
A Distributed Middleware for Automotive Applications

Christian Wawersich Michael Stilkerich Ralf Ellner Wolfgang Schröder-Preikschat
wawi@cs.fau.de stilkerich@cs.fau.de siraelln@stud.uni-erlangen.de wosch@cs.fau.de

Friedrich-Alexander University of Erlangen-Nuremberg
Department of Computer Sciences 4

Martensstr. 1, 91058 Erlangen, Germany

Abstract

Modern cars contain a multitude of micro controllers for
a wide area of tasks. The micro controllers are connected to
controller networks through different bus systems. The de-
velopment of a connected and cooperating system is difficult
and poorly supported by the existing development tools.

With the KESO system we have implemented a very
small and adapted Java middleware for an OSEK/VDX op-
erating system that allows the safe coexistence of tasks on a
single micro controller by providing software-based mem-
ory protection.

In this paper we present our approach on extending
KESO to a distributed multi-JVM that provides an inte-
grated view on controller networks. KESO will provide
one communication mechanism that transparently allows
the communication between different tasks on the same as
well as tasks on different micro controllers over different
communication systems.

1. Introduction

Modern cars contain a multitude of micro controllers for
a wide area of tasks, ranging from convenience features
such as the supervision of the car’s audio system to safety
relevant functions such as assisting the braking system of
the car. The different micro controllers are connected to a
cooperating network.

Every component in the controller network performs a
pre-defined task with very specific requirements. Because
cars are mass products, choosing the best adapted micro
controller for each task allows the engineers to reduce the
costs of production. The resulting controller network con-
sists of highly heterogeneous components. There are also
various different bus systems to connect the different mi-
cro controllers, which differ in properties such as real-time
capability or the number of supported nodes in the network.

While the above reasons account for the heterogeneity in
the controller network in terms of both, the nodes and the
bus systems, this heterogeneity leads to a complicated de-
velopment process that is poorly supported by the existing
tools. The development is component centric, and connect-
ing the nodes requires the specification of communication
protocols.

In this paper, we present our prototype system KESO
that supports the development of a controller network as an
integrated system. KESO is a Java middleware that provides
a robust programming model uniform for all participating
controllers. KESO implements a restricted multi-JVM ar-
chitecture running on a traditional OSEK/VDX operating
system. Restrictions to the JVM were made where the
real-time properties were more important than Java com-
patibility. For example, we preferred the lock-free syn-
chronization model using a priority ceiling protocol of the
OSEK/VDX system over standard Java monitors.

KESO leaves the choice of the components and the bus
systems to the system developers. The topology and the
components of an integrated systems are, however, contrary
to the existing development model, transparent to the appli-
cation. These properties are configured in a single global
configuration file. KESO provides a uniform communica-
tion mechanism to the application, which disburdens the de-
velopers from specifying and implementing communication
protocols. KESO can furthermore enable the migration of
tasks to different controllers or the integration of tasks on a
single micro controller by only changing the configuration
file. The integration of tasks on a controller is safe, because
KESO provides software-based memory protection that al-
lows the safe coexistence of multiple tasks on on controller.

The remainder of this paper is structured as follows: In
Section 2, we present the core architecture of KESO and
the extensions of KESO to a distributed system. Section 3
discusses the core aspects that make KESO a distributed
system and ideas on how we plan to implement them. We
conclude the paper with a short summary in Section 5.



AVR node 2

Tricore node AVR node 1

AVR AVR

Tricore Microcontroller

OSEK

5 2

Portal

KESO Services

Device−

Memoryservices

OSEK

Heap/GC Tasks

Resources, Alarms, ISRs

Domain A

Domain B

Task

Domain D

Task

Domain C

Figure 1. Architecture of Distributed KESO

2. KESO Architecture

Figure 1 shows the architecture of a distributed KESO
system. The shown system is a network of two AVR micro
controllers and a Tricore micro controller, where the AVR
micro controller nodes communicate with the more power-
ful Tricore micro controller. A distributed KESO system
consists of the following components.

