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Abstract

Embedded real time systems often need to be optimized for high availability and
deterministic runtime- and scheduling behavior. The OSEK-OS operating sys-
tem standard is quite fit for this purpose: by means of the priority ceiling proto-
col many actions and properties of the system are already known before runtime
allowing for a customized generation of the actual operating system code. For
testing of functional properties of an OSEK-OS-conform operating system it is
useful to test on a platform which has sophisticated debugging utilities available.
A Linux system is suitable as most Linux distributions already innately include
versatile debugging tools. This study thesis will evaluate the possibility of simu-
lation of an OSEK-OS-conform operating system and it’s mapping onto a UNIX-
process.

After a brief explanation of how a OSEK operating system works the devel-
oped code generator called josek will be introduced. The method of operation and
particularities josek will be discussed, paying special attention to the scheduler –
the integral component of any OSEK operating system. It will be explained how
a specially crafted stack is used in order to perform task switching and how this
stack can be protected with userland means provided to any Linux-process. Prob-
lem cases which will appear during development of such an operating system are
be illuminated and their solution is presented. This includes cases where special
compiler optimizations might cause dysfunction of the generated code. After the
study thesis has shown that and how it is possible to have functional components
of an OSEK operating system emulated by a UNIX-process, the study thesis will
be completed by a detailed performance review. Not only will the code generated
by different configurations of josek be compared against itself, but it will also
compare against Trampoline, another open source implementation of an OSEK
operating system.



Zusammenfassung

Eingebettete Echtzeitsysteme müssen per definitionem darauf optimiert werden,
eine hohe Verfügbarkeit zuzusichern und oft auch deterministisches Laufzeit- und
Schedulingverhalten zeigen. Hierfür ist der Betriebssystemstandard OSEK-OS
wie geschaffen: In OSEK-OS sind durch das Priority-Ceiling-Protokoll viele Ei-
genschaften und Vorgänge zur Zeit der Erzeugung des Betriebssystem bereits be-
kannt und können daher individuell optimiert generiert werden. Zum Testen funk-
tionaler Eigenschaften eines OSEK-OS-konformen Betriebssystems ist es für den
Entwickler von unschätzbarem Wert, das System auf einer mächtigeren Plattform
als dem Zielsystem auszuführen, um Debugging-Vorgänge effizient ausführen zu
können. Hierfür eignet sich ein Linux-System, da die allermeisten Distributionen
bereits vielfältige und hoch entwickelte Debugging-Werkzeuge mitbringen. Diese
Arbeit beschäftigt sich mit der Simulation eines OSEK-OS-konformen Betriebs-
system und dessen Abbildung auf einen UNIX-Prozess.

Nach einer grundlegenden Beschreibung, wie ein OSEK-konformes Betriebs-
system funktioniert wird detailliert der im Laufe der Arbeit entwickelte Code-
generator josek vorgestellt. Besondere Aufmerksamkeit gilt dem Scheduler und
Optimierungen an diesem, da er den integralen Bestandteil eines jeden OSEK-
Systems darstellt. Es wird erklärt, wie ein Stackaufbau und -schutz mit Mitteln,
die einem Linux-Prozess zur Verfügung stehen, realisieren kann. Probleme, die
es während der Entwicklung gibt, werden vorgestellt, diskutiert und eine Lösung
präsentiert. Hierzu zählen beispielsweise Compileroptimierungen, die die Funk-
tionsweise des erzeugten Codes beeinträchtigen können. Nachdem die Arbeit ge-
zeigt hat, dass und wie ein OSEK-OS auf einen UNIX-Prozess abgebildet werden
kann, wird die Arbeit durch Messungen abgerundet. Hierbei werden entstehende
Performancedifferenzen zwischen verschiedenen josek Betriebssystemen ebenso
erörtert wie ein Vergleich mit dem OpenSouce-Projekt Trampoline.
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Chapter 1

Introduction

Many embedded operating systems rely on a lower layer which handles the com-
munication with the underlying hardware. In the operating system layer terms
like "stack pointer" or "instruction pointer" are unknown – only the far higher
abstraction of tasks is relevant there. Tasks are basically functions which have
a certain priority assigned and which can be scheduled by the operating system.
The means of scheduling tasks is of course changing internal CPU-registers, but
this is completely hidden to the top layer.

1.1 Motivation
One of the many alternatives in choosing such a low, hardware-dependent layer
for an embedded operating system is OSEK. OSEK-OS has many advantages: it
is a fully static, real time capable operating system with a freely available specifi-
cation and also has been standardized by ISO 17356. Its small overhead in terms
of memory usage and code footprint make it predestined for use in highly em-
bedded systems. The actual problem is to find a free implementation of such an
OSEK conform operating system – which is exactly the point where this study
thesis comes into place. It shall provide the necessary academic background for
understanding the OSEK operating system and will implement the OSEK-OS sys-
tem API. Step by step the interesting points in development will be explained and
reasons of challenging design decisions will be balanced. The final goal is devel-
oping a portable, open-source OSEK operating system generator, which can be
used to interconnect an operating system like KESO with either the Linux API or
any other operating system that the OSEK implementation supports.
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1.2 Notation
• Monospaced font is used for the following purposes:

– Code snippets: "[...] achieved by the ret assembly command."
– Filenames: "This is described in the RULES file."
– Commands: "We will use sed for patching the code."
– OSEK system calls and OSEK hooks: "The ActivateTask system

call may invoke the ErrorHook."

• Parts which will be printed emphasized are:

– Names of software packages: "josek is written in Java."
– Operating system task states: "The task changed from the running-

state to ready."

• Citations are written with square braces: "Scheduling behavior is defined
in [OSE05]."

• References to a certain OSEK task or resource are printed in French quota-
tion marks: "Task »A« requires resource »X«."

• Technical terms are explained in the terminology section 1.3.

1.3 Terminology
• The time at which the actual OSEK operating system is being constituted

by generating C-code will be referred to as system generation time or short
generation time.

• The Intel x86 compatible machine will be called x86, or more specifically
x86-32 throughout this document (called IA-32 by Intel). The AMD64 ex-
tensions to the x86 which are called "Intel 64" by Intel (formerly known as
EM64T) will be referred to as x86-64. They are not to be confused with the
completely different IA-64 architecture.

• Switches which can be defined in josek during system generation time in
order to affect the generated code will be called generation defines or short
defines, if unambiguous.

• Although this study thesis refers to an OSEK/VDX compatible operating
system, it will be called OSEK for simplicity throughout this document.
This is common practice and also done by the OSEK Group itself.[OSE04]
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Chapter 2

OSEK

2.1 Description
The OSEK operating system specification describes an operating system interface
which was designed for use in the automotive area. As many different vehicle dis-
tributors including Daimler-Benz, BMW, Volkswagen and Siemens Automotive
called for one common, slim operating system interface, OSEK was developed to
fulfill these needs. An OSEK operating system is intended for use in highly em-
bedded systems – systems which typically provide only meager resources for the
developer. As the whole system is limited in terms of RAM availability and/or text
segment size, OSEK aims towards omitting unnecessary features which would be
bloating the code.

OSEK introduces four so-called conformity classes. These are four different
classes of operating systems (many of which are subsets of each other) specifying
the minimum requirements the system needs to provide so it can be called OSEK
compliant. They are provided for one sole purpose: optimization. For example,
if it is known that there won’t be any events in the system (or no extended tasks
to speak in OSEK-terms) there is no need to have a waiting-state for tasks. Also,
there is no need for memory allocation for event masks or delivered events, no
need for the code resembling the event API and so on.

