

Security Mechanisms in Distributed

Component Models

Sicherheitsmechanismen in verteilten
Komponentenmodellen

Studienarbeit im Fach Informatik

vorgelegt von

Fabius Klemm

geb. am 20.04.1977 in Mainz

Angefertigt am

Institut für Informatik
Lehrstuhl für Informatik 4 (Verteilte Systeme und Betriebssysteme)

Friedrich-Alexander-Universität Erlangen-Nürnberg

 Betreuer: Prof. Dr. F. Hofmann
 Dr.-Ing. J. Kleinöder
 Dipl.-Inf. B. Schnitzer

Beginn der Arbeit:

01.01.2001

 Abgabe der Arbeit: 30.04.2001

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer als der an-
gegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder ähnlicher Form noch
keiner anderen Prüfungsbehörde vorgelegen hat und von dieser als Teil einer Prüfungsleistung
angenommen wurde. Alle Ausführungen, die wörtlich oder sinngemäß übernommen wurden,
sind als solche gekennzeichnet.

Erlangen, den 30.04.2001 ______________________________

 i

Abstract
Component models allow programmers to reuse pre-developed pieces of application code,

so-called components. In distributed component models, applications are built from com-

ponents that reside on different computers in a network. Usually not every network user is

allowed to access all distributed applications in the network. Distributed component models

therefore provide security mechanisms and policies to enforce, for example, access control

or message encryption. Otherwise, an application developer would be forced to implement

security mechanisms in every component.

In this work, I examine and compare security mechanisms in distributed component mod-

els. First, I describe general security mechanisms necessary to secure distributed applica-

tions. In the following chapters, I examine the security models in EJB, Jini, COM, and

CORBA. I conclude the work with a comparison of the different security models.

Kurzfassung
Komponentenmodelle ermöglichen Programmierern die Wiederverwendung von vorgefer-

tigtem Anwendungscode, sogenannten Komponenten. In verteilten Komponentenmodellen

können Anwendungen erstellt werden, deren einzelne Komponenten auf unterschiedlichen

Computern in einem Netzwerk installiert sind. Üblicherweise darf nicht jeder Benutzer auf

alle in einem Netzwerk installierten verteilten Anwendungen zugreifen. Verteilte Kompo-

nentenmodelle bieten deshalb Sicherheitsmechanismen, wie zum Beispiel Zugriffskontrolle

oder Nachrichtenverschlüsselung. Anderenfalls wären Anwendungsentwickler gezwungen,

für jede einzelne Komponente Sicherheitsmechanismen zu implementieren.

In dieser Studienarbeit untersuche und vergleiche ich Sicherheitsmechanismen in verteilten

Komponentenmodellen. Zuerst beschreibe ich allgemeine Sicherheitsverfahren, die für die

Absicherung von verteilten Anwendungen benötigt werden. In den darauf folgenden Kapi-

teln untersuche ich die Sicherheitsmodelle von EJB, Jini, COM und CORBA. Abschließend

gebe ich einen zusammenfassenden Vergleich über die verschiedenen Sicherheitsmodelle.

 ii

 iii

Table of Contents

1 Introduction .. 1

2 Overview of Security Mechanisms.. 2
2.1 Secure Communication .. 2

2.1.1 Encryption... 2
2.1.2 Integrity Protection.. 3

2.2 Identification and Authentication.. 4
2.3 Authorization ... 5
2.4 Client Protection .. 5

2.4.1 Delegation ... 5
2.4.2 Client Machine Protection ... 5

2.5 Security Auditing ... 6
2.6 Non-repudiation ... 6
2.7 Examples.. 6

2.7.1 SSL ... 6
2.7.2 Java 2 Security Model ... 7

3 Security in Distributed Component Models ... 9
3.1 EJB .. 9

3.1.1 Overview of EJB ... 9
3.1.1.1 Architecture of EJB Applications.. 9
3.1.1.2 EJB Roles ... 12
3.1.1.3 Packaging ... 12

3.1.2 Security in EJB.. 13
3.1.2.1 Secure Communication ... 13
3.1.2.2 Identification and Authentication .. 13
3.1.2.3 Authorization.. 13
3.1.2.4 Client Protection ... 17
3.1.2.5 Security Auditing.. 17
3.1.2.6 Summary .. 17

3.2 Jini ... 18
3.2.1 Overview of Jini .. 18

3.2.1.1 Architecture of Jini ... 18
3.2.2 Security in Jini... 20

3.2.2.1 Security Requirements .. 20
3.2.2.2 Jini Security Extensions .. 21
3.2.2.3 Related Work.. 22
3.2.2.4 Summary .. 22

3.3 COM.. 23
3.3.1 Overview of COM... 23

3.3.1.1 Architecture of COM .. 23
3.3.2 Security in COM ... 26

3.3.2.1 Overview .. 26
3.3.2.2 Identification and Authentication .. 27
3.3.2.3 Authorization.. 28
3.3.2.4 Client Protection ... 29
3.3.2.5 Security Auditing.. 29
3.3.2.6 Overview of COM+ Security .. 30

 iv

3.3.2.7 Summary .. 30
3.4 CORBA ... 31

3.4.1 Overview of CORBA .. 31
3.4.1.1 OMA .. 31
3.4.1.2 OMG IDL... 32
3.4.1.3 ORB ... 32
3.4.1.4 GIOP and IIOP ... 33

3.4.2 Security in CORBA... 34
3.4.2.1 Overview of the CORBA Security Service.. 34
3.4.2.2 Identification and Authentication .. 34
3.4.2.3 Security Domains.. 35
3.4.2.4 Authorization.. 36
3.4.2.5 Secure Communication ... 36
3.4.2.6 Delegation .. 37
3.4.2.7 Security Auditing.. 39
3.4.2.8 Non-repudiation.. 39
3.4.2.9 Summary .. 39

4 Comparison... 40

5 Conclusion.. 42

6 References .. 43

 1

1 Introduction

Software components are “binary units of independent production” [Szyp98], which encap-
sulate their implementation. They interact with their environment through an interface de-
fined by the component model, which allows programmers to independently develop soft-
ware components for the same model. When building new applications, application devel-
opers can combine mature components from independent vendors, as well as self-pro-
grammed components. Altogether, component models allow programmers to develop ap-
plication software in less time.
In distributed component models, application assemblers can build applications from com-
ponents that execute on different computers in a network, thereby using the advantages of
distributed computing: Instead of running an application on a high-end mainframe com-
puter, it is possible to distribute the application to a group of workstation at a fraction of the
cost. Other advantages are increased fault tolerance through replication of components and
better extensibility.
On the other hand, new security problems arise in a network environment because every
computer must be open for remote access. Applications running in the network should be
accessible, but only by authorized users.
Distributed component models therefore provide security support for application program-
mers. Application programmers can use security mechanisms form the component model,
instead of implementing security for every application, which is a very arduous and error-
prone task.
In this work, I examine how distributed component models solve common security prob-
lems. In chapter 2, I begin with an overview of security mechanisms that are required to
secure distributed applications, such as secure communication, identification and authenti-
cation, authorization, client protection, security auditing, and non-repudiation. As examples
for secure communication and client protection, I give a short overview of the Secure Sock-
ets Layer (SSL) and the Java 2 Security Model. In chapter 3, I examine security mecha-
nisms in four component models, starting with Enterprise JavaBeans (EJB) and Jini, both
based on the Java programming language, followed by the Component Object Model
(COM), and the Common Object Request Broker Architecture (CORBA). As Jini provides
no security additional to the Java security, I outline possible security extensions. In chapter
4, I give an overall comparison of the security models of EJB, COM, and CORBA. I com-
plete this work with a conclusion in chapter 5.

 2

2 Overview of Security Mechanisms

A security system prevents unwanted disclosure, modification, or destruction of informa-

tion in a distributed system. It should provide the following security mechanisms: secure

communication, identification and authentication, authorization, client protection, security

auditing, and non-repudiation. I discuss these mechanisms in the following sections.

2.1 Secure Communication

Interaction between two applications is often over insecure lower layer communications.

Secure communication requires protection of the content of a message, achieved with en-

cryption, and protection of the integrity of a message. In the next two sections, I give an

overview of cryptographic algorithms used for encryption and integrity protection.

2.1.1 Encryption

Encryption mechanisms ensure that communication over an open network is kept private by

scrambling the content of a message. The original content is called plaintext, whereas the

encrypted result is known as ciphertext. There are symmetric and asymmetric encryption

algorithms.

Symmetric Encryption Algorithms

When symmetric key cryptography is used, sender and receiver share the same secret key,

which is used to encrypt and to decrypt messages. A popular symmetric key mechanism is

the Data Encryption Standard (DES). It was published in 1977 (updated in 1993) by the

U.S. National Bureau of Standards (NBS), now renamed to National Institute of Standards

and Technology (NIST). DES uses a 56 bits long key to encode 64 bits long plaintext

chunks. If DES is considered too insecure, it is possible to apply DES multiple times with

different keys, taking the output from one encryption step as the input for the next. For ex-

ample, triple-DES (3DES) applies DES three times.

One difficulty of symmetric encryption is that the communicating parties need to share a

common secret key. This problem is solved by asymmetric encryption algorithms as de-

scribed next. [KuRo00]

 3

Asymmetric Encryption Algorithms

Asymmetric encryption allows communicating securely without having a shared secret key

in advance. The first algorithms were introduced by Diffie and Hellman in 1976 [KuRo00].

