individual temperature limits could be set

for each computer based on its location inside the cluster and the location of the air-conditioning

units. In this scenario, energy estimation of incoming requests prior to execution is not necessary,

because the estimation happens at execution time. This also avoids a potential bottle-neck, since the

estimation is done parallel on the cluster. Cluster temperature control could relax the requirements

on the air-conditioning unit, therefore making it possible to save energy.





Chapter 6

Conclusions

This work presents a different approach to temperature control without the need for continous

measurement. This is achieved by using performance counters together with a power and thermal

model of the processor to predict its temperature. The reverted thermal model, combined with

resource containers, can then be used to enforce a temperature limit.

Different analysis methods for the power model and various thermal models are detailed and

discussed in the course of this work. Concerning the power model, it is shown that a simple linear

combination of performance events can be a good energy consumption indicator for a group of

programs. From a physically correct thermal model taking only conversion into account, a more

accurate model is constructed, using only a slight variation of the constants.

The reversal of the thermal model can be used to compute power consumption limits for the

CPU based on the estimated temperature and a temperature limit. In combination with the concept

of resource containers or more specifically, energy containers, which can enforce such a limit, this

results in a flexible temperature control method providing task level throttling while maintaining

the global temperature limit.

The flexibility of this method exists due to the flexibility of the resource container concept only.

However, this work provides a power model for a subclass of resource containers named energy

containers, which are dependent on this kind of task specific energy consumption information.

It is also shown that the power model and therefore all dependent work, the thermal models and

the temperature control method, are only applicable to a specific group of programs. This is mainly

due to limitations in the performance counter architecture, and, to a lesser extent, the simple linear

approach to the power model.

As a proof of concept, the models are applied to a standard Pentium 4 computer in a midi-tower

and tried with a variety of programs, including synthetic micro- and normal benchmarks as well as

real-world applications. These experiments show that the approach of this work is applicable to a

group of programs including real-world applications. It could readily be used in environments such

as computing centers to save energy by controlling the temperature of the individual computers.
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Ereignisgesteuerte Temperaturregelung

in Betriebssystemen

Betrachtet man die Prozessorentwicklung in den letzten Jahren, so wird deutlich, dass Kriterien wie

Leistungsaufnahme und damit verbunden die Prozessorkühlung immer wichtiger werden. Beson-

ders gut sieht man diese Entwicklung am Aufwand für die Kühlung: Hier reicht das Spektrum von

einfachen Chipgeḧausen ohne zusätzliche K̈uhlung bis hin zu aufẅandig verarbeiteten Prozessor-

geḧausen und massiven, belüfteten K̈uhlkörpern.

Da es auch und besonders in Server-Farmen mit der dort vorhandenen hohen Prozessordichte

schwierig wird, mit normalen Klimaanlagen auszukommen, wird an diesem Problem schon eini-

ge Zeit gearbeitet. Bisherige Lösungen, wie z.B. das
”
Thermal Monitoring“ im Pentium 4 oder

auf Messung der CPU-Aktivität basierende Softwaremethoden, haben jedoch teilweise gravierende

Nachteile: Entweder wird der Prozessor gedrosselt, was sich sowohl auf alle momentan laufen-

den Prozesse als auch auf die Interruptlatenz auswirkt, oder aber die Methode kann auf aktuellen

Prozessoren nicht angewendet werden.

In dieser Arbeit wird deshalb ein anderer Weg benutzt: Da die CPU-Aktivität nicht mehr im

direkten Zusammenhang mit der tatsächlich aufgenommenen Leistung steht, müssen mehr Infor-

mationenüber interne Prozessorabläufe hinzugezogen werden. Hier bietet sich die
”
Performance

Counter“-Architektur in modernen Prozessoren an, die es ermöglicht, prozessorinterne Ereignisse

zu z̈ahlen.

Aus diesen Ḧaufigkeiten wird durch Linearkombination eine Energieabschätzung gewonnen.