These highly optimized OSEK systems can most easily be built when using a
code generator. Such a generator will be developed and explained in the course of
this paper.

2.2 Priority Ceiling Protocol
The priority ceiling protocol is the integral part of an OSEK operating system. It
is the method task priorities are changed during acquirement of resources so no
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deadlocking can occur. For this to be achieved the OSEK system generator has
to know in advance which task can occupy which resource or resources. This
mapping is one piece of information present in the OIL file. Each single resource
is then assigned a priority – its so-called ceiling priority. This is the same priority
as the top priority task which can occupy this resource. To make it clearer, a small
example:

A B C

Task Priority

Tasks

X Y Z

7 12 16

Used Resources

Figure 2.1: Tasks depending on resources

Figure 2.1 shows three tasks and three resources, arrows resembling the rela-
tionship "can occupy". Each task has its default priority, which also is defined in
the OIL file. The code generator analyzes this graph and determines the ceiling
priority of resources »X«, »Y« and »Z«. They are 16, 12 and 16 respectively.

When any of these tasks does acquire a declared resource, an atomic priority
change happens: should the priority of the resource be higher than the current
priority of the task, the task’s priority will temporarily be raised to the priority of
the resource.

This has one important implication which is essential to the functionality of
the priority ceiling protocol: the priority of the task is higher than usual during
the occupation of a resource. Therefore this task cannot be preempted by other
tasks which might require this resource. Hence a possible deadlock-situation is
avoided.

This is illustrated by figure 2.2. The task »A« is activated while the operating
system is in "Idle" state. It is immediately scheduled with its default priority (7)
as there are no other tasks in state "ready". It first acquires the resource »Y« and
afterwards »X« which raises the task’s current ceiling priority to 12 and 16, re-
spectively. Then the system is interrupted by an interrupt service routine, which
activates task »C«. Task »C« has default priority 16, but as currently task »A«
runs with this same priority also, »C« cannot preempt »A«. Only after »A« re-
leases resource »X« its ceiling priority is decreased back to 12. The scheduler
immediately switches to task »C«, as it now has top priority. After »C« is finished
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7

12

16

Time
Idle

ISR

A

C

A

A A

S

ISR

C

A

A
C AActivate/

Terminate

Acquire/

Release Y X X Y

Figure 2.2: Acquirement of Resources using the Priority Ceiling Protocol

through the TerminateTask system call, »A« is scheduled again which releases
its remaining resource »Y« and also terminates.

The priority ceiling protocol correlates with an OSEK operating system in two
dimensions. On the one hand, special optimizations are possible when it is known
in advance the priority ceiling protocol is in use – it will, for example, never occur
that a task is preempted by another task of same priority. On the other hand the
priority ceiling protocol can only be used when certain things like the priority of
each single task is already known in advance (i.e. at system generation time). It is
helpful to keep these two causal connections in mind during the development of
an OSEK operating system.

2.3 Related Projects

2.3.1 openOSEK
openOSEK is one of the first projects which can be found when searching the
Internet for a free OSEK implementation. It aims towards a slim implementa-
tion of a real-time-capable operating system for automotive applications.[ope07]
The project seems to have one major problem, though: obviously, a top-down ap-
proach to the problem of creating an OSEK compliant operating system was used.
This means that coding standards and preparations for OSEK-OS, OSEK-CAN,
Time-Triggered-OSEK, OSEK-COM and OSEK-NM have already been taken.
However, most of the code consists of stubs, no stable release has been made up
to today. The SVN repository reveals that important components of openOSEK
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have not been touched in a period of half a year, although obviously dysfunctional.
The project has been bogged down in details: the developers provide commercial
support, project donations, a Wiki, mailing lists, project forums, IRC channels
and blogs – but no usable code.

2.3.2 Trampoline
The Trampoline project makes a solid impression upon its reviewer. It has the
advantage of caring developers, a cleanly designed concept and frequent updates.
Trampoline is split up into three major parts:

• goil, the OIL parser. It takes an OIL file as input and outputs a C-file and
two header-files which resemble the configuration of the OSEK system. The
goil parser also needs information about the destination platform. Currently
the Infineon C167, PowerPC and Linux (through use of the libpcl1) are
supported.[BBFT06]

• viper, the Virtual Processor Emulator. On a UNIX system it is implemented
as an own process for target abstraction purposes. viper takes care of timers,
interrupts and alarms. It communicates with the actual OSEK process via
shared memory and asynchronous POSIX signals.

• Trampoline provides the OSEK-Kernel. The Trampoline code is not being
generated (in contrast to josek), still it uses code-specific optimizations. For
this purpose many preprocessor-statement are used.

The intermediate viper layer is introduced as it realatively hard to keep the
actual OSEK operating system code portable among different architectures. Code
which interferes with the processor (like controlling the sleep states), switches
context or programms the interrupt controller is highly hardware dependent. There-
fore these pieces of code are replaced by viper code when compiled for UNIX
emulation mode. This viper code is then interpreted by the viper daemon and
appropriate results are performed. The tasks code can therefore be interchanged
between different architectures without any adaptions.

The minor disadvantages of Trampoline are its rather large memory foot-
print (e.g. any alarm needs 17 bytes, any counter needs 14 bytes on a 32-bit
PPC [BBFT06]), the code readability and system speed. Because of many preprocessor-
statements in kernel-code the reader of the code gets easily distracted from the in-
tegral parts. The system is relatively slow as it uses the viper hardware abstraction
layer.

1Portable Coroutine Library
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Chapter 3

josek

All the required considerations mentioned in 1.1 taken into account it is evident
that one solution to the problem of creating a highly optimized OSEK operating
system is writing an OSEK/VDX code generator. Thus, josek (short for "Java
OSEK", pronounced /'dZoU-sEk/) was developed. Its characteristics will be illus-
trated in the next few sections.

3.1 Overview
josek is a Java application which basically does only two things: parse an OIL1

file, which serves as input and then generate ANSI-C-code (with minor parts of
assembly) which resembles the actual operating system. The resulting C-Code
can then be compiled with, for example, the gcc compiler and then be linked
against the actual application. Generating the code via a separate program has
many advantages compared to a static solution:

• The code can be highly optimized to the actual problem. It is, for exam-
ple, possible to have systems which work completely without using timers
or alarms. Not only will in these special cases the text-segment become
smaller (as the dead code is removed by the generating engine), but the
variables which would be held in RAM can also be discarded, hence saving
valuable resources.

• Carefully generated code is much more readable than code which has been
statically written and which relies on many #ifdef preprocessor statements.
These are easily processed by any preprocessor, but for humans they are,
especially when nested, hard to understand.

1OSEK Interface Language
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• Special features which have to be implemented in many parts of the result-
ing operating system (like a debugging feature or memory protection facil-
ities for example) can easily be implemented when using a code generator.
The resulting code is left completely unaffected when these features are de-
activated. This kind of aspect-oriented approach makes the generating code
(i.e. the josek source itself) more readable as coherent parts are combined
in one single location.

3.2 Modular Concept
josek uses a modular concept to generate OSEK code. There are two ways of
enhancing the features josek provides:

1. Placing code into the arch/ directory and adding references to these added
code files in the global RULES file. The RULES file will be parsed during gen-
eration time and the referenced code will be added at the appropriate loca-
tions. Parsing of code in the RULES file allows only for minor and relatively
static adaptions or conditions (like the definition of a certain preprocessor
symbol).

2. Adding a code hook: Code hooks are classes which are derived from in-
terface CodeHook. They provide much more comfortable means of altering
the generating code as all internal data structures at the time of generation
are known to the hook and every imaginable Java construct can be used to
influence the result.