Asymmetric encryption algorithms use two keys: a public key, which is available to every-

one and a secret private key. The sender uses the public key of the receiver to encrypt a

message. Then, only the receiver has the suitable private key to decrypt the message. This

means applying the receiver’s public key, pubR, then the receiver’s private key, privR, to a

message m gives back m: privR(pubR(m)) = m

A popular asymmetric key algorithm is the RSA algorithm, which is named after its foun-

ders, Ron Rivest, Adi Shamir, and Leonard Adleman. Asymmetric encryption algorithms

need much more computing resources than symmetric encryption algorithms. Asymmetric

mechanisms are therefore often used to secure the exchange of a symmetric session key,

which is then used for ongoing symmetric key encryption. [KuRo00]

One problem with asymmetric encryption algorithms is that of obtaining someone’s true

public key. This problem is solved using a trusted intermediary, also called Certification

Authority (CA). A CA signs1 certificates with its private key. A certificate is a statement,

which confirms that the public key of an entity, such as a person or a network entity, has

some particular value. The public key of the CA, which is necessary to verify a certificate,

is known by every communication party (for example, it could be distributed with standard

software packages). [KuRo00]

2.1.2 Integrity Protection

Integrity protection is the second requirement for secure communication. Sender and re-

ceiver want to ensure that a message is not modified during the transmission without detec-

tion. The sender assures integrity by digitally signing the message. The client can then ver-

ify that the message was not altered. Digital signatures can be created with asymmetric key

encryption algorithms. The sender uses its private key privS to encrypt a message m, thus

creating a digital signature, pirvS(m), of m. The receiver, which gets m together with

privS(m) uses the sender’s public key, pubS, to decrypt the digital signature and compares

the result with m: pubS(privS(m)) = m ?

Asymmetric encryption is computationally expensive. For this reason, instead of the whole

message, the sender signs only a much smaller message digest of m. A message digest algo-

1 Digital signatures are described in the next section.

 4

rithm is a one-way hash function that takes m as input data and generates a fixed-size out-

put, called a digest, hash, or digital fingerprint, h(m). The message digest algorithm must

assure that given a message digest, it is computationally almost infeasible to find another

message that will generate the same digest.

To check the integrity of a message, the receiver applies the sender’s public key to the

digital signature to recover the message digest. The receiver then computes the digest of the

plaintext message and compares it with the decrypted digest: h(m) = pubS(privS(h(m))) ?

There are two major message digest algorithms in use today: the MD5 by Ron Rivest,

which produces a 128-bit message digest and the Secure Hash Algorithm (SHA-1), which

produces a 160-bit message digest. [KuRo00]

Another requirement for integrity protection is to assure that each message is unique.

Uniqueness prevents that a message is captured by an intruder and then reused later mali-

ciously. The sender therefore appends a timestamp or a sequence number to each message

before digitally signing it. The receiver can thus detect intercepted and reused messages by

a wrong timestamp or sequence number. [KuRo00]

2.2 Identification and Authentication

The process of proving the identity of someone else is called authentication. Bidirectional

authentication is referred to as mutual authentication. Every user in a secure system is

mapped onto an identifier, also called security principal. Users prove their identity with

credentials, which can be in the form of a password, a swipe card, a fingerprint, or a certifi-

cate. [Alla00]

Communicating parties can use a challenge-response protocol to perform authentication.

For example, when a client wants to authenticate a server, the server first sends its certifi-

cate to the client. As described in section 2.1.1, the certificate contains the server’s public

key. The client then generates a nonce, which is random number used only once, encrypts it

with the server’s public key, and sends it to the server. The server decrypts the nonce with

its private key and sends it back to the client, which can thus be sure that it is communicat-

ing with the right server. Instead of a nonce, the client can also choose a random session

key, which can be used for ongoing secure communication with a symmetric key algorithm.

Figure 2.2-1 shows the steps in a challenge-response protocol. [KuRo00]

 5

Figure 2.2-1 A client authenticates a server with a challenge-response protocol

2.3 Authorization

Authorization, which is also called access control, is required to protect network resources,

such as files or applications against illicit access. Authorization is done using the identity,

role, or group of a principal and the control attributes of the target component. Control

attributes specify which principals can access which components, usually in the form of

Access Control Lists (ACLs). [Alla00, OMG01a]

2.4 Client Protection

Client protection consist of two parts: A client should be able to control which of its rights

are delegated to other components and which of its machine resources are open for compo-

nent access.

2.4.1 Delegation

Clients call components to perform operations. A component often does not completely

perform all operations itself and therefore calls further components. These calls can be un-

der the client’s identity or under the component’s identity. The client should be able to

control which of its rights are delegated and where and how long these rights can be used.

When a component makes calls under the client’s identity, it impersonates the client.

2.4.2 Client Machine Protection

When a client makes a call, the component either executes on the server or it is downloaded

and runs on the client’s machine. In the latter case, the client should have the possibility to

control which system resources such as the file system or network downloaded components

are allowed to access. There are two common ways to perform client machine protection: A

component can run under a specific user account of the operating system and is thus re-

stricted by the security policy settings of the account. The Java 2 Security Model2 performs

2 Chapter 2.7.2 gives an overview of the Java 2 Security Model.

Client Server 1. certificateCA(pubS)

2. pubS(nonce or session key)

3a. nonce pubCA privS
3b. symmetric key encryption

with session key

 6

a different approach. Java applications execute in the Java Virtual Machine (JVM) re-

stricted by the Security Manager and Access Controller.

2.5 Security Auditing

Security auditing is used to record security related events and sensitive operations in a dis-

tributed system such as success and failure of authentication and object invocation. Security

auditing is also required to make users accountable for their actions. An auditing service

must be able to identify a user correctly, even after a chain of calls through multiple com-

ponents. [OMG01a]

2.6 Non-repudiation

Non-repudiation (NR) is also called accountability and is used to generate and check ir-

refutable evidence about a claimed event or action. As an example, a NR service can gener-

ate an evidence of creation of a message. When a sender attempts to falsely deny the crea-

tion of a specific message, the recipient can prove the creation of the message with an evi-

dence from the NR service. Another common NR type is the evidence of receipt of a mes-

sage to protect a sender from falsely denying recipients. [OMG01a]

2.7 Examples

In the following sections, I give two examples for security mechanisms used in praxis:

With SSL, two parties can enforce secure communication, for example between a web

browser and a web server. The second example is the Java 2 Security Model, which imple-

ments client machine protection.

2.7.1 SSL

The Secure Sockets Layer (SSL) protocol was originally developed by Netscape and is the

basis of the Transport Layer Security (TLS) protocol from the Internet Engineering Task

Force (IETF). The SSL protocol runs above the TCP/IP layer and below application layer

protocols such as HTTP. It allows mutual authentication of the communicating parties, and

encryption and integrity protection of the data sent over the connection. When an SSL con-

nection is established, client and server perform a series of actions, called a handshake.

During the handshake, client and server first exchange their SSL version numbers and in-

formation about available cryptographic algorithms. The SSL protocol supports a large

number of cryptographic algorithms, such as DES, 3DES, RSA, MD5, or SHA-1. Client

 7

and server then exchange their certificates to perform mutual authentication with a chal-

lenge-response protocol and to agree on a symmetric session key for ongoing encryption.

[Ipla98]

2.7.2 Java 2 Security Model

The Java language is designed to make it easier for a programmer to write safe code. It is

strongly typed, provides automatic memory management, garbage collection, and range

checking on strings and arrays. The Java Virtual Machine (JVM) performs language type

safety and range checks at run time. The Class Loader, which loads Java classes into the

JVM, defines a local name space to assure that an untrusted Java program cannot access

other Java programs running on the same machine. It uses the Java Bytecode Verifier to

check the integrity of Java bytecode. Access to system resources is mediated by the JVM

and checked by the Security Manager and Access Controller. [GoMu97]

The Java 2 Security Model allows to run applications as well as applets restricted by a secu-

rity policy. Figure 2.7-1 gives an overview of the Java 2 Security Model. I describe some of

its components in the following subsections.

Figure 2.7-1 Java 2 Security Model

Permission Classes

Permission classes represent access to system resources. A permission consists of a target

and one or more actions. For example, the java.io.FilePermission class repre-

sents access to a file or directory and is associated with read, write, execute, and delete ac-

tions. The following code produces a permission to read and delete all files in /tmp:

System Resources
(files, network connections, etc.)

Security Manager and Access Controller

Domain
(full access)

Policy File
(permissions)

JVM

Applications or Applets

Domain
(sandbox)

Domain

 8

FilePermission p = new FilePermission("/tmp/*", "read,delete");

It is not possible to deny an action to a specific target. [Gong98]

Policy Object and Policy File

A policy object represents a system security policy, which specifies permissions for code

from different sources. The system security policy may be stored as an ASCII policy file, a

serialized binary file of the policy object, or in a database. In the default implementation

one or more ASCII policy files are used.

A policy file consists of a keystore specification entry and grant entries. A keystore is a

database that stores private keys and their associated digital certificates. A grant entry

grants a set of permissions to a specified CodeBase. Listing 2.7-1 shows a typical policy

file. The first line specifies the location of the keystore. The following grant entry will grant

write permission to the local /tmp directory to any code originating from the CodeBase

URL http://www.uni-erlangen.de signed by both Lisa and Mary. [Gong98, Li01]

keystore "/jdk1.2/mykeystore"
grant codeBase "http://www.uni-erlangen.de/*", signedBy "Lisa,Mary"{

permission java.io.FilePermission "/tmp/*", "write";
};

Listing 2.7-1 A policy file

Protection Domains

Classes are grouped into individual protection domains. A protection domain is uniquely

defined by a CodeSource, which consists of a CodeBase and a set of certificates. Thus, all

classes that belong to the same protection domain are signed by the same keys and originate

from the same URL. A class can be member of only one protection domain. Each protec-

tion domain is associated with a specific set of permissions that is granted to the classes of

the domain.

