Improved Stack Allocation Using Escape Analysis in the
KESO Multi-JVM

Bachelorarbeit im Fach Informatik

von

Clemens Lang

geboren am 09.08.1988 in Lichtenfels

Lehrstuhl fiir Informatik 4
Friedrich-Alexander Universitdt Erlangen-Niirnberg

Betreut durch:

Prof. Dr.-Ing. habil. Wolfgang Schroder-Preikschat
Dipl.-Inf. Christoph Erhardt
Dipl.-Inf. Michael Stilkerich

Beginn der Arbeit: 08. Juni 2012
Ende der Arbeit: 01. Oktober 2012

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer
als der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder
ahnlicher Form noch keiner anderen Priifungsbehorde vorgelegen hat und von dieser
als Teil einer Priifungsleistung angenommen wurde. Alle Ausfithrungen, die wortlich
oder sinngeméaf} ibernommen wurden, sind als solche gekennzeichnet.

Erlangen, den 1. Oktober 2012

Abstract

This thesis describes and evaluates the design and implementation of an
escape analysis for KESO, a Java virtual machine for statically configured
embedded systems. The goal is to allocate as many objects as possible in
stack memory automatically.

Reducing the number of heap-allocated objects in a garbage collected en-
vironment can lower the runtime and the complexity and size of the garbage
collector’s data structures. Especially in hard real-time systems, where algo-
rithms for garbage collection face a set of requirements that are not easily
met, this can be worthwhile.

The algorithm implemented in this thesis is a modified version of the one
presented by Choi et al. in 2003. In benchmarks, the analysis found 18 to
34 % of allocations to be eligible for stack allocation. Using this optimization,
heap memory usage was reduced by up to 29 %.

The results can not only be used for the optimizations implemented yet,
but open up a number of further possibilities such as removal of unnecessary
synchronization primitives. Potential for optimization can also be found in
methods allocating an object and returning a reference to it. Instead of using
heap memory for the returned object, the caller be modified to pass a reference
to a sufficiently large chunk of memory in its stack frame, which the callee
could use for the object to be returned.

Zusammenfassung

Diese Arbeit beschreibt und evaluiert Entwurf und Implementierung einer
Fluchtanalyse fiir KESO, eine virtuelle Maschine fir Java fiir statisch konfigu-
rierte eingebettete Systeme. Das Ziel ist die automatische Allokation mdglichst
vieler Objekte im Stapelspeicher.

Die Anzahl der in der Halde allokierten Objekte zu reduzieren kann in einer
Umgebung mit automatischer Speicherbereinigung sowohl deren Laufzeit als
auch die Komplexitdt und Grofle ihrer Datenstrukturen senken. Vor allem in
harten Echtzeitsystemen, in denen Algorithmen zur automatischen Speicher-
bereinigung eine Reihe von schwierigen Anforderungen erfiillen miissen, kann
dies lohnenswert sein.

Der Algorithmus, der in dieser Arbeit implementiert wurde, ist eine Adapti-
on einer Verdffentlichung von von Choi et al. 2003. In Tests konnten zwischen
18 und 34 % aller Allokationen als stapelallokierbar identifiziert werden. Durch
diese Optimierung sank die Auslastung des Haldenspeichers um bis zu 29 %.

Die Ergebnisse konnen nicht nur fiir die bereits implementierten Optimie-
rungen verwendet werden, sondern eréffnen eine Reihe weiterer Moglichkeiten,
wie z. B. das Entfernen unnétiger Synchronisationsprimitiven. Optimierungs-
potential besteht auch in Methoden, die ein Objekt anlegen und eine Referenz
darauf zuriickgeben. Anstatt fiir das zuriickgegebene Objekt Speicher aus der
Halde zu verwenden kénnte der Aufrufer modifiziert werden eine Referenz auf
ein ausreichend grofles Stiick Speicher aus seinem Stapelbereich weiterzuge-
ben, das vom Aufgerufenen fiir das zuriickzugebende Objekt genutzt werden
konnte.