3.3 Scheduler
The essential and integral part of an OSEK operating system is the scheduler.
Therefore careful attention has to be drawn to implement the scheduler not only
correctly, but also efficiently. As OSEK uses task priorities and the Priority Ceil-
ing Protocol (explained in section 2.2 and also at [OSE05], chapter 8.5) to avoid
priority inversion there also exist more than one scheduling queue with different
priorities.

3.3.1 Work Principle
What the priority ceiling scheduler essentialy does after its invokation is:

• Determine if there are tasks in the ready-state (include one task which might
currently be in the running-state).
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• If there are, determine the most important of these tasks according to their
priority.

• Schedule or dispatch the task with highest priority. Change the context from
the currently running task to the new task, if applicable.

Special requirements that are necessary in an OSEK compliant operating sys-
tem are:

• Honor the priority ceiling protocol. This includes calculation of resource
priorities (which can be done in advance, i.e. at system generation time)
and change of task priorities according to the resources held by that task.

• Handle multiple activation of tasks correctly. Should a task be activated
more than once, it will also be run more than once (according to the required
OSEK conformity class). The order in which tasks are run has to be the
same as the order of activation. Imagine a system which consists of two
tasks »A« and »B« of same priority. If the activation order is »A«, »B«,
»A« then the tasks have to be executed in exactly that order. Rearrangement
is, according to the OSEK specification, illegal.[OSE05]

To fulfill these needs, tasks are usually stored in a so-called scheduling queue.
There are multiple queues, one for each priority present in the system. Only tasks
in the ready-, running- or waiting state are enqueued, suspended tasks are not. In
an operating system with no currently running tasks, all queues are empty:

Queue 0

Queue 1

Queue 2

Figure 3.1: Scheduling Queue when Empty

When in this state a task is activated, it is inserted in the queue according to
the task’s default priority (figure 3.2.

Activation order is preserved because when other tasks are activated, they are
inserted in the back of the priority queue as shown in figure 3.3.

Should a task then gain prirority by the acquirement of resources, it will ad-
ditionally be inserted in the queue according to ceiling priority. In figure 3.4 task
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Queue 0

Queue 1

Queue 2

A

Figure 3.2: Single Task Enqueued with Priority 0

Queue 0

Queue 1

Queue 2

A AB B

Figure 3.3: Multiple Activation

»A« acquires two resources and therefore first gains priority level 1 and after-
wards priority 2. Tasks which gain priority due to resource acquiration are always
entered in front of the queue. Conseuqently, when the held resources are released,
the queue entry at the front of the queue is removed.

Queue 0

Queue 1

Queue 2

A AB B

A

A

Figure 3.4: Priority Ceiling Protocol in Effect

In figure 3.5 can be seen what happens when a task of high priority is activated
(task »C«) while another task is on its ceiling priority (task »A«): the recently ac-
tivated task is inserted in the back of the queue and will not be scheduled until task
»A« releases its resource. Through the release, the priority of »A« would decrease
to 1 resulting in »C« with its default priority of 2 being the most important task in
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the system. It would therefore preempt »A«.

Queue 0

Queue 1

Queue 2

A AB B

A

A C

Figure 3.5: Activation after Priority Gain

More graphically speaking the currently running task can be determined by
traversing the queues from top to bottom and in each queue from left to right. The
running task is the first task encountered not in the waiting state.

3.3.2 Optimization of the Queue Length
An important optimization is to predict the exact maximum length of each of these
queues. It is determined by two factors:

1. The number of multiple activations of a task in its base queue (the queue
with the task’s default priority)

2. The number of different resources the tasks can acquire to gain a higher
priority

As the number of multiple activations are limited due to the OSEK confor-
mance classes and the resources which any given task uses are known at the time
of code-generation, an exactly fitting queue length can be constructed.

Consider the following example with tasks »A«, »B« and »C« and resources
»X«, »Y« and »Z«:

The scheduler has its maximal load when all schedulable tasks have been acti-
vated the number of times permitted by the used conformance class of the OSEK
operating system. Additionally all priority gains which are possible by the ac-
quirement of all resources have to be calculated in this worst-case scenario.

However, it becomes soon evident that there are numerous optimizations with
this kind of scheme. The first, obvious optimizations is possible because resources
which would lead to a priority gain of tasks can only be occupied once:

Furthermore when it is the case that there is only one task per priority level, the
correct but circuitous implementation of the scheduler can be deskilled. Multiple
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A B C

0 1 2 Default Priority

Tasks

UsesXY YZ XZ

Queue 0

Queue 1

Queue 2

A A A A

B B B B

C C C C

X Y Z

Ceiling Priority

Resources

2 1 2

A
Y

A
X

B
Y

B
X

C
X

C
Z

Figure 3.6: Simple task/resource example

Queue 0

Queue 1

Queue 2

A A A A

B B B B

C C C C

A
Y

A
X

C
Z

Figure 3.7: Resources occupied only once
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activation of different tasks is not possible in this scenario – the tasks need not to
be explicitly scheduled by putting an entry into the scheduling queue, but instead
an activation counter can be used:

Queue 0

Queue 1

Queue 2

A

B

C

A
Y

A
X

C
Z

4

4

4

Figure 3.8: Resources occupied only once

Through these optimizations the scheduling queue size can be reduced drasti-
cally – in this small example from 18 entries of a naive implementation to a total
of 6 entries.

Now that we know in advance how much memory the entries need to consume
in the worst case it has to be determined how to store these entries: as a linked list
or an array. Any naive implementation would probably immediately choose the
linked list as a solution, as the linked list is the standard implementation of queues
in which many queue/dequeue operations may occur. However there is a memory
space penalty associated with this approach: taking a look at, for example, the
AVR architecture it is clear that pointers are quite memory consuming – they’re
"expensive". Any pointer on an AVR consumes two bytes of RAM – one for each
entry in the list. Considering the minimal size of 6 entries in the previous example
still 12 bytes of memory would be wasted as data storage overhead. This is no
acceptable implementation for an operating system which has highly embedded
systems as its primary target platform.

There is a possibility of reducing the problem of memory consumption. Con-
sider the following data structure:

1 struct bbqueue {
2 unsigned char write , size;
3 TaskType tids[QUEUE_LENGTH];
4 };

In this data type resembling a queue are no pointers used. Instead there is an
index write denoting the next element in the tids array which can be written to.
Additionally there is a counter size which yields the number of elements currently
stored in this queue. Using this type of bounded buffer ensures that the overhead
stays small (two bytes in total), yet it has little cost of inserting elements at the
queue’s ends:
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1 void insert_front(struct bbqueue &q, TaskType new) {
2 q->tids[(q->write - q->size - 1 + QUEUE_SIZE)
3 % QUEUE_SIZE] = new;
4 (q->size)++;
5 }

7 void insert_back(struct bbqueue &q, TaskType new) {
8 q->tids[(q->write)++] = new;
9 (q->size)++;

10 }

Removing elements from the queue’s back performs even better:

1 void remove_front(struct bbqueue &q) {
2 (q->size)--;
3 }

5 void remove_back(struct bbqueue &q) {
6 (q->write)--;
7 (q->size)--;
8 }

The only operation which would be quite costly is inserting or removing el-
ements from the middle of the queue. This will, however, because of the nature
of the scheduling queues in an OSEK conforming operating system, never hap-
pen. The data structure is therefore very well suited for use as a OSEK scheduler
queue.

3.3.3 O(1) Scheduler
The currently presented and optimized scheduler has a performance of O(n) with
n being the number of scheduling queues. This can be further reduced on some
machines to have a constant cost of O(1). As it is somewhat machine specific (al-
though many architectures provide the necessary armamentarium) this optimiza-
tion has not made it into the final josek code. However as it would be a nice
improvement it will be quickly discussed.