Nodes A distributed KESO system is composed by mul-
tiple KESO nodes. Each node is represents a micro con-
troller in the network. A KESO node is usually based on a
traditional OSEK/VDX [4] operating system and provides
the OSEK/VDX scheduling, synchronization and notifica-
tion concepts to the KESO applications. The structuring of
a distributed KESO system in nodes describes the topology
of the controller network and is only visible in the config-
uration. For the applications, the entire KESO system is
structured in domains, whose locations are transparent to
the applications.

Domains Each system is structured in domains of protec-
tion that are strongly isolated from each other. Each domain
appears as a self-contained JVM to the application, contain-
ing an own set of static class fields and an own object heap.

Each domain is assigned to a node in the configuration
file, whereby a node can contain multiple domains. Do-
mains colocated on the same node are isolated by software-
based memory protection mechanisms, based on the type-
safety of Java and the separation of object heaps and class
fields. On OSEK/VDX based nodes, we do furthermore
provide access restrictions to the OSEK services to isolate
the domains from each other [7]. Domains that reside on
different nodes are physically isolated from each other.

Tasks In KESO, threads of control are represented by
OSEK/VDX tasks instead of Java threads to the applica-
tion, which denotes the differences in the execution model.
OSEK/VDX tasks are scheduled according to a fixed prior-
ity whereas there is a wide range of scheduling policies for
Java threads. Every task is assigned to exactly one domain.

Portals The portal mechanism allows the communication
among different domains. The interface between the por-
tal mechanism and the application does not differ for intra-
node and inter-node communication, which hides the loca-
tion of a domain to the application.

A service domaincan provide a portalserviceby export-
ing the interface of a service object. Another domain can
import the service, and obtain access to the service through
a global name service.

KESO Services KESO provides a number of services to
the Java application. These are comprised by a Java API [7]
to the services of the underlying OSEK/VDX operating sys-
tem and the device-memory, which allows Java applica-
tions to access memory mapped device registers. Device-
memory furthermore enables the development of device
drivers in Java.

Code Generation The user applications are developed in
Java and available as Java bytecode after having been pro-
cessed by a Java compiler. Interpreting or even compiling
the bytecode to native code at runtime leads to poor or un-
predictable execution times and is not always feasible on
deeply embedded devices with very limited resources.

Instead, the bytecode is compiled to C source code ahead
of time by theKESO builder. This way, the KESO nodes
are built using one uniform tool, hiding the differences of
the micro controllers and the compilers. The generated C
code contains the compiled Java application plus code for
services of the KESO runtime environment and additional
runtime checks that ensure the properties of a JVM.

The KESO builder creates a highly adapted system that
contains only the parts of the KESO runtime system that are
required by the application. For instance, many embedded
applications do not dynamically allocate memory at run-
time. This type of applications does not require a garbage
collector, hence a simple heap implementation can be con-
figured that does not provide garbage collection. Garbage
collection can also only be used in parts of the system as the
heap implementation can be configured individually per do-
main. For single task systems, that do not require schedul-
ing and synchronization mechanisms, even the underlying
OSEK/VDX operating system can be entirely omitted leav-
ing the KESO running on the bare hardware.



3. KESO as a Distributed System

In the following we briefly describe the core aspects of
KESO as a distributed system.

(Re-)Configuration There is one global configuration for
the entire distributed system. The structuring of a dis-
tributed KESO systems into multiple nodes is only visible
from within the configuration, i.e. the assignment of a do-
main to a specific controller in the network is transparent
to the applications. KESO thus provides the Java applica-
tion with an integrated view on the controller network as an
integrated system.

As the various nodes in a distributed KESO system are
not visible to the applications, functions in the controller
network can be migrated to a different micro controller or
integrated with other functions on a shared micro controller
by only adjusting the global configuration. No changes to
the applications are required for this type of reconfiguration.