Contents

Contents

1 Introduction
The KESO Multi-JVM

1.1

1.2 Motivation

1.3 Document Structure

2 State of the Art
2.1 The JINO Compiler for the KESO Multi-JVM

2.2 JINO’s Pass Model
2.3 Existing Escape Analysis

3 Design and Implementation

3.1

Intraprocedural Analysis

3.1.1

3.1.2

The Connection Graph

3.1.1.1
3.1.1.2
3.1.1.3

Nodes in the Connection Graph

Edges in the Connection Graph

Escape State

Building the Connection Graph

3.1.2.1
3.1.2.2
3.1.2.3
3.1.24
3.1.2.5
3.1.2.6
3.1.2.7

Local Variables
Global Variables

Allocations .

Fields and Arrays.

®-Functions .
Exceptions .

Method Calls

11
12
13
14

15
15
18
19

20
20
21
21
22
22
23
23
24
24
24
25
26
26

CONTENTS

3.1.2.8 Return Statements 26

3.1.3 Reachability Analysis 26

3.1.4 Example 26

3.1.5 Graph Compression 29

3.1.6 Interim Results 30

3.2 Interprocedural Analysis 32
3.2.1 Node Propagation. 32

3.2.2 Edge Propagation oL 37

3.3 Static Stack Allocationo 38
3.3.1 Determining Overlapping Liveness Regions 38

3.3.2 Handling Portals and Native Methods 39

3.3.3 Stack Allocation oL 40

4 Evaluation 41
4.1 Benchmark CD, 41
4.2 Measurements and Results 0L 42
4.2.1 Number of Stack Allocations 42

4.2.2 Amount of Stack-allocated Memory 43

4.2.3 Runtime Savings through Stack Allocation 43

5 Conclusion and Future Work 47
Bibliography 49
List of Figures 51
List of Tables 52
List of Algorithms 53
List of Listings 54
Acronyms 55

10

1 Introduction

Our daily lives have become pervaded with embedded systems: the digital alarm
clock that wakes you in the morning, the coffee machine using microcontrollers to
accept your push of a button and control the water flow, your microwave oven,
maybe even your light switches — they all contain programmable electronics tailored
to the specific needs of the device they are built into.

Traditionally, the microchips in these devices are dedicated to a single purpose
and programmed in C and kindred languages, or even assembly language. Technical
progress has increased the computational power of these chips and initiated an
ongoing trend to integrate multiple features into a single chip to achieve higher
efficiency. This has created a desire to consolidate several tasks on the same chip
and use the available processing power for increasingly complex tasks. These changes
pose a new set of problems previously unknown in embedded systems development.

Isolation Multiple tasks on the same chip should be isolated to prevent them
from interfering with each other. This is common in multitasking desktop operating
systems and usually accomplished by using virtual address spaces. Because embed-
ded systems are built for high efficiency — in terms of chip area, energy consumption
and production costs — they often lack hardware-based memory protection, a re-
quirement for virtual address spaces, completely or only support it rudimentarily.
KESO addresses this problem using a combination of type safety in the source lan-
guage (Java) and runtime checks to prevent accessing unrelated memory possibly
used by other tasks.

Ease of use Developing large software systems in low-level programming lan-
guages is impracticable. Languages allowing higher productivity are at advantage
when writing large-scale systems. The Java programming language is an attrac-
tive choice, because it offers safety, low maintenance costs and wide availability of
developer tools and well-trained developers. “Java was developed to make code
development cleaner and more bug free [...] Java virtual machines, even the just-

11

1 Introduction

] Portal
Domain A o, Domain B

GC/Heap Resources
00O Alarms
O/w‘\. \@ ISRs Portal

Tasks
@ @ @ Domain C

KESO Services

[KESO Runtime Environment

[OSEK] |

OSEK Services Device l\riemoryl

[Microcontroller]

Figure 1.1: Schematic overview of the KESO system at runtime

in-time and ahead-of-time compiled versions, are still too big and too slow for use on
most microcontrollers” [Col12], others say about Java in embedded systems. KESO
compensates for the performance penalty using an aggressively optimizing compiler
and assumptions about the nature of embedded systems.