The following loop, which triggers the O(n) cost, is embedded in the generated
code:

1 for (priority = NUMBER_PRIORITIES - 1; priority >= 0;
priority --) {

2 /* Check if queue is nonempty */
3 [...]
4 }
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This can be simplified in the following way: for each enqueuing process, do a
bitwise OR with a global variable and the bitvalue of the queue number. After each
dequeuing which clears the queue, do a bitwise AND with the same global variable
and the complement of the bitvalue of the queue number. To make it clearer:

1 /* Enqueue*/
2 active_queues |= (1 << queue_nr);

4 /* Dequeue */
5 if (!queuesize[queue_nr]) active_queues &= ~(1 <<

queue_nr);

When this is done, the queue selection algorithm can be replaced by a variant
showing far greater performance:

1 if (!queue_nr) return; /* All queues empty */
2 asm("bsr %1, %0\n" : "=r"(priority) : "r"(queue_nr));

4 /* Highest priority queue is now held by "priority" */
5 [...]

So by using the special bsr (Bit Search Reverse) operation [Int07a] the perfor-
mance while searching all queues can be significantly reduced. When the number
of available priority queues exceeds 32 (or 64 on x86-64, respectively) however,
an additional check is necessary and could be implemented like:

1 highqueue = 3;
2 for (i = 2; i >= 0; i--) {
3 if (queue_nr[i]) highqueue = i;
4 break;
5 }
6 if (highqueue == 3) return; /* All queues empty */
7 asm("bsr %1, %0\n" : "=r"(priority) : "r"(queue_nr[

highqueue]));

The presented code would allow for up to 96 different priority levels. Although
it contains a tiny loop (which will get inlined by any good compiler) it still is a
great win over the naive solution.

3.4 Alarms and Counters
The lowest conformance class that OSEK requires states that any OSEK operating
systems needs to provide at least one alarm. Alarms are based on counters. The
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implementation of these counters is very platform-specific. More concretely, a
Linux process has only one possibility of mapping counters to operating system
calls: the SIGALRM signal delivered by the kernel after a alarm() or setitimer()
system call. Any quick look into the man page will make the reader realize that
alarm() disqualifies for the purpose of serving counter ticks as it’s granularity is
much too coarse: one second. Therefore only setitimer() can be used.

The man page of the setitimer() system call explains that any Linux process
is provided three Timers which vary in their functionality: one counts real time
(ITIMER_REAL), another counts virtual time (time on which the process is sched-
uled in user space, ITIMER_VIRTUAL) and a last one which counts the time in which
the process is scheduled plus the time in which the operating system performs sys-
tem calls for that process (ITIMER_PROF).

This again means that there is only one useful timer available: ITIMER_REAL.
Therefore for any OSEK task which needs more than one alarm, a mapping of
many internal alarms to this system alarm has to be performed. It is realized by
the josek counters.

Counters are handled in a very simple way: they’re represented by a global
variable counting every tick. The tick interval is known at system generation time
and is specified in the OIL file. During generation of the OSEK operating system,
the greatest common denominator over all counter intervals is calculated. This
will later on during runtime pose the interval for the setitimer() system call – we
will refer to is as tmin. Each counter also has a property called CntrTickMaxValue

which essentially is tcounter
tmin

. This value will not change during runtime and can
therefore be stored either in RAM or in the text-segment. Refer to section 4.1 for
further reference on how this is done.

During the execution of the setitimer() handler, a tick count is increased for
every counter available in the system. When the tick count reaches the CntrTickMaxValue,
a "real" counter tick is triggered. This will cause the CntrCurrentValue variable
to be increased, which wraps if it reaches CntrMaxValue – a variable also spec-
ified during generation time. Should the CntrCurrentValue wrap it will trigger
possible alarms dependent on it.

When an alarm is finally triggered, it does what it is supposed to to – one of
three possible actions:

• Callback function: Probably the most common action after an alarm was
triggered is calling a callback function. This function has to be defined in
the operating system using the ALARMCALLBACK keyword.

• Setting an event: The alarm can set an event for a certain task. For this, the
alarm simply calls SetEvent.

• Activating a task: If requested, the alarm will use the system call ActivateTask
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in order to activate a certain task.

3.5 Event Handling
In order to be able to deliver and receive events the taskdesc structure of any
generated josek operating system can be extended by two values: the event mask
and wait values. josek automatically decides whether these values are needed and
how large they need to be according to how many events are used in the system –
if they are used at all.

Handling of events then is straightforward. A task clearing its event mask
through the ClearEvent system call will directly write to the mask value:

1 StatusType ClearEvent(EventMaskType m) {
2 taskdesc[current_task].mask &= ~m;
3 }

When a task delivers an event, an analogous piece of code is executed, except
that the bitwise OR is being used with the mask and a rescheduling point is intro-
duced should the destination task have been woken up through delivery of this
event.

Should a task want to wait for an event through usage of the WaitEvent system
call, the wait value is set and the state is set to waiting if this event has not yet
been delivered, i.e. if

1 taskdesc[current_task].wait & taskdesc[current_task].
mask

yields the value 0. If the task’s state is changed to the waiting-state again a
rescheduling point is activated afterwards. The scheduler will then switch to a
ready task (or idle, if none is available).

3.6 Interrupt Mapping
When mapping hardware IRQs onto a UNIX compatible system there is basically
only one choice for asynchronous, userland process interruptions: POSIX signals.

This is what josek does: Simulating interrupts by a signal handler for SIGUSR1
and SIGUSR2. As the introduction of asynchronous program interruptions always
brings along concurrency close attention has to be paid that all data structures
are locked before the ISR-code is invoked. As the OSEK specification does not
permit many system calls to be invoked from within an ISR this is no big problem.
In particular the following system calls have to be interlocked against an ISR
interruption:
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• SetEvent and ClearEvent have to be locked, as atomic access to the
taskdesc[n].mask and taskdesc[n].wait variables has to be guaranteed.

• Schedule has to lock its access to the task queue as execution of the ActivateTask
system call from within the ISR could corrupt this data structure.

Apart from these difficulties, the signal handler code simply executes the ap-
propriate ISR handler upon decision on which signal was received.

3.7 Rescheduling Points
When designing an OSEK-OS compliant operating system it is important to in-
vestigate exactly at which points in time rescheduling is necessary – and why:

• Schedule: A manual rescheduling point obviously occurs when the Schedule
system call is invoked.

• ActivateTask: When a new task has a transition to the ready-state, the
OSEK operating system may determine that it is more important than the
currently running task. The context will have to be changed to the recently
activated task.

• SetEvent: Upon setting an event a currently blocked task might change
from the waiting-state to ready. If this task is of higher priority than the
currently running task, once again the context will change.

• WaitEvent: Analogously to SetEvent a task may go into the waiting-state
after executing the WaitEvent system call. It won’t, of course, if the event
mask has already been set. But when it does, another task will have to be
scheduled.

• ReleaseResource: When releasing a resource the currently running task
might lose of priority as the resource’s ceiling priority might be higher than
the priority of the task prior to its acquirement. It may then happen that a
switch occurs to another task.

• TerminateTask: After the currently running task has changed to the sus-
pended-state the operating system must determine which task to schedule
next.

• ChainTask: When the current task is exiting and a switch to another task
is requested, the scheduler is invoked. However, ChainTask requires no
ordinary rescheduling point. In fact, the OSEK-OS specification states that
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a call of ChainTask will have immediate effect on the state of the requested
task instead of resulting in multiple requests. Consider a currently running
task »A« has performed an ActivateTask call on a task »B« having the
same priority. Afterwards it calls ChainTask(A). The next running task
will be »A«, not »B«.