There are two distinct categories of protection domains: system domains and application

domains. All Java 2 SDK code belongs to a unique system domain whereas an applet or

application runs in its appropriate application domain. [Gong98]

 9

3 Security in Distributed Component Models

In the next four sections, I examine EJB, Jini, COM, and CORBA. Each section begins

with a short overview of the component model, followed by the discussion of the security

model.

3.1 EJB

3.1.1 Overview of EJB
Enterprise JavaBeans (EJB) is part of the Java 2 Platform, Enterprise Edition (J2EE) from

Sun Microsystems. It “defines a model for the development and deployment of reusable

Java server components” [Thom98, 1]. EJB components, which are also called enterprise

beans, implement only the business logic. Middleware services, such as memory manage-

ment, network access, transactions, or security are provided by the EJB server and the EJB

container. Enterprise beans do not provide a Graphical User Interface (GUI). [Sun01a;

Sun01b]

3.1.1.1 Architecture of EJB Applications

EJB technology is based on the Java programming language. EJB applications consist of

four parts: enterprise beans, EJB containers, EJB servers, and clients. Figure 3.1-1 gives an

overview.

Figure 3.1-1 J2EE Environment [Thom99]

EJB Server

EJB Container
EJB Container

Web Server

Servlet
JSP
HTML
XML

middle tier client tier

enterprise
bean

Client

Client

Client

enterprise
bean

enterprise
bean

data tier

 10

Enterprise Bean

Enterprise beans are server components and run in an EJB container. One or more EJB

containers run in an EJB server. EJB servers and EJB containers provide all middleware

services. An EJB application is built with multiple enterprise beans. There are standard

contracts between the EJB container, the EJB server, and the enterprise bean to assure that

an enterprise bean can be deployed in any EJB-compliant container. However, at the time

being, enterprise beans are not fully portable because many vendors develop EJB servers

and containers with proprietary extensions [GrTh00].

EJB technology supports session beans and entity beans. Session bean instances exist only

for the duration of a single client/server session. A session usually spans multiple method

calls, for example, to read or change data in a database. A session bean instance is termi-

nated after the session. There are ‘stateful’ session beans that retain the conversational state

across method calls and transactions. The conversational state of a sessions bean instance

consists of its field values and the field values of all instances reached by following object

references [DeYa00, 61]. Stateless session beans do not maintain conversational state. In-

stances of entity beans represent persistent data and are maintained in a permanent data

store, typically a database [Thom98]. Clients and enterprise beans communicate with the

Java Remote Method Invocation (RMI) API.

Every enterprise bean has two interfaces:

• The home interface provides methods to create, find and destroy enterprise bean in-

stances.

• The remote interface provides the business methods of an enterprise bean.

The Bean Provider, the Application Assembler, and the Deployer3 use the Deployment De-

scriptor to specify information about an enterprise bean. This information concerns lifecy-

cle, persistency, security, and other middleware services. The Deployment Descriptor is in

Extensible Markup Language (XML) format. The EJB specification defines the XML

Document Type Definition (DTD) for the Deployment Descriptor.

3 The EJB roles are described in chapter 3.1.1.2.

 11

EJB Container

An EJB container provides an execution environment for one or more enterprise beans. It

reduces the complexity of developing applications by managing middleware services, such

as life cycles, transactions, concurrent access, security, and persistence of the included en-

terprise beans. To provide these services, the EJB container intercepts every method call,

that means clients cannot access enterprise beans directly. Clients use methods provided by

the home interface and the remote interface to access enterprise beans. The EJB container

uses the values specified in the Deployment Descriptor to perform the middleware services.

Figure 3.1-2 depicts an EJB container. [Thom98, 15]

Figure 3.1-2 EJB Container

EJB Server

An EJB server may host one or more EJB containers. It provides services for the manage-

ment of system resources, such as threads, memory, or database and network access. EJB

server and EJB container are provided by the same vendor.

Client

A client contains only presentation logic. It can use Java Naming and Directory Interface

(JNDI) to get the home interface of an enterprise bean. All interceptions from the EJB con-

tainer are transparent to the client. Possible clients are Java applets, Java applications, other

enterprise beans, or CORBA applications.

Home Interface

EJB Container

Remote Interface

enterprise
bean

Deployment
Descriptor

Client

 12

3.1.1.2 EJB Roles

The EJB specification defines seven roles that participate in the development and deploy-

ment process of an EJB application [DeYa00]:

• Enterprise Bean Provider: Develops enterprise beans. The Enterprise Bean

Provider uses the infrastructure provided by the EJB container and the EJB

server and can therefore concentrate on the business logic.

• Application Assembler: Assembles multiple enterprise beans to a complete

EJB application. The Application Assembler can be the same party as the Enter-

prise Bean Provider.

• Deployer: Installs and configures enterprise beans and EJB applications in the

operational environment. The Deployer usually does not have to know every

detail of an EJB application.

• EJB Server Provider: Develops EJB servers.

• EJB Container Provider: Develops EJB container. “The current EJB architec-

ture assumes that the EJB Server Provider and the EJB Container Provider roles

are the same vendor” [DeYa00, 35].

• Persistence Manager Provider: Manages the persistent state of the entity

beans installed in an EJB container.

• System Administrator: Configures and administers the running EJB applica-

tion server and infrastructure network.

3.1.1.3 Packaging

The Bean Provider and the Application Assembler use the ejb-jar file format for the pack-

aging of enterprise beans and assembled EJB applications. An ejb-jar file contains one or

more enterprise beans, the Deployment Descriptor, and assembly information. [DeYa00,

485]

 13

3.1.2 Security in EJB
The security examination in this section is based on the Enterprise JavaBeans™ Specifica-
tion, Version 2.0, Proposed Final Draft [DeYa00].

3.1.2.1 Secure Communication

The Container Provider is responsible to provide secure communication mechanisms. The
EJB specification does not define a secure communication protocol. Usually, the SSL pro-
tocol is used. The Deployer is responsible for configuring EJB containers to protect the
communication between enterprise beans. “The Deployer should configure containers to
reject call requests or responses with message content that should be protected but is not
protected” [Kass00, 235].

3.1.2.2 Identification and Authentication

Identification and authentication is not addressed by the EJB specification. Application
servers must authenticate users through proprietary means. One possibility is to “require a
client application to provide a user-name parameter and a password parameter in the JNDI
initial context” [Alla00, 1051]. The EJB container can also use the identity provided by an
implementation of the SSL protocol. Another possibility is that the EJB server uses the
Java Authentication and Authorization Service (JAAS) to authenticate the user’s identity.
Once the EJB sever identifies and authenticates the client, it will map the identity onto a
logical security role (see next section). [Alla00, 1051]
EJB containers can build trust relationships to other EJB containers installed in different
EJB servers if the network is physically secure. The Deployer or System Administrator
configure the trusted containers in Trust Container Lists (TCL). [DeYa00, 400]

3.1.2.3 Authorization

The EJB specification defines what each EJB role has to do to enforce authorization.

Bean Provider

The Bean Provider should not hard-code any security policies and mechanisms, unless in
less frequent situations in which access to security context information is absolutely neces-
sary. In such situations the Bean Provider can use the following two methods provided by
the javax.ejb.EJBContext interface to access security context information:

public interface javax.ejb.EJBContext {

java.security.Principal getCallerPrincipal();
boolean isCallerInRole(String roleName);

}

 14

With getCallerPrinicpal(), the Bean Provider can obtain the name of the caller

principal. The name may be used, for example, as a key to access information in a database.

The isCallerInRole(String roleName) method tests whether the caller has been

assigned to the security role roleName. Security roles are defined by the Application

Assembler (see next subsection). The Bean Provider should declare and describe all the

security role names used in the enterprise bean code in the security-role-ref ele-

ments in the Deployment Descriptor. [DeYa00]

Application Assembler

The Application Assembler has detailed knowledge of the EJB application and appropriate

access control restrictions. He defines which groups of users are allowed to invoke which

groups of methods. He provides this security view with the definition of security roles and

method permissions.

Security Roles
The Application Assembler does not know the user names and groups in the target opera-

tional environment. He therefore defines security roles with the security-role ele-

ments in the Deployment Descriptor. Security roles are logical groups of users with the

same access rights. Listing 3.1-1 shows an extract of the Deployment Descriptor with the

definition of two security roles: employee and payroll-department. The Application As-

sembler also describes each security role with the description element. [DeYa00]

…
<assembly-descriptor>

<security-role>
<description>

This role includes the employees of the
enterprise who are allowed to access …

</description>
<role-name>employee</role-name>

</security-role>

<security-role>
<description>

This role includes the employees of the
payroll department.
This role is allowed to view and update
the payroll entry for any employee.

</description>
<role-name>payroll-department</role-name>

</security-role>
…

</assembly-descriptor>
…

Listing 3.1-1 Definition of security roles in the Deployment Descriptor [DeYa00, 440]

 15

The Application Assembler must also link all security role references declared by the Bean

Provider to security roles. Listing 3.1-2 depicts how the security role reference payroll,

defined and used in the enterprise bean code by the Bean Provider, is linked to the security

role payroll-department, defined by the Application Assembler. [DeYa00]

…
<enterprise-beans>

…
<entity>

<ejb-name>Payroll</ejb-name>
<ejb-class>com.payroll.PayrollBean</ejb-class>
…
<security-role-ref>

<description>
This role should be assigned to …

</description>
<role-name>payroll</role-name>
<role-link>payroll-department</role-link>

</security-role-ref>
…

</entity>
…

</enterprise-beans>
…

Listing 3.1-2 Linking security role references to security roles in the Deployment Descriptor [DeYa00, 444]

…
<method-permission>

<role-name>employee</role-name>
<method>

<ejb-name>EmployeeService</ejb-name>
<method-name>*</method-name>

</method>
<description>

…
</description

</method-permission>

<method-permission>
<role-name>employee</role-name>
<role-name>payroll-department</role-name>
<method>

<ejb-name>Payroll</ejb-name>
<method-name>findByPrimaryKey</method-name>

</method>
<method>

<ejb-name>Payroll</ejb-name>
<method-name>getEmployeeInfo</method-name>

</method>
…

</method-permission>
…

Listing 3.1-3 Assignment of method permissions to security roles in the Deployment Descriptor

[DeYa00, 443]

 16

Method Permissions

Method permissions specify the methods of the home and remote interface that each secu-

rity role is allowed to invoke. Listing 3.1-3 on page 15 illustrates the definition of two

method permissions. The first definition allows all users of the group employee to invoke

all (*) methods from the enterprise bean EmployeeService. The second method permission

allows all users of the groups employee and payroll-department to invoke the methods

findByPrimaryKey and getEmployeeInfo from the enterprise bean Payroll.