1.1 = The KESO Multi-JVM

KESO is an application-tailored Java virtual machine for statically configured em-
bedded systems. It provides an abstraction layer on top of an OSEK/VDX or
AUTOSAR real-time operating system. Applications and even device drivers for
KESO are written in Java. The KESO compiler JINO tries to exploit static knowl-
edge about software and system configuration to perform aggressive optimizations
in order to overcome the performance penalty of Java. KESO-based systems cannot
load further code or create new tasks at runtime. This allows JINO to use much
more aggressive optimizations, because the whole codebase is known and can be
optimized at compile-time.

In comparison to traditional virtual machines, KESO does not use bytecode in-
terpretation or just-in-time compilation, but transforms Java bytecode to standard
C (or Ct+) ahead of time. This approach makes execution speeds comparable to
software written in C possible.

12

1.2 Motivation

Figure 1.1 depicts the schematic architecture of a KESO-driven system. An ab-
straction layer on top of the operating system’s API is provided by the KESO run-
time environment. It also allows executing native code using a mechanism similar
to the Java native interface (JNI) as well as access to configurable locations in the
address space — e.g., for memory-mapped I/O. Within this environment, the system
supports multiple so-called “domains”. Domains provide a similar isolation level as
address spaces do on UNIX systems. Each domain can be seen as separate Java
virtual machine, which makes KESO a “Multi-JVM”. A domain has its own heap
and garbage collector, defines own resources, alarms and interrupt service routines
and may have several tasks. Passing data between domains is only possible through
well-defined gates, the so-called “portals”. The portal mechanism ensures that the
isolation property cannot be violated.

1.2 = Motivation

While Java’s automatic memory management makes writing software easier, its need
for garbage collection may have a considerable impact on execution speed. This
becomes obvious when comparing the different strategies for memory allocation.

Explicit memory allocation and de-allocation using library functions have been
the standard dynamic memory management method in C and C++. While it is
relatively simple from a user’s point of view, management of the fragmented memory
chunks introduces medium complexity into these library functions. De-allocation
is simple and fast and happens as soon as the programmer releases the memory.
The downsides are manifold: Programming errors can lead to memory leaks (i.e.,
memory that cannot be reclaimed although it is no longer in use) or even security
vulnerabilities, e.g. by using memory after releasing it or attempting to deallocate
memory multiple times.

A different approach is using automatic garbage collection. It removes the need
for (and often also the possibility of) manual freeing of memory. Instead, automatic
scans identify unreachable objects and reclaim the associated memory. This task
is complex and time-consuming, since it needs to scan all objects in use. Using
garbage collection does not free memory immediately after its last use, but defers
de-allocation to the next run of the garbage collector. Compared to manual memory
management, garbage collection is less error-prone at the cost of being slower at
reclaiming memory and less predictable.

Apart from manual memory management and the use of a garbage collector,
region-based memory management is a third alternative. Allocating (and de-
allocating) objects from regions is simple and quick, because regions are only
reclaimed as a whole. This limitation speeds up region-based allocation operations
at the cost of dead objects possibly not being reclaimed while the region is still

13

1 Introduction

active. The Real-Time Specification for Java formulates a variant of region-based
memory called scoped memory [Dib06].

At last, memory can also be acquired on the stack by moving the stack pointer.
This method of memory management is the cheapest, since allocation and reclaiming
are only arithmetic operations on a CPU register. Memory allocated on the stack is
however not as flexible as memory from heap: Because returning from a method will
also automatically reclaim the memory allocated on its call stack frame, objects that
exceed the lifetime of the method in which they are created, cannot be allocated on
the stack.

Since stack memory is allocated and reclaimed a lot faster than Java’s tradi-
tional garbage collection could ever achieve, turning allocations into stack-alloca-
tions where possible can benefit the performance of applications. Especially those
with intensive dynamic memory allocation behavior should receive a performance
boost by using stack-allocations where possible.