• Initialization: After the system initialization and entering of the idle-loop
the scheduler needs to be invoked to bootstrap the whole system.

3.8 Hooks
The OSEK/VDX operating system specification provides a convenient means for
the application developer to integrate preparation or clean-up-tasks into the envi-
ronment: operating system hooks. These hooks are basically functions which are
executed at special times. They are valid system wide and the times they "fire"
can be one or more of the following:

• ErrorHook: Fires after a system call was completed unsuccessfully, but
before the switch back to the task level.

• PreTaskHook: Fires before a task is scheduled but already in the context of
the new task.

• PostTaskHook: Fires prior to a task being scheduled away, but still in the
old task’s context.

• StartupHook: Fires before initialization of the operating system, but before
the scheduler is running.

• ShutdownHook: Fires when ShutdownOS is called to shut the operating sys-
tem down.

These hooks seem pretty straightforward to implement, but the exact circum-
stances on how and when they are invoked make the implementing code a little bit
tricky. The easiest of these calls is probably the ErrorHook. The only thing the
generator needs to check is if the user wants an ErrorHook installed and insert
a simple if-clause at the finalization points (i.e. before every return statement)
which conditionally calls the hook.

The PreTaskHook and PostTaskHook are a little bit more complicated. This
is because the specification states that they both need to be executed in the context
of the task to be scheduled or of the task which is currently being left, respectively.
The first naive approach would probably be inserting PreTaskHook calls at the
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beginning of each TASK() block and inserting PostTaskHook calls at the end of
these blocks. Thinking about this approach – parsing the C-file – will certainly
yield the result that this is far more complicated than one would assume at first.
Although insertion of the PreTaskHook calls is straightforward, insertion of the
PostTaskHook calls is not – they have to be inserted before any TerminateTask,
ChainTask or ActivateTask calls. And what about the user redefining some
macros, which is perfectly legal? The hooks also need to be called when a task is
scheduled away from or scheduled to – not just the first time at startup and at the
TerminateTask system call.

Realizing that this approach is a dead-end road, how about calling these hooks
from the scheduler? The scheduler is the part of the system which knows if a task
change is necessary. This approach works pretty well with the exception of two
aspects:

• The user might call an ActivateTask in the PreTaskHook. This will again
case the scheduler to be invoked. Therefore care has to be taken that the
scheduler does not call the PreTaskHook from an inconsistent state.

• The user might want to access the task ID of the task which is scheduled
to or scheduled away from, respectively. This variable has to be properly
initialized in the scheduler before calling the hooks.

Using this method works well if attention is paid to these aspects – this is also
how it is done in josek.

The problem with the implementation of the StartupHook isn’t evident at
first glance, either. It looks as if it would be as simple as inserting a call to the
hook upon operating system initialization. And it is, almost. Consider a system
which has two tasks called »subsidiary« having priority 1 and »important« having
priority 10. Then there is the following StartupHook:

1 void StartupHook() {
2 ActivateTask(subsidiary);
3 ActivateTask(important);
4 }

When this piece of code is executed, the task with low priority, »subsidiary«
is scheduled first, leaving »important« waiting for its turn although it has higher
priority. It seems acceptable, as when you come to think of it »subsidiary« is acti-
vated before »important«. A closer look into the OSEK operating system specifi-
cation will reveal, however, that the scheduler has not yet been activated when the
StartupHook is called. It will only become active after both ActivateTask sys-
tem calls have finished – the scheduler will then of course schedule »important«
first and priority inversion is avoided.
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The ShutdownHook is as straightforward as it seems: a simple call to this hook
in the body of the ShutdownOS system call is fully sufficient.
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Chapter 4

josek internals

4.1 Optimization on Arrays
During development it will occur that a table of static values has to be accessible
from inside josek. Simply using a global array of values has the advantage of
being easy to implement and fast lookup. However the lookup is fast at a price: the
values are kept in RAM. This might pose a problem to embedded systems which
have limited resources. Especially when these values are never changed during
the course of the program, preserving RAM space is one big goal which needs
to be achieved when writing an operating system for highly embedded devices.
Although of minor importance when testing functional components of the OS on
an x86 with hundreds of megabytes of RAM it is a real drawback when using a
microcontroller unit which only provides 128 bytes of SRAM.

josek has a solution: during the generation of the operating system’s code a
generation define (saveram) will decide how static arrays of values are stored:
without any optimization as a global array or as a lookup-table. The lookup-table
basically is a lookup-function which has the sole purpose of running input data
through a switch/case statement which determines the appropriate return value.

The penalty is evident: a function call is more costly in terms of CPU time
than a memory lookup. Registers have to be saved and the lookup of an arbitrary
value in an equally distributed and compiler-optimized switch/case statement is of
order O(logn) as opposed to O(1) when using a global array. What is preferred
has to be decided from case to case – it’s just one opportunity josek provides. The
last decision has to be made by the developer who generates the operating system.
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4.2 Configuration Parsing and Internal Data Struc-
tures

For parsing the input configuration file, the OIL1, code generated by JavaCC2 is
being used. It is based on a .jj file resembling the OIL grammar. For this purpose
a modified version of the KESO grammar was used – actually the OIL grammar
is a bit easier to implement as fewer recursions of objects are permitted.

The parser code generates – granted the OIL file is syntactically correct –
a tree according to the input data. This tree is represented by the Java class
Configuration. It can differentiate different attribute types such as boolean,
integer, float or string. The OIL configuration file is bijectively mapped onto this
configuration-tree. After the parser is done, the raw first pass is complete.

Afterwards, the configuration data needs to refined and a so-called HighLevelConfiguration
object is created. This object parses the simple configuration tree for logical ob-
jects. It can, in contrast to the simple configuration, also detect logical errors such
as a task referring to an undefined resource. In this parsing step, all logical objects
are parsed specifically according to their jobs in the OSEK operating system to be
generated. These objects are:

• Alarms

• Counters

• Events

• Hooks

• Resources

• Tasks

Each single of these objects has very specific member variables. Settings
which have meaning to the high level configuration (like the CYCLETIME of an
alarm, for example) are being taken from the simple configuration, values without
meaning are simply being discarded without emitting any error or warning.

4.3 Stack Creation
Before changing the stack pointer to a new memory area it has to be assured that
this area has been properly initialized. The piece of memory which the stack

1OSEK Interface Language
2Java Compiler Compiler
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pointer will point to after its modification is a global array. It has to be well-
prepared so the assembly instructions which are executed after its change find
sane values to work with. These instructions are for an x86 machine popa, popf
and ret in order of execution.[Int07b] Hence there have to be 32 bytes for the
popa instruction, 4 bytes for the popf instruction which pops the EFLAGS register
from the stack and 4 bytes for the return address.[Int07a] Therefore the complete
context size (accessible through the variable CTXSIZE) is 40 bytes.

Note that during this context change the contents of the floating point registers
and floating point control values are not saved – a context change from code which
uses the FPU to another context which uses the FPU is therefore note possible
without a race condition.

The reasoning behind this is the following:

1. josek has been developed having systems with tiny resources in mind. These
embedded systems often do not have any FPU at all – floating point support
seems unnecessary for a real-world embedded-system scenario.

2. The context of the FPU on an x86-32 machine has a size of 108 bytes. This
is almost three times the size of a "regular" context.

3. As the FPU context contains control registers which have to be set correctly
the creation of an initial stack becomes more difficult. This would be a
detail that great attention would have to be paid to and it would therefore
distract any reader of the code from the important design aspects.