Deployer

“The Deployer assigns principals and/or groups of principals (such as individual users or

user groups) used for managing security in the operational environment to the security roles

defined in the security-role elements of the Deployment Descriptor” [DeYa00, 446]. Figure

3.1-3 shows the assignment of the security roles defined in Listing 3.1-1.

There are deployment tools, which help the Deployer to read the security view of an appli-

cation. He also assigns principals for the run-as identities4 and mappings for resource man-

ager access.

“This mapping of a user’s actual security identity onto a logical security role is the key to

understanding Enterprise JavaBeans security” [Alla00, 1052].

Figure 3.1-3 Mapping of actual security identities onto security roles

4 See section 3.1.2.4 Client Protection.

findByPrimaryKey

getEmployeeInfo

EmployeeService
enterprise bean

Payroll
enterprise bean

employee

payroll-
department

security roles method
permissions

Deployer Application Assembler

defines

actual security
identities

maps

department
B

CEO

department
A

 17

Container Provider

The EJB container enforces authorization according to the specifications in the Deployment
Descriptor and the mappings of the Deployer. If an enterprise bean access is illegal, the EJB
container must throw a java.rmi.RemoteException.
The EJB Container must also make the identity and role information of callers available to
enterprise beans.

3.1.2.4 Client Protection

Delegation

Delegation in EJB is solved with security identities. Enterprise bean method calls can run
under two different security identities: The caller’s security identity, or a specific run-as
identity. If the caller’s security identity is used, the caller principal is propagated from one
enterprise bean to another. With run-as identity, a specific run-as principal is used on any
calls that the enterprise bean makes. The Deployer specifies security identities in the De-
ployment Descriptor. [DeYa00, 447]

Client Machine Protection

EJB applications always run in an EJB container on the server and not on the client’s ma-
chine. However, some clients download Java applets or applications to access EJB applica-
tions. In this case, the Java 2 Security Model restricts Java programs according to the cli-
ent’s security policy.
The server machine can also restrict enterprise beans with the Java 2 Security Model.

3.1.2.5 Security Auditing
Security auditing in EJB is optional. An EJB container may provide a security audit trail
mechanism, which logs all java.security.Exceptions and all denials of access to
EJB servers and EJB containers. The System Administrator is responsible for security au-
diting management. [DeYa00, 451]

3.1.2.6 Summary
EJB divides the responsibility of security between those who develop enterprise beans and
EJB applications, and those who deploy EJB applications [Kass00, 238]. The Bean Pro-
vider and the Application Assembler should be relieved from details of security mecha-
nisms. They specify their security requirements in the Deployment Descriptor at an abstract
level external to EJB applications [Alla00, 1052]. The Deployer and the System Adminis-
trator then select suitable security mechanisms, which are implemented by the EJB Con-
tainer and the EJB Server. An EJB application can thus be installed in environments with
different security requirements and mechanisms. However, the EJB specification defines
Deployment Descriptor entries only for authorization and delegation.

 18

3.2 Jini

3.2.1 Overview of Jini

Jini, developed by Sun Microsystems, provides a simple infrastructure to federate clients

and services in a network without installation or human intervention. Services, such as ap-

plications, devices, or storage can be spontaneously connected to a Jini network. A service

automatically registers itself to one or more directories, so-called lookup services. Such

lookup services manage registered service providers and act as brokers between clients and

services. A client searches the lookup service to get a proxy object, which runs on the cli-

ent’s machine and is used to access the service [Sun99]. While EJB is designed to build a

relative static distributed enterprise system, Jini can be used to connect services in a “plug

and play” manner.

3.2.1.1 Architecture of Jini

Jini Services and Clients

A Jini service can be an application, a software component, or a hardware device. Every

Jini service provides a service proxy, which runs in the client’s JVM and does all the com-

munication work between client and service. Jini does not dictate a specific communication

protocol.

A client calls the methods provided by a proxy object, which can be a simple RMI stub for

talking to its remote service. It is also possible that a proxy object performs parts of the

service or the whole service by itself. In the latter case, the term “downloaded software

component” would be more suitable than “proxy”.

Discovery

Before a service can connect with other services it must first find a Jini community. Jini

provides discovery protocols by which a service can find lookup services. Lookup services,

which are the only Jini services that must be started explicitly by administrators, manage

the services in one or more communities and act as brokers between clients and services. It

is also possible that a community has multiple lookup services. Jini supports several dis-

covery protocols [Edwa99]: Services that already know a particular lookup service can re-

quest it directly with the unicast discovery protocol. Lookup services are named in URL

 19

syntax and listen on default port number 41605. Here is an example: jini://uni-

erlangen.de:4160

Another possibility is the multicast request protocol, which is used by a service to find all

lookup services running in the network. When a new lookup service starts up, it can use the

multicast announcement protocol to publish its presence. Lookup services answer to dis-

covery requests with serialized proxy objects that implement the ServiceRegistrar

interface.

Join

A Jini service that wants to make itself available to a Jini community performs a process

called joining. The service first makes a discovery to find out about lookup services in a

Jini community. Each lookup service answers with a ServiceRegistrar object, which

provides a register() method. The service then calls the register() method to

upload its proxy object as well as its service description to the lookup service.

Lookup

The ServiceRegistrar object can also be used to search the lookup service for regis-

tered services. A client uses the lookup() method, which returns the proxy objects of the

requested services. A proxy object is then executed in the client’s JVM and used to make

calls to the service implementation. “This idea of downloadable service proxies is the key

idea that gives Jini its ability to use services and devices without doing any explicit driver

or software installation” [Edwa99, 70]. Figure 3.2-1 gives an overview of the Jini architec-

ture and shows the steps of a client-service provider connection.

 Figure 3.2-1 Overview of the Jini architecture

5 4160(10) = CAFE(16) - BABE(16)

Lookup Service

Client Service Provider

Proxy
Object

Service
Registrar Service

Registrar

Service
Implementation

4.
lookup() 2a.

register()

6.
method1()
method2()

…

5.
download Proxy

Object

2b.
upload

1.
download

3.
download

 20

3.2.2 Security in Jini

The Jini architecture does not provide any security mechanisms additional to the Java secu-

rity. In this section, I therefore first describe security requirements and then outline security

extensions for a Jini network.

3.2.2.1 Security Requirements

There are security requirements between proxy object and service implementation, client

and proxy object, and client and service implementation.

Proxy Object-Service Implementation Interaction

Authentication: The proxy object must assure that it is talking to the right service imple-

mentation. The service implementation cannot authenticate the proxy object because it is

impossible to conceal an encryption key inside the proxy object.

Secure Communication: Encryption and integrity protection is necessary for all messages

with confidential content exchanged between proxy object and service implementation.

Client-Proxy Object Interaction

Proxy object integrity and authenticity: In a traditional client-server system, the client

would authenticate the server. A Jini client however contains no code for communicating

and cannot authenticate a service without the help of the proxy object. A client therefore

must be able to prove integrity and authenticity of the proxy object to assure that it has

downloaded the “genuine” proxy object of the service provider. The proxy object then au-

thenticates its service implementation.

Client runtime environment protection: The client must have the possibility to control

which local resources a proxy object can access. The Jini system already fulfils this security

requirement by using the Java 2 Security Model.

Client-Service Implementation Interaction

Authentication: The service implementation requires authentication of the calling client to

enforce access control. The client cannot give its private key to the proxy object, because

the proxy object might misuse it. Client authentication must therefore go through the proxy

object. Figure 3.2-2 on page 21 summarizes the security requirements in a Jini system.

 21

 Figure 3.2-2 Security requirements in a Jini system

3.2.2.2 Jini Security Extensions

In this section, I outline possible Jini security extensions, that meet the requirements de-

scribed in the last section. My extension are similar to those in [HaKe00] and [ErNi01].

Authentication

One possibility to perform authentication in a Jini network is with a Certification Authority

(CA). It is assumed that every participant in the Jini network knows the CA’s public key.

Integrity and authenticity of a proxy object is guaranteed with a digital signature by its ser-

vice provider. The client downloads a signed proxy object together with the CA certificate

that contains the service provider’s public key.

The proxy object contains the service implementation’s public key and can thus authenti-

cate the service implementation by using a challenge-response protocol.

The service implementation also uses a challenge-response protocol to authenticate the cli-

ent and to negotiate a session key. As the client cannot give its private key to the proxy ob-

ject, the proxy object must hand all messages of the challenge-response protocol to the cli-

ent. After the challenge-response protocol, the client gives the negotiated session key to the

proxy object for ongoing communication.

Authorization

The service implementation can enforce access control with capabilities or with ACLs. A

capability is a signed statement that certifies certain access rights to a client. It can be

A verifies the identity of B

Client

JVM

Service Provider

Authentication

JVM

Client
Application

Proxy
Object

Service
Implementation

Secure Communication

Security
Policy

Security
Policy

Security Manager and
Access Controller

Security Manager and
Access Controller

 22

signed either by the service provider or by a trusted Capability Manager (CM) and is usu-

ally stored on the client machine. The client sends its capability to the service provider be-

fore making a call. Capabilities signed by a CM should be used when there are many clients

with medium security demands, because such capabilities are only as trustworthy as the

CM. Generally, capabilities should have an expiration date, otherwise it is difficult for a

service provider to revoke access rights.