Die Linearkombination begründet sich durch die linearen Eigenschaften von Prozessorereignissen,

die im direkten Zusammenhang zu einer aufgenommenen Energiemenge stehen. Die Auswahl der

konkreten Ereignisse erfolgt manuell, da es zu viele Kombinationsmöglichkeiten gibt. F̈ur die Be-

rechnung m̈oglichst pr̈aziser Koeffizienten der Linearkombination werden zwei unterschiedliche

Programme vorgestellt. Hier wird darauf geachtet, den Energieverbrauch nicht zu unterschätzen, da

sonst Limitierungsmassnahmen nicht den gewünschten Effekt ḧatten.

Die Auswertung des Energiemodells zeigt, dass es für eine relativ grosse Gruppe von Program-

men, die auch reale Anwendungen beinhaltet, zufriedenstellende Ergebnisse liefert. Anhand eines

Programms wird auch demonstriert, dass das Modell nicht geeignet ist, den Energieverbrauch aller
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möglichen Programme abzuschätzen. Hinderlich sind hier in erster Linie die Einschränkungen der

Performance Counter des Pentium 4.

Um aus dem Energieverbrauch die aktuelle Prozessortemperatur abzuschätzen, wird der

Kühlkörper des Prozessors modelliert. Berücksichtigt werden dabei die Aufnahme elektrischer

Energie und die Abgabe von Ẅarmeenergie durch Konvektion. Bei diesem Ansatz müssen nur

noch die Konstanten bestimmt werden. Dabei stellt sich heraus, dass durch eine leichte Variation

der Konstanten eine genauere Abschätzung m̈oglich wird. Die Bestimmung der Konstanten erfolgt

ebenfalls unter der Bedingung, die Temperatur nicht zu unterschätzen.

Die Auswertung des kombinierten Energie/Temperaturmodells ergibtähnliche Fehler, was dar-

auf schliessen lässt, dass die Hauptfehlerquelle im Energiemodell zu suchen ist.

Der Vorteil eines solchen Energie/Temperaturmodells liegt darin, dass das Temperaturmodell

leicht umkehrbar ist, um damit aus der aktuellen Temperatur und einer Maximaltemperatur ein

Energielimit f̈ur die n̈achste Zeitscheibe zu berechnen. Dieses Temperaturregelungsverfahren wird

mit Hilfe von
”
Resource Containern“ implementiert, einer hierarchischen Datenstruktur im Linux

Kern, die es erm̈oglicht, verschiedene Resourcen feingranular abzurechnen und den Resourcen-

verbrauch zu limitieren. Um den Energieverbrauch zu berechnen, benutzt die Resource-Container

Implementierung von Martin Waitz [19] bereits das Energiemodell dieser Arbeit. Ein Benutzer-

programm berechnet damit die aktuelle Prozessortemperatur und setzt neue Energielimits für den

Rechner.

Die Auswertung dieses Verfahrens zur Temperaturregelung zeigt, dass die geschätzte Tempera-

tur sehr pr̈azise unter dem Temperaturlimit gehalten wird. Die zusätzlichen Kosten f̈ur die Energie-

und Temperaturabschätzung sind marginal, insbesondere im Vergleich zur periodischen Messung

der Prozessortemperatur.

In Zukunft könnte vor allem das Energiemodell noch verbessert werden, entweder durch einen

neuen, nicht linearen Ansatz oder mit der Einführung von energierelevanten Performance Counter

Ereignissen in zuk̈unftigen Prozessoren.

30


	Introduction
	Related Work
	Contribution of this Work

	Energy Estimation
	Approach
	Test Configuration
	Event Counting
	Energy Consumption Measurement

	Test Programs
	Methods of Analysis
	Analysis with lrslib
	Analysis with dqed

	Evaluation

	Temperature Estimation
	Approach
	Test Configuration
	Models
	Initial Model
	Dual Model
	A More Dynamical Model
	Final Model

	Evaluation

	Temperature Control
	Resource Containers
	Computing Energy Limits and Implementation
	A Note on Flexibility
	Evaluation
	Accuracy
	Overhead


	Future Work
	Energy Estimation
	Temperature Estimation
	Temperature Control

	Conclusions
	Bibliography