Should an implementation of an FPU stack save be necessary after all this
can easily be achieved afterwards by insertion of two assembly statement for each
context saving and restoring. The x86-32 architecture provides two assembly in-
structions: they need pointers to allocated memory as an input and will save or
restore the FPU context to or from there, respectively.[Int07b] The code to be
inserted would be

1 sub $108 , %esp frstor (%esp)
2 fsave (%esp) add $108 , %esp

This code will reserve space on the stack and store the FPU registers there
("pushfpu") or load the FPU registers from the stack and free this stack space
("popfpu").

Moreover, not only the FPU registers are not saved, but none of the extended
x86-operation registers are. This includes the registers provided by special CPU
features like MMX, MMXExt, SSE, SSE2, 3dNow and 3dNowExt. The reasoning
is obvious: these instructions are not only overkill for any embedded application,
they’re also absolutely machine-dependent. This is not the intended use of josek.
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4.4 Stack Protection
A problem commonly found in programs which used fixed stack sizes – as this is
the case in any OSEK operating system – is stack overrun. Due to the fact that
the stack cannot grow dynamically according to the underlying program’s needs
it will at some point hit the boundary. This can especially occur by a too high
nesting level of functions: as each function call uses some stack memory (at least
4 bytes for the return address of the function, usually 8 bytes on an x86 because
the old frame pointer %ebp is also saved) the problem particularly arises when
using recursive functions.

Luckily, this problem can be detected when running the OSEK operating sys-
tem on Linux quite comfortably using the mprotect system call. When generating
the OSEK-OS with the generation define stackprotector four things are being
done:

1. The stack sizes of tasks are being rounded up to multiples of the page size
(usually 4096 bytes).

2. In between each of the tasks’ stacks a separate protector memory area is
inserted which has exactly the size of one page.

3. All stacks and pages are being aligned at page boundaries. This is a compiler-
specific parameter. Using the gcc compiler it can be achieved using the
__attribute__ ((aligned (4096)) attribute extension.

4. The protector-pages are marked as inaccessible through invocation of the
Linux-specific mprotect system call. They are marked as PROT_NONE which
means the page has no read, write or execute privileges.

As soon as these steps are performed any access beyond the tasks’ stack mem-
ory (but within the size of one page) leads to an immediate synchronous program
termination (SIGSEGV, segmentation violation). This can be easily traced to deter-
mine where the illegal access occurred.

This is, of course, no exhaustive memory protection. Any task can access the
whole system memory through use of arbitrary pointers. Hence, such deliberate
memory corruptions are not detectable. However, it is very well suited for detec-
tion of unintentional stack overflow as is the case with a too high nesting level of
functions.

The drawbacks of this type of memory protection are evident:

1. It is highly Linux-specific.
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2. It only detects memory corruption within one page size from the top or
bottom of the tasks’ stack.

3. For a number of n tasks, n+1 pages are wasted.

The greatest problem is probably portability to non-Linux architectures. There-
fore a "poor man’s version" of the memory protection is available by use of the
generation define stackprotector_simple. When it is in use again memory
pages separate tasks’ stacks, but this time they’re not protected using mprotect but
initialized with a sequence of pseudo-random numbers. As the sequence is deter-
ministic it can easily be verified at any time through a call of the check_stackprotector()
function. Although this method is more portable it can not detect reading of in-
valid memory, only writing. Another drawback is that memory corruption is only
perceptible afterwards, not synchronous to the actual memory access. Debugging
is therefore slightly more complicated.

4.5 Context Switching

4.5.1 Method of Operation
The most important internal part of a preemptive operating system is the context
switching, which is used by the scheduler. There are two possible context switch-
ing methods available which differ in functionality:

• dispatch: Starts a task for the first time. The stack pointer set to a piece
of memory which was specially crafted for stack dispatching (explained in
section 4.3). The registers and CPU flags are popped from the stack – these
need to be set to zero to avoid accidentally setting flags which might trigger
traps. Afterwards a ret is performed which jumps to the address on very
top of the stack. This is usually the function pointer of the task which gets
dispatched.

• switchtask: This will switch from a currently active task to another task.
In order to be able to resume the currently running task appropriately, the
first action is saving the processor flags and registers by pushing them onto
the stack. Afterwards the current stack pointer is copied into the global
taskdesc structure. The stack pointer of the task to be switched to is then re-
stored from the codetaskdesc structure. CPU flags and registers are popped
from the stack and a ret is performed, returning to the exact position the
task was previously preempted from.
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4.5.2 Pitfalls
Manipulating the stack pointer directly is hazardous business: the operating sys-
tem does not condone any off-by-one-errors; should the stack pointer which is
restored be off by a single byte relative to the correct position it is likely the entire
system will crash. In such a case the accompanying stackframe is lost implying
development tools like debuggers become useless.

Then there are more subtle pitfalls, which can be caused by the compiler be-
ing used. Any function call which occurs at the very end of a function can be
optimized away and replaced by an unconditional jump. This is called a tail-call
optimization.[Sch07] Essentially the following code:

1 dostuff:
2 push %rbp ; Enter
3 mov %rsp, %rbp

5 [...]

7 call finalize

9 mov %rbp, %rsp ; Leave
10 pop %rbp
11 ret

Will be replaced by this optimized version:

1 dostuff:
2 push %rbp ; Enter
3 mov %rsp, %rbp

5 [...]

7 mov %rbp, %rsp ; Leave
8 pop %rbp
9 jmp finalize

The ret instruction in the function finalize will therefore directly return into
dostuff’s parent function instead of first returning into dostuff and from there on
returning to the caller. The dostuff stackframe is bypassed this way – CPU time
is saved.

It’s a horrible optimization scenario for anyone directly manipulating the stack
pointer, however. The reason is easy: it may be the case that dostuff has no
parent, for example when it is executed on a specially crafted stack – as it is
exactly the case in josek. When the optimization is activated the ret will jump
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to some undefined address and the whole operating system will in all probability
crash.

This is the case when using any recent version of gcc using more than -O1
optimization. As soon as -O2 the optimization flag -foptimize-sibling-calls
is implied resulting in the described optimization. The naive solution would be to
pass -fno-optimize-sibling-calls to the compiler flags of the task source
file. This is extremely simple and effective, it has the disadvantage of slowing
down other code, however, which is unaffected by the optimization.

josek uses a more tricky approach. First, all fragile functions need to be
determined – by that is meant all functions which are broken by the tail-call-
optimization. These are all functions which have no parent (i.e. no caller): it
solely applies to tasks. Thinking about what functions tasks may call at their tail
is the next target to identify. Only few are relevant:

• ShutdownOS

• TerminateTask

• ChainTask

Calling any other function at the end of a task is illegal according to the OSEK-
OS system specification and therefore undefined behavior – the operating system
crashing – is a perfectly legal consequence. ShutdownOS is uncritical as it will
never return at all. Any optimization is fine here.

But things are different with ChainTask or TerminateTask. ChainTask also
works with the optimization as long as another task is chained. Should a task
chain itself, a return into the current context is needed and the ret will jump into
nirvana. TerminateTask is also fine as long as the next task to be scheduled is
not currently active. Should it be, maybe through multiple activation, it will crash
in exactly the same way.

The problem can be avoided by a trick: first, the system calls ChainTask and
TerminateTask are renamed to __ChainTask and __TerminateTask. Then two
macros of the following kind are inserted into the os.h file:

1 #define TerminateTask() do { __TerminateTask(); \
2 __asm__ volatile(""); \
3 } while(0)

This will cause any call to TerminateTask to be replaced by its actual call and
an (empty) volatile assembly statement afterwards. The compiler detects code af-
ter the TerminateTask call – out asm statement. Actually there is no code, but we
marked the inline assembly volatile so the compiler must assume the worst case
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and is not allowed to move the code away either. It will therefore just do a plain
call to TerminateTask and the problem described vanishes. The exact same
approach applies to the ChainTask function which will also solve the described
problems there.