Another possibility is that a service provider manages ACLs. An ACL contains entries that

either grant or deny access rights to a certain client, which can be identified by its public

key. ACLs are more flexible than capabilities and the service provider does not have to rely

on CMs or CAs. ACLs with many entries are difficult to manage. For service providers

with a large number of clients it is therefore easier to use capabilities.

Secure Communication

After the authentication process, proxy object and service implementation share a secret

session key, which is used for secure communication with a symmetric encryption algo-

rithm. Proxy object and service implementation can also exchange further session keys of

different length to realize multiple security levels.

3.2.2.3 Related Work

Hasselmeyer et al. [HaKe00] developed a secure lookup service, which enforces client au-

thentication and secure communication. Certificates are managed by a CA. The lookup ser-

vice supports special security groups, which grant access only to authorized clients. A CM

administers access rights. There is also a group without any access control to maintain

compatibility with “legacy” Jini applications.

3.2.2.4 Summary

Sun Microsystems developed the Jini technology without security mechanisms additional to

the Java 2 Security Model. Generally, security extensions reduce the spontaneity of a Jini

network. For example, a system administrator must first set authorization policies before a

client can use a service.

Building trust in the proxy object can be easily achieved by signing the proxy object. Se-

cure communication between client and service implementation can be realized with sym-

metric key encryption. More complex to achieve are extensions to enforce client authenti-

cation and authorization.

 23

3.3 COM

3.3.1 Overview of COM

The Component Object Model (COM) from Microsoft is a standard for integration between

binary software components. It defines means for developing components and specifies

how these components and their clients communicate. COM specifies how components

interact, not how they are structured. The internal structure depends on the programming

languages and development environments used [WiKi94]. The COM-library provides API

functions to facilitate the creation of components.

In its initial releases, COM could not be used to connect components residing on different

computers. Since the release of Windows NT 4.0, COM also provides an infrastructure to

support communication with components over a network. This update to COM is referred

to as Distributed COM or DCOM. [Msdn99]

With the release of Windows 2000, Microsoft introduced COM+. COM+ combines en-

hancements to COM with the Microsoft Transaction Server (MTS). It handles infrastructure

services that COM developers have to program, such as thread allocation, object activation,

load balancing, transactions, events, and security. [Sdk01]

3.3.1.1 Architecture of COM

Components

Microsoft does not define exactly what a component is [Szyp98, 194]. According to

[Msdn99, 155], a component is a “collection of COM classes packaged into an executable

unit, such as a DLL6 or EXE”. An instance of a COM class is called a COM object. A COM

object is “some piece of compiled code that provides some service to the rest of the system”

[WiKi94]. The internal implementation of a COM object is completely autonomous and

therefore programming language independent. COM classes are identified with Class Iden-

tifiers (CLSIDs). A CLSID is a Globally Unique Identifier (GUID), a 128-bit number guar-

anteed to be globally unique.

All COM objects combined in one component are grouped to the same Application Identi-

fier (AppID), which is also a GUID. The COM library provides the function

CoCreateInstance7 to create a new COM object.

6 Dynamic Link Library
7 All COM library function names start with Co.

 24

COM Servers

A COM server contains the implementations of multiple COM classes. There are two types

of COM servers: in-process and out-of-process. In-process COM servers are implemented

as DLL. Out-of-process COM servers are implemented as EXE [Msdn99, Sdk01]. Each

COM server implements a factory object for each class to create COM objects [Szyp98]. A

COM server with two classes and factories is depicted in Figure 3.3-1.

Figure 3.3-1 COM server with two classes, each with a factory [Szyp98, 205]

Interfaces

An interface is a “defined set of functions that are grouped together under one name”

[EdEd98, 20]. It defines the name, parameter types, and return type for each function. An

interface is a typed contract between COM object and client. A COM object implements an

interface when it implements each member function. Every interface has an unique Inter-

face Identifier (IID) to eliminate name conflicts.

Every COM object must support the interface IUnknown8. Clients use this interface to

control the lifetime of the COM object and to query a COM object whether it supports a

predefined interface. Clients always use an interface pointer to call functions of a COM

object. [WiKi94]

An interface must not be changed. A changed interface must be published as a new inter-

face with a new IID. As a COM object is able to support multiple interfaces it can support

interfaces in different versions. Clients that are aware of the new interface can use it,

whereas older interface versions are still available for older clients. Functions that are de-

fined in two or more interfaces of a COM object can share the same internal implementa-

tion. The payroll object in Figure 3.3-2 on page 25 supports the old interface IPayroll

and the new interface IPayroll2, as well as the mandatory IUnkown interface.

8 Interface names begin with I by convention.

Class A

Class
factory

Class B

Class
factory

COM server

 25

Figure 3.3-2 COM object with multiple interfaces

Cross-process Communication

COM allows clients to transparently communicate with other COM objects regardless of
where those COM objects are running. In-process COM objects run in the address space of
the client and allow very fast function calls. A client can access in-process COM objects
directly through interface pointers. Local and remote COM objects are out-of-process. They
run in their own memory space and cannot be accessed directly by a client. Instead, the
client uses a local or remote object proxy, which generates Remote Procedure Calls
(RPCs). Function calls to out-of-process COM objects are significantly slower than in-
process calls because they require a process switch and the copying of parameters. Local
COM objects run on the same machine as their clients whereas remote COM objects run on
a separate machine connected via a network. Figure 3.3-3 shows a client calling functions
from in-process, local, and remote COM objects.

 Figure 3.3-3 In-process, local, and remote COM objects [WiKi94]

IUnknown

IPayroll

IPayroll2
Payroll
object

Client Interface pointer

Remote
object proxy

Client process

Client

COM

Local object
proxy

Local server process

Stub

COM
Local server

Local COM
object

Cross-process with
lightweight RPC

LRPC LRPC

In-process server

In-process
COM object

Cross-network
with RPC Remote server process

Stub

COM
Remote server

Remote
COM object

Remote computer

Client computer

 26

3.3.2 Security in COM
In the following sections, I describe the COM security model. I examine all security
mechanisms introduced in chapter 2, except non-repudiation. I also give a short overview of
the COM+ security model.

3.3.2.1 Overview

The COM security model distinguishes between declaratively and programmatically con-
figured security settings.

Declarative Security

Declarative security is configured externally and thus transparent to both the client and the
component. It provides more flexibility at deployment time because the same component
can be used with different security policies. Declarative security settings can therefore also
be used for components that were developed without security concerns. The system ad-
ministrator can define external security settings in the registry with the help of configura-
tion utilities such as dcomcnfg.exe. COM will automatically enforce all necessary secu-
rity checks according to the settings in the registry. There are default and component de-
clarative security settings. COM applies default, or machine-wide security, to all compo-
nents running on the local machine that do not override these default settings. Component
security allows the system administrator to configure security specifically for each compo-
nent. More fine-grained security settings for single COM objects or functions can be speci-
fied only programmatically. [Dule01, EdEd98, HoKi97]

Programmatic Security

Some features of the COM security model, for example different access control settings for
each function in a COM object can be specified only programmatically. Programmatic se-
curity overrides declarative security. Usually, declarative security and programmatic secu-
rity are combined [EdEd98]. COM provides several functions and interfaces for program-
matic security:
COM servers and clients can call CoInitializeSecurity to initialize the security
infrastructure on a per-process basis with their own values. For applications that do not call
this function explicitly, COM will call it with default values from the registry. [Sdk01]
Clients can use the IClientSecurity interface to control the security settings for a
particular connection to an out-of-process COM object. Every out-of-process COM object
has a proxy manager, which implements this interface. [Sdk01]
When a client has invoked a function of a COM server, the COM server can use the
IServerSecurity interface, which is implemented by the COM server stub. With

 27

CoGetCallContext the COM server can get a pointer to IServerSecurity, which
is valid for the duration of the client’s function call. [Sdk01]

3.3.2.2 Identification and Authentication

Security Provider

COM uses a security provider to identify and authenticate a security principal. Different
platforms support different security providers. Every security provider must implement the
Security Support Provider Interface (SSPI), a standard API to insulate the developer from
different security providers. Windows 2000 offers multiple security providers, such as the
Windows NT LAN Manager Security Support Provider (NTLM SSP) or a SSP that imple-
ments the Kerberos network authentication service version 5 [Eddo99]. When COM asks
the security provider to authenticate a user it receives an access token. The access token is
used for ongoing authentication. It contains a Security Identifier (SID), which uniquely
identifies the user, and the user groups to which the user belongs. [EdEd98, 400]

Authentication Levels

COM defines seven authentication levels, which are listed in Table 3.3-1. Levels 5 and 6
also specify packet encryption and integrity for secure communication.
Authentication levels are used by the system administrator to set default and component
security in the registry and by applications that override the declarative security settings
with CoInitializeSecurity.

Value
Authentication
Level Flag Description

0 Default RPC_C_AUTHN_LEVEL_
DEFAULT

Currently maps to connect level authentication.

1 None RPC_C_AUTHN_LEVEL_
NONE

No authentication.

2 Connect RPC_C_AUTHN_LEVEL_
CONNECT

Authenticates the client only when the client first con-
nects to the COM server.

3 Call RPC_C_AUTHN_LEVEL_
CALL

Authenticates the client at the beginning of each remote
call.

4 Packet RPC_C_AUTHN_LEVEL_
PKT

Authenticates that all of the data received is from the
expected client.