Because KESO enforces the strict isolation of domains
colocated on a micro controller, tasks can safely be inte-
grated on a single controller without the risk of unclear re-
sponsibilities in the case of software failures introduced by
dangling pointers. KESO thus provides software-based iso-
lation of tasks on a micro controller that would otherwise
physically be isolated when deployed on dedicated con-
trollers.

Uniform Programming Model The traditional develop-
ment process uses different tools for the various architec-
tures. The applications are usually developed in C and As-
sembler.

In KESO, all applications are developed in Java using
one common build tool, the KESO builder. While the
KESO builder eventually also generates C code, it hides
the differences of the various C compilers to the develop-
ers. The rich in semantics Java bytecode enables the builder
to make global optimizations and generate highly attributed
C code that in turn allows the C compilers to generate more
optimized native code than they could achieve from human
produced C code. Though programmers could in theory at-
tribute C code like the KESO builder, it is in practice dif-
ficult to ensure the correctness of the attributes. Incorrect
attributes may cause the compiler to create incorrect native
code.

KESO also provides a unified system interface to the ap-
plications. While some device drivers are already provided
by KESO, others can be implemented using the KESO
device-memory service and the OSEK/VDX API. The most
notable aspect in a distributed KESO system is the provision
of the portal mechanism that allows a uniform way of inter-
domain communication, hiding whether the service domain

call service method

dispatch method

Pack return value

Transmit ID & parameters

Unmarshal return value

Marshal parameters

Return from proxy method

Sender Receiver

Call to proxy method

Transmit ID & return value

convert byteorder (if neccessary)

convert byteorder (if neccessary)

wait

Unpack parameters

Figure 2. KESO service method invocation

is located within the same KESO system or on a different
controller of the network.

Inter-Domain Communication Two domains can com-
municate with each other using the portal mechanism. The
prerequisite for the communication of two domains is that
one domain, theservice domain, exports aserviceto the
other domains in the distributed KESO system. A service
consists of an interface ofservice methodsthat can be in-
voked byclient tasksof different domains in the environ-
ment of the service domain. This behavior is comparable
to remote procedure calls (RPC) or the Java remote method
invocation (RMI) [1].

To establish a communication channel between two do-
mains, a task of the client domain needs to acquire a service
object (proxy object, stub) of an exported service of the ser-
vice domain through a global name service. The client can
then invoke service methods at this object.

The implementation of a service method invocation de-
pends on whether the service domain and the client domain
are colocated on the same micro controller or not. The
builder automatically chooses the correct implementation
based on the KESO configuration.

In case both domains are located on the same micro con-
troller, the service method invocation is mapped to an ex-
tended local method invocation. Because an object refer-
ence must not cross a domain boundary for isolation rea-
sons, all objects referenced by parameters of the service
method, including the transitive closure, are copied to the
heap of the service domain. This overhead is only neces-
sary if object parameters are passed to the service method.
Otherwise the parameters are simply passed by value.

In distributed KESO, the same portal mechanism can
also be used for communication between different micro



controllers. This is transparent to the application. Figure 2
illustrates the execution of a service method as a remote
procedure call. The parameters are marshaled and trans-
ported to the target controller over a communication ser-
vice. The communication service is configurable and can
implemented in Java. In a first prototype implementation
we used a CAN bus and a serial port driver written in pure
Java. The result is transported back to the sender vice versa.

The exchange of data between two micro controllers may
require a byte order conversion in case the participating mi-
cro controllers use different byte order. KESO pursues a
sender-makes-it-rightstrategy on byte order conversion, i.e.
the caller of the remote method will convert the byte order
before sending and after receiving multi byte values from
another controller. The decision whether a conversion is re-
quired can be performed at compile time because the archi-
tectures of the participating controllers are known for each
service method invocation.

We do currently not support references as parameters to
service methods invoked on a different controller. Scalar
values are passed call-by-value.