4.6 Further Optimizations
There are a few tweaks which can be used to make the generated code perform
slightly better than usual. Some are compiler specific, however, and will, if so,
refer to recent versions of the gcc.

4.6.1 Stack Sharing
A straitforward optimization is stack sharing. It is possible as a direct consequence
of the usage of the priority ceiling protocol. The protocol ensures, as explained
in section 2.2, that always the task with the highes priority is in the running-state.
As a matter of fact it can safely assumed that a task will never be preempted by
another task of same or lower priority. In particular it is not possible that a task
is preempted by a second activation of itself. It is a most elemental optimization
that only each task is assigned only one piece of memory for use as a stack. But
it is also possible that two different tasks share the same piece of memory, if they
are mutually exclusive. This is always possible with tasks which have the same
default priority. This shared stack has to be sized to fit both task’s needs, of course.
This is why it has to be sized according to the most greedy (in terms of memory
usage) task’s requirements.

4.6.2 const Functions

The GNU Compiler Collection can make use of the const function attribute,
which tells the compiler that the attributed function’s return value will solely de-
pend on the parameters of the function.[StGDC07] It will never depend on the
state of the program (i.e. not read global variables). If the compiler knows this
about a function, it is a safe optimization to call the function less often than actu-
ally required by the source code. In practice this means that subsequent calls to
the function in question will always yield the same return value as long as they get
the same input. This allows the gcc to optimize these subsequent calls away. A
good example of a function which should definitely be declared const are lookup
tables which are stored in the text segment as described in section 4.1.

To demonstrate the effect, consider the following piece of C code:
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1 printf("%d\n", CntrMaxValue(x));
2 printf("%d\n", CntrMaxValue(x));

It actually requires two calls to the CntrMaxValue function. So without having
this function declared const, the following code will be generated:

1 movzbl %spl, %ebx

3 mov %ebx, %edi ; 1st Parameter
4 callq 400eb1 <CntrMaxValueValues >

6 movzbl %al, %esi ; Value
7 mov $0x40129d , %edi ; String reference
8 mov $0x0 , %eax
9 callq 4006c0 <printf@plt >

11 mov %ebx, %edi ; 1st Parameter
12 callq 400eb1 <CntrMaxValueValues >

14 movzbl %al, %esi ; Value
15 mov $0x40129d , %edi ; String reference
16 mov $0x0 , %eax
17 callq 4006c0 <printf@plt >

It can be clearly seen that the call to CntrMaxValueValues, which is the func-
tion that the CntrMaxValue macro expands to, is called twice. It takes %edi as
input and returns its value in register %al. This needs to be done twice, as the gcc
does not the function will return the same value each call for same values of %edi.
When the optimization is active, however, the following code is generated:

1 movzbl %spl, %edi ; 1st Parameter
2 callq 400eb1 <CntrMaxValueValues >

4 movzbl %al, %ebx

6 mov %ebx, %esi ; Value
7 mov $0x40129d , %edi ; String reference
8 mov $0x0 , %eax
9 callq 4006c0 <printf@plt >

11 mov %ebx, %esi ; Value
12 mov $0x40129d , %edi ; String reference
13 mov $0x0 , %eax
14 callq 4006c0 <printf@plt >

The function CntrMaxValueValues is also called, but this time only once. Its
return value %al is saved to register %ebx from where it is passed on to the two
printf function calls.
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4.6.3 noreturn Functions

There are functions in any OSEK operating system which will never return. These
are:

• ShutdownOS

• ChainTask

• TerminateTask

When the compiler knows a function will never return, it can optimize away
any cleanup-work which would be usually be done. This means, for example, the
following code:

1 00000000004007c0 <JOSEK_TASK_job5 >:
2 4007c0: 48 83 ec 08 sub $0x8 , %rsp
3 4007c4: 31 c0 xor %eax, %eax
4 4007c6: e8 55 07 00 00 callq 400f20 <__TerminateTask >

6 ; Free stack and return:
7 4007cb: 48 83 c4 08 add $0x8 , %rsp
8 4007cf: c3 retq

Will become optimized in a fashion that the two instructions after the call to
TerminateTask are simply dropped.
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Chapter 5

Running KESO on josek

5.1 Integration into a UNIX conform operating sys-
tem

In order to have the possibility to access UNIX device drivers from within KESO it
is necessary to map some UNIX system calls onto a KESO-interface. This is why
the PosixIO component was added to KESO. It provides the following functions,
of which Java prototypes are shown:

• int open(String path, int how)

• int read(int fd, char[] buf, int size)

• int write(int fd, char[] buf, int size)

• void close(int fd)

Making use of these functions which are directly mapped onto the correspond-
ing UNIX system calls makes it possible to open a UNIX device and write or read
data from it. This was tested using a Linux-compatible CAN controller. The CAN
controller provides a character device (/dev/can0) for bus communication. When
any KESO program wants to send data over the bus, it simply writes a specially
crafted structure to this character device. Once the write is complete, the CAN
bus packet is already sent over the bus. Reading works by a polling read system
call on the driver device. If there is no data available, the read call will not block,
but return unsuccessfully immediately, indicating by its return code no data was
available.
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Chapter 6

Performance Analysis

6.1 Test Conditions
For testing purposes two systems were used, a Pentium M 1400 MHz for all x86
measurements and an Athlon64 3700+ for x86-64 measurements. As both systems
are hardly comparable, there is an additional variable which scales the timings
down. This variable has been determined by a small assembly routine essentially
executing a lot of no operation (nop) operations in a row and counting how many
can be executed per second. This value is 2.517 ·109 for the x86-32 and 5.973 ·109

for the x86-64 architecture. The reference architecture will, in any cases, be the
x86-64. So when any x86-32 timings are normalized, they will be divided by the
factor of f = 5.973·109

2.517·109 ≈ 2.373, when the throughput (MOps per second) of any
function will be normalized, they will be multiplied by f .

To measure the throughput all functions which were evaluated included a
counter to a global variable. This counter was incremented every time a task unit
was completed (e.g. for every ChainTask call or for every ActivateTask/TerminateTask
combination). After a period of at least 100 seconds the process was interrupted
via a asynchronous POSIX signal. The signal handler did a output of the counter
and terminated the whole task.

In order to also be able to measure single functions as is the case in the
GetResource/ReleaseResource scenario the following piece of assembly code was
used:

1 xor %eax, %eax
2 cpuid

4 rdtsc

6 mov %rax, %0
7 shl $32, %rdx
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8 or %rdx, %0

10 xor %eax, %eax
11 cpuid

This function, which was always inlined by use of #define statements and
__volatile__ __asm__ inline assembly, does the following:

• Clear the CPU instruction pipeline by a call of cpuid

• Read the time stamp counter the CPU provides, store it in the given variable

• Clear the instruction pipeline again

The instruction pipeline has to be specifically cleared as the position of the rdtsc

opcode may be arbitrarily rearranged witin the pipeline. It therefore leads to in-
consistent and strange result if not done. The whole function – when executed
twice to determine the evaluated function’s runtime – took a total of 109 CPU
cycles on the reference machine. These 109 cycles were always subtracted.

6.2 Scheduling Overhead
In order to schedule between tasks, their specific contexts have to be saved and
restored. We will now compare the size of these contexts in detail across different
architectures.