5 Packet integrity RPC_C_AUTHN_LEVEL_
PKT_INTEGRITY

Authenticates all of the data and verifies that it has not
been modified when transferred between the client and
the COM server.

6 Packet privacy RPC_C_AUTHN_LEVEL_
PKT_PRIVACY

Authenticates, verifies, and encrypts the arguments
passed to every remote call.

Table 3.3-1 Authentication levels [EdEd98, 405]

 28

The following registry entries are used for default and component authentication security

(components are distinguished by their AppIDs):
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\OLE\LegacyAuthenticationLevel = value

HKEY_LOCAL_MACHINE\SOFTWARE\Classes\APPID\{AppID}\AuthenticationLevel =

value

A COM object can find out about the principal name and authentication level of the client

with the IServerSecurity::QueryBlanket function. [Sdk01]

3.3.2.3 Authorization

COM distinguishes between launch security and access security.

Launch Security

Launch security, also called activation security, specifies which security principals are

permitted to launch components. Launch security is enforced by the Service Control Man-

ager (SCM), which is responsible for locating COM class implementations and running

them. The SCM uses ACLs stored in the registry. Launch security is always configured

declaratively, because components themselves are not involved.

Default launch permission is used for components that do not provide their own ACL. The

following registry entries set default and component launch permissions [Sdk01]:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\OLE\DefaultLaunchPermission = ACL

HKEY_LOCAL_MACHINE\SOFTWARE\Classes\APPID\{AppID}\LaunchPermission = ACL

Access Security

Access security specifies which security principals are allowed to call which COM compo-

nents. ACLs for default and component access security are set under the following registry

entries:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\OLE\DefaultAccessPermission = ACL

HKEY_LOCAL_MACHINE\SOFTWARE\Classes\APPID\{AppID}\AccessPermission = ACL

A COM server can manage more fine-grained access control to its COM objects with the

IAccessControl interface provided by the COM library. This interface provides func-

tions to set and revoke access rights for individual COM objects. [Sdk01]

A COM object can also use the IServerSecurity::QueryBlanket function to de-

termine the security credentials of the calling client and then take special actions depending

on the user identity. [EdEd98]

 29

3.3.2.4 Client Protection

Impersonation Levels

COM allows COM objects to impersonate their callers. A caller can specify what actions

the COM object is allowed to perform under its identity. COM defines four impersonation

levels as listed in Table 3.3-2:

Value
Impersonation
Level Flag Description

1 Anonymous RPC_C_IMP_LEVEL
_ANONYMOUS

The object is not allowed to obtain the identity of the caller.

2 Identify RPC_C_IMP_LEVEL
_IDENTIFY

The object can only detect the security identity of the caller,
but can not impersonate the caller.

3 Impersonate RPC_C_IMP_LEVEL
_IMPERSONATE

The Object can impersonate the caller and perform local op-
erations on the machine where the object is running. The ob-
ject can not call other objects on behalf of the caller.

4 Delegate RPC_C_IMP_LEVEL
_DELEGATE

The object can impersonate the caller and call other objects
using the security identity of the caller.

Table 3.3-2 Impersonation Levels [HoKi97]

The default impersonation level for all clients running on the system is specified under:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\OLE\LegacyImpersonationLevel = value

A client can set a process-wide impersonation level with CoInitializeSecurity. A

client can also use the IClientSecurity::SetBlanket function to specify the im-

personation level for specific COM objects. [Sdk01]

Client Machine Protection

A component executes under a specific security identity, i.e. a user account. The security

identity is associated with certain privileges, which define the access rights of a component.

The security identity of a COM component is always configured via the registry:
HKEY_LOCAL_MACHINE\SOFTWARE\Classes\APPID\{AppID}\RunAs = value

The value specifies a user name and must be in the form username or domain\username.

[Sdk01]

3.3.2.5 Security Auditing

The Win32 API provides functions for auditing security-related events9. However, using

Win32 API security functions ties a component to the Windows NT platform [EdEd98,

9 See [Msdn01] for further details.

 30

413]. As far as I know, the COM security model provides no interfaces or functions to re-

alized platform-independent security auditing.

3.3.2.6 Overview of COM+ Security

In COM+, the catalog contains the declarative security settings. These settings can be

changed with the Component Services administration tool [Eddo99].

Access control is based on security roles and privileges. COM+ offers two methods for

programmatic access control:

• IObjectContext::IsSecurityEnabled: Checks whether role-based secu-

rity is enabled.

• IObjectContext::IsCallerInRole: Checks whether a user is assigned to

a specific role.

COM+ uses the authenticode technology to sign code, which makes is possible to identify

the code provider and to assure that the code has not been changed. COM+ also uses the

concept of zones, which allows classifying code sources in different zones. For each zone,

there is a specific security policy. [Kirt97]

3.3.2.7 Summary

COM provides declarative mechanisms to specify machine-wide and component-wide se-

curity properties. Thus, security settings can be defined also for components that were de-

veloped without any security concerns. On the other hand, declarative security is very

coarse-grained as all COM objects in a component share the same declarative security set-

tings.

Programmatic security allows more fine-grained security settings. Components have access

to detailed information concerning authentication, authorization, and impersonation of the

caller. However, components with hard-coded security settings are often tied to a specific

operational environment.

Security auditing is possible only with Win32 API functions. As far as I know, the COM

security model provides no non-repudiation service.

COM+ introduces further security concepts, such as the specification of security roles,

which allow greater flexibility and simplify the deployment and administration of compo-

nents.

 31

3.4 CORBA

3.4.1 Overview of CORBA

The Common Object Request Broker Architecture (CORBA) is a vendor-independent speci-

fication [OMG01b] for an architecture and infrastructure to connect applications in a het-

erogeneous network environment. These applications can be written in different program-

ming languages and run on different operating systems. CORBA, which is standardized by

the Object Management Group (OMG), automates common network programming tasks

such as object registration, location, and activation, error-handling, and parameter marshal-

ling and demarshalling.

3.4.1.1 OMA

CORBA applications are composed of objects. The Object Management Architecture

(OMA) classifies objects into four categories: the CORBA services, CORBA facilities,

CORBA domain objects, and application objects. [OMG01c]

CORBA Services

A CORBA service provides fundamental, domain-independent functionality to build dis-

tributed object applications. Examples are naming, event, lifecycle, transaction, or security

services.

CORBA Facilities

CORBA facilities are useful across business domains but are not as fundamental as

CORBA services. CORBA facilities, which are also called horizontal facilities, include the

Printing facility, the Secure Time facility, the Internationalization facility, and the Mobile

Agent facility. [OMG01c]

CORBA Domain Objects

CORBA domain objects are services for specific application domains such as finance,

healthcare, manufacturing, telecommunication, e-commerce, or transportation.

Application Objects

Application objects are typically customized for an individual application. This category

identifies objects that are not affected by OMG standardization efforts. [OMG01c]

 32

3.4.1.2 OMG IDL

Object implementations specify their interfaces in the OMG Interface Definition Language

(OMG IDL). IDL is programming language independent. OMG has standardized mappings

for C, C++, Java, COBOL, Smalltalk, and Ada. IDL is used to generate client stubs and

object implementation skeletons. Stubs and skeletons serve as proxies. A client can access

an object only through its interface. The implementation of an object is hidden from the rest

of the system. Interfaces are stored in an interface repository service. The ORB may use the

interface repository information to perform requests. Moreover, the interface repository is

used to store additional information associated with interfaces, such as debugging informa-

tion.

3.4.1.3 ORB

The Object Request Broker (ORB) is the communication backbone of a CORBA system. It

provides middleware services, which allow clients to perform operations on objects. Ob-

jects register at the ORB to provide their services. The ORB is responsible to find an object

implementation, to prepare it to receive a request, and to manage necessary control and data

transfers. The interface a client sees is independent of the object location, the programming

language that was used to implement the object, and the operating system of the server.

A client can use an OMG IDL stub or a Dynamic Invocation Interface (DII) to make a re-

quest. The DII is used to construct requests on interfaces that were not known at compile

time. The ORB calls an object implementation either through an OMG IDL generated

skeleton or through a Dynamic Skeleton Interface (DSI). The DSI is the server-side ana-

logue of the DII. It handles method calls for objects that do not have compiled IDL skele-

tons.

An object implementation uses an object adapter to access services provided by the ORB.

Such services include the generation and interpretation of object references, security of in-

teractions, mapping of object references to implementations, or registration of implementa-

tions. An ORB may have multiple object adapters to target particular groups of object im-

plementations that have similar requirements. Each ORB must support the standard Basic

Object Adapter (BOA).

The ORB needs information to locate and activate object implementations. Such informa-

tion is stored in the Implementation Repository. It is also used for further information con-

cerning administrative control, resource allocation, and security. Figure 3.4-1 on page 33

gives an overview of an ORB. [OMG01c]

 33

Figure 3.4-1 Structure of an Object Request Broker [OMG01b]

3.4.1.4 GIOP and IIOP

The General Inter-ORB Protocol (GIOP) specifies standards for communication between

ORBs. It defines transfer syntax and message formats. It is designed to work over any con-

nection-oriented transfer protocol. The Internet Inter-ORB Protocol (IIOP) specifies how

GIOP messages are exchanged using TCP/IP.