Sample Application Our evaluation system is a
Robertino [2] robot1 that can move around and avoid
obstacles. Robertino has three wheels that allow the robot
to move and turn. Each of the wheels is driven by a motor
that is connected to a low-cost AVR micro controller with
512 bytes of RAM and 8 kilo bytes of flash memory. The
robot can scan its environment using six infrared distance
sensors. Each of the three AVR controllers is connected
with the two closest sensors.

The AVR nodes function as sensors and drive controller
for the motors. The more complex control and supervision
functions are handled by a central more powerful Tricore
TC1796 micro controller (2 MB program flash memory, 64
kB data SRAM, 150 MHz CPU) that is connected to the
AVR nodes through a CAN bus. The Tricore controller re-
ceives the sensor data from the AVR nodes and, based on
the sensor information, transmits control commands.

4. Related Work

RTZen [5] is the most notable Java middleware for dis-
tributed real-time and embedded systems so far. RTZen is a
middleware that is compliant with most of the features de-
fined in the CORBA 2.3 specification, including portions of
the Real-time CORBA specification. The design of RTZen
is based on many of the patterns, techniques, and lessons
learned from the development of The ACE ORB (TAO) [6].

The Open Virtual Machine (OVM) [3] project shows that
it is possible to use a Java middleware in a real-time avionic

1We replaced the PC104 as the main processing component of the
Robertino with a Tricore micro controller.

application. OVM uses ahead of time (AOT) compilation
from java byte code to C++ and uses global world optimiza-
tion for code reduction.

In contrast the target platform from KESO is much
smaller. While OVM needs a few mega byte of RAM, the
AVR micro controllers only provide 512 bytes. Therefore
it was important to customize the JVM even more and skip
unneeded abstraction layers.

5. Summary

In this paper, we briefly presented our preliminary de-
sign of a distributed system that provides an integrated de-
velopment process for controller networks as they appear in
modern cars. Applications can be developed independently
of the topology of the controller area network, which can
even be changed without the need to adapt the application.

With Java as the programming language, KESO offers
a uniform and type-safe way of robust software develop-
ment for controller networks of heterogeneous components.
Structuring the entire distributed system in domains of pro-
tection allows the safe integration of multiple applications
on the same hardware and represents at the same time the
physical isolation for domains that reside on different con-
trollers.

The development efforts on extending KESO to a dis-
tributed multi-JVM system are still in progress. We expect
first results in the beginning of 2007.

References

[1] Java RMI - Distributed Computing for Java. White Paper, Sun
Microsystems Inc.

[2] OpenRobertino. http://www.openrobertino.org/.
[3] J. Baker, A. Cunei, C. Flack, F. Pizlo, M. Prochazka, J. Vitek,

A. Armbruster, E. Pla, and D. Holmes. A real-time java virtual
machine for avionics - an experience report. InIEEE Real
Time Technology and Applications Symposium, pages 384–
396, Washington, DC, USA, 2006. IEEE.

[4] OSEK/VDX Group. Operating System Specification 2.2.3.
OSEK/VDX Group, Feb. 2005. http://www.osek-vdx.org/.

[5] K. Raman, Y. Zhang, M. Panahi, J. A. Colmenares, R. Klef-
stad, and T. Harmon. RTZen: Highly predictable, real-time
java middleware for distributed and embedded systems, .
In ACM/IFIP/USENIX 6th International Middleware Confer-
ence (Middleware ’05), pages 225–248, 2005.

[6] D. C. Schmidt, D. L. Levine, and S. Mungee. The design of
the TAO real-time object request broker.Computer Commu-
nications, 21(4), Apr. 1998.

[7] M. Stilkerich, C. Wawersich, W. Schröder-Preikschat, A. Gal,
and M. Franz. OSEK/VDX API for Java. InLinguistic Sup-
port for Modern Operating Systems ASPLOS XII Workshop
(PLOS ’06), pages 13–17, San Jose, California, USA, Oct.
2006. ACM.