Types Machine Words Bytes
x86-32 x86-64 AVR x86-32 x86-64 AVR

General Purpose Registers 6 6 27 24 48 27
Extended Registers 0 8 0 8 64 0
Pointer Registers 2 1 0 8 8 0
Processor Flags 1 1 1 4 8 1
Return Address 1 1 2 4 8 2
Sum 10 17 30 40 136 30

Table 6.1: Scheduling Overhead in Terms of RAM Size

Note that the only architecture where the pointer size is unequal the machine
word size is the AVR, where a pointer (like the return address) is two bytes com-
pared to a one byte machine word.

It becomes clear the AVR is not the ideal architecture to do multitasking on,
especially since it has huge overhead (30 bytes) compared to the usual SRAM size
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(usually ranging from 128 bytes up to 1024 bytes).[Atm07]

6.3 Measurements
One of the first things of interest is how long it takes to schedule and terminate
tasks. In this test it has been measured how long it takes for a task to chain itself
repeatedly:

x86-32 x86-64
Time n/sec Time n/sec

ChainTask(self) 104 ns 9.60 M 48.4 ns 20.7 M
ActivateTask(self)
TerminateTask()

161 ns 6.22 M 67.9 ns 14.7 M

GetResource()
ReleaseResource()

56.8 ns 17.6 M 29.3 ns 34.1 M

WaitEvent()
ClearEvent()
SetEvent()

360 ns 2.78 M 228 ns 4.39 M

ActivateTask(HP)
ChainTask(self)

330 ns 3.03 M 175 ns 5.71 M

ActivateTask(MP)
ActivateTask(HP)
ChainTask(self)

553 ns 1.81 M 323 ns 3.10 M

ActivateTask(MP1)
ActivateTask(MP2)
ActivateTask(HP)
ChainTask(self)

755 ns 1.32 M 502 ns 1.99 M

Schedule() 48.1 ns 20.8 M 17.4 ns 57.5 M
Table 6.2: josek x86-32 against x86-64

These values can be normalized according to the explanation in 6.1:

Norm. x86-32 x86-64 Ratio
Time n/sec Time n/sec

ChainTask(self) 43.9 ns 22.8 M 48.4 ns 20.7 M 0.91
ActivateTask(self)
TerminateTask()

67.7 ns 14.8 M 67.9 ns 14.7 M 1.00

GetResource()
ReleaseResource()

23.9 ns 41.8 M 29.3 ns 34.1 M 0.82
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WaitEvent()
ClearEvent()
SetEvent()

152 ns 6.59 M 228 ns 4.39 M 0.67

ActivateTask(HP)
ChainTask(self)

139 ns 7.20 M 175 ns 5.71 M 0.79

ActivateTask(MP)
ActivateTask(HP)
ChainTask(self)

233 ns 4.29 M 323 ns 3.10 M 0.72

ActivateTask(MP1)
ActivateTask(MP2)
ActivateTask(HP)
ChainTask(self)

318 ns 3.14 M 502 ns 1.99 M 0.63

Schedule() 20.3 ns 49.3 M 17.4 ns 57.5 M 1.16
Table 6.3: josek x86-32 (normalized) against x86-64

Comparing these valued yields an interesting result: josek performs better (at
least relatively) on the x86-32 architecture. The difference is not to be dismissed
as beside the point; it’s up to 61% faster1 when heavy scheduling occurs. This is
not really surprising, as the context change is much more expensive on the x86-64
as it is on the x86-32 – the reasoning behind this is explained in section 6.2.

On the x86-64 platform these tests were also performed against Trampoline:

Trampoline josek Ratio
Time n/sec Time n/sec

ChainTask(self) 911 ns 1.10 M 48.4 ns 20.7 M 18.8
ActivateTask(self)
TerminateTask()

1.15 µs 870 k 67.9 ns 14.7 M 16.9

GetResource()
ReleaseResource()

492 ns 2.03 M 29.3 ns 34.1 M 16.8

WaitEvent()
ClearEvent()
SetEvent()

2.53 µs 395 k 228 ns 4.39 M 11.1

ActivateTask(HP)
ChainTask(self)

2.05 µs 488 k 175 ns 5.71 M 11.7

ActivateTask(MP)
ActivateTask(HP)
ChainTask(self)

3.17 µs 315 k 323 ns 3.10 M 9.8

1 100·3.20
1.99 −100 ≈ 61%
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ActivateTask(MP1)
ActivateTask(MP2)
ActivateTask(HP)
ChainTask(self)

4.36 µs 229 k 502 ns 1.99 M 8.7

Schedule() 247 ns 4.05 M 17.4 ns 57.5 M 14.2
Table 6.4: Trampoline compared to josek on x86-64

When comparing Trampoline to a equal josek system, the Trampoline OSEK
always seems to be at least one magnitude behind in terms of CPU time. This is
primarily because of the viper hardware abstraction layer which Trampoline pro-
vides. The additional overhead added by usage of the libpcl (Portable Coroutine
Library) is relatively small.

Speed of x86−32, x86−64 against Trampoline
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Figure 6.1: Comparison of Architectures

The particular reason the example using GetResource and ReleaseResource is
so fast compared to the other examples is that it doesn’t need any context switches.
As there is always only one task active which repeatedly acquires and releases the
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resource, a context change to another task simply never becomes necessary. Al-
though the scheduler is called in every instance of ReleaseResource, it decides
every single time that nothing has to be changed and the program continues right
where it left of. How costly in terms of CPU-times context switches are illus-
trates figure 6.2. A test system performing solely the ChainTask example was
executed many times, each time with a bigger context. It was artificially inflated
by inserting push and pop operations at the appropriate places in switchtask and
dispatch. The figure shows the time of each ChainTask cycle over the increase in
context size (measured in machine words, i.e. 8 bytes each):
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Figure 6.2: Artificially Inflating Context Size

The figure clearly shows that the runtime (which is almost equal to the context
switch time in this example) grows linearly with the size of the context.

A particularity of the code using GetResource/ReleaseResource becomes not
evident through the above numbers, however. It’s the difference in runtime of the
two resource functions. For this purpose, both have been sperately analyzed using
the method described above.

GetResource ReleaseResource
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Number of executions: 369312353
Total execution time: 77.8 sec
Operations/Second: 4.75 M
Number of CPU cycles: 9928252581 22505181787
Cycles/Execution: 27 61
Theoretical Ops/Second: 15.5 M 6.84 M

Table 6.5: GetResource compared to ReleaseResource

It is not surprising that the ReleaseResource system call takes more than
twice the time GetResource needs. The reason for that is simple: GetResource
will only increase the task priority or not alter it at all. The currently running task
will therefore never be preempted by a GetResource system call – no reschedul-
ing point is necessary. When calling ReleaseResource, however, it is very well
possible the task which is currently in the running-state decreases in priority and
is therefore preemted by a more important task. ReleaseResource thus calls
Schedule, which takes time to come to a scheduling decision.
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Chapter 7

Conclusion

TODO-assessment Writing an OSEK conform The goal of writing a OSEK con-
form implementation was for one thing to show how it can be done and for an-
other to point out optimization possibilities. Through usage of josek a very clean
OSEK conform operating system can be generated within the matter of minutes.
Attention was paid that the resulting code is cleanly readable – the trade-off be-
tween highly optimized code and good code readability was taken in favor of code
concinnity. Testing functional components of an OSEK compatible operating sys-
tem is easy, extending the code generator via the use of code hooks or additional
files is not much more difficult. Thus, the josek project has to be considered a
success. It shows clearly what can be done with considerable effort and has the
potential of being used as a starting point for other developers.
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