ORB

Dynamic
Invocation
Interface

(DII)

IDL
Stubs

ORB
Interface

Static
IDL

Skeleton

Dynamic
Skeleton
Interface

(DSI)

Object
Adapter

Client Object Implementation

 34

3.4.2 Security in CORBA

3.4.2.1 Overview of the CORBA Security Service

The CORBA Security Service, which is also called CORBAsec, specifies security architec-

ture and interfaces for a CORBA environment. CORBA security is structured into several

feature packages. There are two security functionality packages which enforce security on

two levels. Level 1 provides security for applications which are unaware of security or

which have only limited security requirements. Security aware applications use security

facilities provided with the level 2 security functionality package. [OMG01a]

One of the major design principles is the Common Secure Interoperability (CSI) between

ORB products and Security Services on the one hand, and different Security Services on

the other hand. Interoperability between different Security Services is standardized with the

Secure Common Inter-ORB Protocol (SECIOP). [AlLa00]

Security Reference Model

The security reference model provides the framework for CORBA security. It describes

“how and where a secure system enforces security policies” [OMG01a]. It is a “meta-policy

because it is intended to encompass all possible security policies supported by the OMA”

[OMG01a]. In the following sections, I describe the security mechanisms of the CORBA

security reference model.

3.4.2.2 Identification and Authentication

“A principal is a human user or system entity that is registered in and is authentic to the

system” [OMG01a]. Principals that initiate activities are called initiating principals. Each

principal is associated with several security attributes, such as an identity attribute or

privilege attributes, which are used to control access rights of a principal. Privilege attrib-

utes may have duration limits and controls on where and when they can be used. The secu-

rity attribute Public is available to any principal without authentication. Security attributes

of a principal are collected in its credential as depicted in Figure 3.4-2 on page 35. A

credential object is created by a principal authenticator object, which can be called, for

example, by a user login application. [OMG01a]

 35

 Figure 3.4-2 A credential containing security attributes [OMG01a]

3.4.2.3 Security Domains

A security domain is a distinct scope with common rules and characteristics. There are

three types of security domains [OMG01a]:

Security Policy Domains

All objects in a security policy domain share a common security policy. A security policy

concerns access control, authentication, secure object invocation, delegation and account-

ability. There is a system security policy, which is enforced automatically by the ORB and

the Security Services, whereas application objects with special security requirements can

enforce their own application security policy.

A policy domain manager provides means to add and remove members for each security

policy domain. It is also possible to delegate security policies to subdomains thereby form-

ing policy domain hierarchies, which can reflect organizational subdivisions and separate

administrators’ duties. Security policy domains may also be federated.

Security Environment Domains

A security environment domain specifies the scope over which the enforcement of security

policies is achieved by means local to the environment. All objects running on the same

machine, for example, may trust each other and are therefore in the same security environ-

ment domain. The Security Service specification considers two types of environment do-

mains: Objects in the same message protection domain do not need to perform integrity or

confidentiality checks. Objects in the same identity domain share the same identity and thus

do not need authentication when invoking each other.

Security Technology Domains

In a specific security technology domain, security demands are enforced with the same se-

curity technology. All objects in the same security technology domain use, for example, the

same authentication services or the same access control mechanisms.

Credential

(Authenticated Attributes)

Identity
Attributes

Privilege
Attributes

(Unauthenticated Attributes)

Public

 36

3.4.2.4 Authorization

Security Service authorization is based on access decision functions. An access decision

function uses the initiator’s privilege attributes and the target control attributes to enforce

access control. Privilege attributes contain, among other things, the principal’s access iden-

tity and its capabilities. Target control attributes, which may be ACLs, can be shared by

categories of objects to avoid overhead on the administration.

The Security Service access control model consists of two layers:

The object invocation access policy is enforced automatically for all applications by the

ORB and the Security Services on object invocation. A client side access decision function

controls whether a client can invoke an operation on a target object. A target side access

decision function defines the conditions that allow a target object to accept an invocation.

The application access policy is enforced by an application itself to extend the object invo-

cation access policy. With its own access decision functions, an application can thus per-

form more fine-grained access control based on parameter values, or the data being ac-

cessed. Figure 3.4-3 shows the Security Service access control model.

Figure 3.4-3 The Security Service access control model [OMG01a]

3.4.2.5 Secure Communication

When a client requests an operation, the ORB establishes a secure association, which is not

perceptible to the client and target object. A secure association enforces identification and

authentication of the participants. It also negotiates the minimum security level that is ac-

ceptable to both parties. The mechanisms used to establish the secure association depend on

the individual security policies and the security mechanisms available between the

Client Target Object

Client Application Access
Policy

Target Side Object
Invocation Access Policy

Client Side Object
Invocation Access Policy

Target Application Access
Policy

ORB

requestrequest

 37

participants. Security technology, such as secret or public key cryptography, must be imple-

mented by services outside the actual CORBA Security Service implementation. The Secu-

rity Service specification provides only interfaces for setting secure association policies.

[Chiz98]

3.4.2.6 Delegation

A client can delegate some or all of its privilege attributes to another object. The adminis-

trator specifies the default delegation, which is automatically performed by the ORB for

applications unaware of security.

The Security Service specification [OMG01a] defines the following terms in the context of

delegation:

• Initiator: The first client in a call chain.

• Final target: The final recipient in a call chain.

• Intermediate: An object in a call chain that is neither the initiator nor the final tar-

get.

When a client calls an object, the object can make calls to other objects, which results in a

chain of calls as shown in Figure 3.4-4.

Figure 3.4-4 Chain of Calls [OMG01a]

The Security Service specification describes facilities to restrict delegation. Clients can

control which of their privileges are delegated and where individual privileges can be used.

The latter is also referred to as target restriction. A client can also specify how long or how

many invocations a delegation is valid.

Client

Client

Target

Final
Target

Client

Target

Client

Target

Final
Target

 (Initiator) (Intermediate)

(Intermediate)

(Intermediate)

 38

The Security Service specification describes the following delegation scenarios [OMG01a]:

Scenario 1 – No Delegation:

The client permits the intermediate to use its credentials only for access control decisions

but does not permit them to be delegated.

Figure 3.4-5 No Delegation

Scenario 2 – Simple Delegation:

The client permits the intermediate to use and to delegate its credentials. The target is not

aware of the intermediate object. When the client does not impose target restrictions, simple

delegation is equivalent to impersonation.

Figure 3.4-6 Simple Delegation

Scenario 3 – Composite Delegation:

The client permits the intermediate to use and to delegate its credentials. The intermediate

passes both credentials separately to the target.

Figure 3.4-7 Composite Delegation

Scenario 4 – Combined Privileges Delegation:

The client permits the intermediate to use and to delegate its credentials. The intermediate

combines the client’s and its own privileges into a new credential. The target cannot dis-

tinguish which privileges come from which principal.

Figure 3.4-8 Combined Privileges Delegation

Client
Target
Object

Intermediate
Object

Client Credentials Intermediate
Credentials

Client
Target
Object

Intermediate
Object

Client Credentials Client Credentials

Client
Target
Object

Intermediate
Object

Client Credentials
Client and

Intermediate
Credentials

Client
Target
Object

Intermediate
Object

Client Credentials
Client and

Intermediate’s
Privileges in a

single Credential

 39

Scenario 5 – Traced Delegation:
The client permits the intermediate to use and to delegate its credentials. Each intermediate
object adds its credential to form a chain of credentials.

Figure 3.4-9 Traced Delegation

3.4.2.7 Security Auditing

Security auditing is used to record security relevant events in a CORBA system. It is used
to detect actual or attempted security violations. Events that should be audited are specified
with audit policies. The Security Service specification distinguishes two types: system audit
policies and application audit policies. System audit policies are enforced automatically for
all applications and record system events, such as authentication of principals, success or
failure of object invocation, or administration of security policies. With application audit
policies, applications can specify the application events, that should be audited. Application
events depend on the specific application. [OMG01a]

3.4.2.8 Non-repudiation

The CORBA Security Service specification defines a non-repudiation (NR) service, which
provides facilities to generate and verify irrefutable evidence about a claimed event or ac-
tion. NR services are under the control of the applications, rather than being automatically
enforced by the ORB.
The CORBA Security NR service is based on the International Standards Organization
(ISO) non-repudiation model but provides only Evidence Generation and Verification. The
ISO NR model additionally provides Evidence Storage and Retrieval, and a Delivery Au-
thority. [Chiz98, OMG01a]

3.4.2.9 Summary

The CORBA Security Service specification tries to encompass all possible security re-
quirements. The main goal is to provide a consistent security system that scales from small
to large networks, is available as transparently as possible, independent from the underlying
security technology, and interoperable between different implementations with and without
security. Security domains allow to group objects under a common security policy. Client
machine protection is not an issue of CORBA, as CORBA supports many programming
languages. For example, a CORBA client may be programmed in Java and restricted by the
Java 2 Security Model.

Client
Target
Object

Intermediate Objects

Client
Credentials

Chain of
Credentials

 40

4 Comparison

In this chapter, I compare the security models of EJB, COM, and CORBA. I do not include
Jini into this comparison, because it provides no security additional to the Java 2 Security
Model.

Security Awareness
EJB: Enterprise beans should be developed without security awareness. Security settings
for EJB applications are specified declaratively in the Deployment Descriptor and enforced
by the EJB Container and the EJB Server.
COM: Declarative security settings are specified in the system registry for security unaware
components. COM additionally provides several functions and interfaces to enforce secu-
rity programmatically. Some requirements can be met only with programmatic security.
CORBA: Security for unaware applications is managed automatically by the ORB and the
Security Service. The Security Service specification also describes interfaces for security
aware applications.

Secure Communication
EJB: Communication security is EJB container-specific and set by the Deployer.
COM: Integrity and encryption of messages are set declaratively or programmatically with
the Authentication Level flags.
CORBA: ORB and Security Service can establish transparent secure associations between
communicating parties according to their individual security policies. The Security Service
does not implement cryptographic algorithms.

Identification and Authentication
EJB: Identification and authentication is also EJB container-specific and not addressed by
the EJB specification.
COM: Microsoft defines the Security Support Provider Interface (SSPI) to identify and
authenticate security principals. COM also defines Authentication Level flags to specify
authentication requirements.
CORBA: In a CORBA system, users are authenticated with a Principal Authenticator,
which generates credentials containing security attributes.

Authorization
EJB: The EJB specification defines how security roles and method permissions are set in
the Deployment Descriptor. Although not recommended by the EJB specification, authori-
zation can also be enforced programmatically.

 41

COM: COM distinguishes between launch security and access security. Declarative launch
and access security can be enforced only on component level. More fine-grained access
control is possible programmatically with functions and interfaces from the COM library.
COM+ allows fine-grained declarative access control with security roles.

CORBA: Security Service authorization uses access decision functions on client and on
target side. Target side access decision functions make it possible to control from which
clients an object can accept calls. There is an object invocation access policy, which is en-
forced automatically, whereas the application access policy allows programmatic access
control.

Delegation
EJB: EJB supports only two delegation scenarios, which the Deployer specifies in the De-
ployment Descriptor: the propagation of the caller’s security identity and the propagation of
a specific run-as identity.
COM: Clients can set delegation restrictions with four Impersonation Level flags that range
from autonomous calls to full delegation.
CORBA: The CORBA Security Service allows clients to control carefully which of its
rights are delegated to which objects and how long the delegated rights are valid.

Client Machine Protection
EJB: EJB is based on the Java technology, which provides the Java 2 Security Model.
COM: Components execute under a specific user account associated with corresponding
permissions.
CORBA: Client machine protection is not an issue of CORBA Security, as CORBA is lan-
guage independent.

Security Auditing
EJB: The EJB specification does not define any interfaces or Deployment Descriptor en-
tries for security auditing. Security auditing may be optionally provided by the EJB con-
tainer.
COM: Security auditing is possible only with Win32 API functions, which ties a compo-
nent to the Windows NT platform.
CORBA: The Security Service specification distinguishes between system audit policies
and application audit policies.

Non-repudiation
EJB, COM: As far as I know, non-repudiation is not addressed by EJB and COM.
CORBA: Applications can use a non-repudiation service, which generates and verifies evi-
dence.

 42

5 Conclusion

In this work, I described security requirements and solutions in distributed component

models. Generally, there are the following security requirements for distributed applica-

tions: secure communication, identification and authentication, authorization, delegation,

client machine protection, security auditing, and non-repudiation.

The EJB specification defines how application programmers can specify authorization and

delegation requirements. It does not define how to specify secure communication, authenti-

cation, security auditing, and non-repudiation requirements for an EJB application. The

EJB container and the EJB server must provide most of the work to secure a distributed

application. Client machine protection is solved with the Java 2 Security Model.

Jini provides no security mechanisms additional to the Java 2 Security Model. Therefore, I

outlined security requirements and extensions for secure communication, authentication,

and authorization. Security extensions require major changes to the Jini architecture, which

reduce the spontaneity of a Jini network. I did not propose extensions for delegation, secu-

rity auditing, and non-repudiation.

COM provides only coarse-grained declarative security. Programmatic security is extensive

but ties a COM application to a specific operational environment. COM+ introduces further

security concepts and more fine-grained declarative means. Security auditing is based on

the Windows NT platform. COM does not provide a non-repudiation service.

The CORBA Security Service reference model describes a general security model on an

abstract level, which is interoperable between different ORP products and Security Ser-

vices. It comprises all security mechanisms that I examined in this work, except client ma-

chine protection. I did not examine CORBA Security Service implementations.

Not included in this work is administration of security information, such as the manage-

ment of user accounts and policy settings. This issue is also important, as security holes are

more likely to arise when the administration of security mechanisms is too complex and

time-consuming.

 43

6 References

[Alla00]
Allamaraju, Subrahmanyam; et al.: Professional Java Server Programming J2EE Edi-
tion. Wrox Press Ltd, Birmingham 2000

[AlLa00]
Alireza, A.; Lang, U.; Padelis, M.; Schreiner, R.; Schumacher, M.: The Challenges of
CORBA Security. http://www.cl.cam.ac.uk/~ul201/research.html, 2000

[Cetu01]
Cetus Links: Distributed Objects & Components: CORBA. http://www.cetus-
links.org/oo_corba.html, 2001

[Chiz98]
Chizmadia, David: A Quick Tour Of the CORBA Security Service. Information Security
Bulletin September 1998, http://omg.com/news/corbasec.htm

[DeYa00]
DeMichiel, Linda G.; Yalçinalp, Ümit L.; Krishnan, Sanjeev: Enterprise JavaBeans™
Specification, Version 2.0. Proposed Final Draft. Sun Microsystems, Inc., Palo Alto
2000

[Dule01]
Dulepet, Rajiv: COM Security in Practice.
http://msdn.microsoft.com/library/techart/msdn_practicom.htm, Microsoft Corporation,
Redmond 2001

[Eddo99]
Eddon, Guy: The COM+ Security Model Gets You out of the Security Programming
Business. Microsoft Systems Journal, November 1999, http://www.microsoft.com/msj/

[EdEd98]
Eddon, Guy; Eddon Henry: Inside Distributed COM. Microsoft Press, Redmond 1998

[Edwa99]
Edwards, W. Keith: Core Jini. Prentice Hall, New Jersey 1999

[ErNi01]
Eronen, Pasi; Nikander, Pekka: Decentralized Jini Security. In: Proceedings of the Net-
work and Distributed System Security Symposium (NDSS 2001), San Diego 2001, pages
161-172

[GoMu97]
Gong, Li; Mueller, Marianne; Prafullchandra, Hemma; Schemers, Roland: Going Be-
yond the Sandbox: An Overview of the New Security Architecture in the Java™ Devel-
opment Kit 1.2. In: Proceedings of the USENIX Symposium on Internet Technologies
and Systems, Monterey 1997

 44

[Gong98]
Gong, Li: Java™ 2 Platform Security Architecture. Sun Microsystems, Inc., Palo Alto
1998

[GrTh00]
Gruhn, Volker; Thiel, Andreas: Komponentenmodelle - DCOM, JavaBeans, Enterprise
JavaBeans, CORBA. Addison-Wesley, Reading 2000

[HaKe00]
Hasselmeyer, Peer; Kehr, Roger; Voß, Marco: Trade-offs in a Secure Jini Service Ar-
chitecture. Department of Computer Science, Darmstadt University of Technology
2000

[HoKi97]
Horstmann, Markus; Kirtland, Mary: DCOM Architecture.
http://msdn.microsoft.com/library/backgrnd/html/msdn_dcomarch.htm, Microsoft Cor-
poration, Redmond 1997

[Ipla98]
iPlanet™: Introduction to SSL.
http://docs.iplanet.com/docs/manuals/security/sslin/index.htm, 1998

[Kass00]
Kassem, Nicholas; the Enterprise Team: Designing Enterprise Applications with the
Java™ 2 Platform, Enterprise Edition, Version 1.0.1. Sun Microsystems, Inc., Palo
Alto 2000

[Kirt97]
Kirtland, Mary: Object-Oriented Software Development Made Simple with COM+
Runtime Services. Microsoft Systems Journal, November 1997,
http://www.microsoft.com/msj/

[KuRo00]
Kurose, James F.; Ross, Keith W.: Computer Networking A Top-Down Approach Fea-
turing the Internet. Addison-Wesley, Reading 2000

[Li01]
Li, Sing: Java security evolution, Part 2. http://www-
106.ibm.com/developerworks/java/library/j-secevol2/index.html, IBM 2001

[Msdn01]
 Msdn Online Library, Microsoft Corporation, Redmond 2001
http://msdn.microsoft.com/library/psdk/winbase/accctrl_0v5a.htm

[Msdn99]
Msdn Training: Mastering Distributed Application Design and Development Using Mi-
crosoft® Visual Studio 6. Microsoft Corporation, Redmond 1999

[OMG01a]
Object Management Group, Inc.: Security Service Specification. Version 1.7 March
2001, http://www.omg.org/technology/documents/formal/omg_security.htm

 45

[OMG01b]
Object Management Group, Inc.: The Common Object Request Broker: Architecture
and Specification. Version 2.4.2 February 2001,
http://www.omg.org/technology/documents/formal/corbaiiop.htm

[OMG01c]
Object Management Group, Inc.: Getting Started with OMG Specifications and Process.
http://www.omg.org/gettingstarted, 2001

[Sdk01]
Platform SDK Documentation, http://msdn.microsoft.com/library/, Microsoft Corpora-
tion, Redmond 2001

[Sun01]
Sun Microsystems, Inc.: Java™ 2 Platform, Standard Edition, v 1.3 API Specification.
http://java.sun.com/j2se/1.3/docs/, Palo Alto 2001

[Sun01a]
Sun Microsystems, Inc.: Enterprise JavaBeans™ technology.
http://java.sun.com/products/ejb/, Palo Alto 2001

[Sun01b]
Sun Microsystems, Inc: Enterprise JavaBeans™ Frequently Asked Questions.
http://java.sun.com/products/ejb/faq.html, Palo Alto 2001

[Sun99]
Sun Microsystems, Inc: Jini™ Architectural Overview. Palo Alto 1999

[Szyp98]
Szyperski, Clemens: Component Software - Beyond Object-Oriented Programming.
Addison-Wesley, Reading 1998

[Thom98]
Thomas, Anne: Enterprise JavaBeans™ Technology - Server Component Model for the
Java™ Platform. Patricia Seybold Group, Boston 1998

[Thom99]
Thomas, Anne: Java 2 Platform, Enterprise Edition – Ensuring Consistency, Portabil-
ity, and Interoperability. Patricia Seybold Group, Boston 1999

[WiKi94]
Williams, Sara; Kindel, Charlie: The Component Object Model: A Technical Overview.
http://msdn.microsoft.com/library/techart/msdn_comppr.htm, Microsoft Corporation,
Redmond 1994