Rather than having a programmer decide which objects can be allocated on stack
manually, a compiler could identify local objects automatically. To compute the
required information, the compiler first needs to identify which references can point
to which objects at any given point in the program. Optimizing compilers usually
already have this information readily available, because it was gathered in alias
analysis. Second, determining reachability from references that are known to be
escaping the method where they were obtained decides whether an object in the
graph is local or not. These steps are also called escape analysis. Since escape
analysis needs information also computed by alias analysis, many techniques that
are known from algorithms for alias analysis also apply.

This thesis strives to implement an analysis and transformation pass and changes
to the backend for KESO’s JINO compiler that will allocate objects not escaping
their method of creation on the stack without intervention of the programmer. This
should relieve of the strain on the garbage collector and reduce the frequency of
garbage collection. It could also reduce maximum heap usage in phases of the
program with intensive dynamic memory allocation and accelerate execution of the
software depending on the complexity of allocation operations.

1.3 Document Structure

The following chapter describes the state of the JINO compiler before this thesis and
similar previous work implemented in JINO. Chapter 3 explains the algorithms used
for escape analysis and stack allocation. In Chapter 4, the implemented optimization
is benchmarked and graded, before the last chapter concludes and lists future work
based on findings in this thesis.

14

2 State of the Art

The KESO Multi-JVM does not interpret or JIT-compile Java bytecode on the target
processor. Instead, it compiles application code to native machine code ahead of
time. In this step, it optimizes the code and minimizes the runtime environment’s
size using static knowledge about the configuration. This makes virtual machine
environments created by KESO highly customizable and tailored to the needs of the
application. The current chapter gives an overview of the build tool used to achieve
this with a focus on the parts relevant for this thesis.

2.1 The JINO Compiler for the KESO Multi-JVM

The JINO compiler is an integral part of the KESO system. Similar to most modern
compilers, it is modularized into a language-specific frontend, a series of optimiz-
ing passes working on intermediate code and a number of target-specific backends
generating code from the intermediate representation.

Frontend JINO’s frontend only supports Java code. It uses the Java Compiler
API [Orall] to generate a bytecode representation of the source and parses the re-
sulting .class files to build JINO’s intermediate code representation. The frontend
also reads the configuration needed for application-tailored optimization.

Middle-End The intermediate tier (or middle-end) contains all optimizations
implemented in the JINO compiler. It exclusively uses the intermediate code repre-
sentation constructed in the frontend. JINO’s intermediate code bears resemblance
to Java bytecode in its instruction set, but is fundamentally different from said
bytecode in the way that is not stack-based but explicitly references its operands.
Rather than specifying names of virtual registers, this representation points to the
results of previous instructions using a reference to the computing instruction, which
creates a tree-like structure. This simplifies separating the analysis of right-hand

15

2 State of the Art

public static int factorial (int);

Code:
0: iload_ 0O
1: iconst_ 1
2: if icmpgt 7
5: iconst__1
6: ireturn
7: iload_ 0O
8: iload_ 0O
9: iconst_ 1
10: isub

11: invokestatic #2; //Method factorial:(I)I
14: imul
15: ireturn

Listing 2.1: Java bytecode of a method computing the factorial

and left-hand sides in assigning statements as used in Section 3.1.2. See Listing 2.1
and Listing 2.2 for an example of how Java bytecode maps to JINO’s intermediate
code (note that the textual representation of the intermediate code uses numerical
virtual registers; those are only used when dumping the intermediate code, though).

The middle-end contains a number of transformations commonly found in opti-
mizing compilers, such as

e SSA construction and deconstruction [Erhl11, 3.5],

e liveness analysis and removal of dead variables and their assignments [Erh11,
3.4],

e removal of unreachable methods [Erhl11, 3.7.1] and dead code [Erhl11, 3.7.2],

e climination of redundant runtime checks [Erh11, 3.8],

e constant and copy propagation [Erh1l, 2.2.2] and

e method inlining [Erh11, 2.2.2].

e transformation of unambiguous virtual calls into their non-virtual counter-
parts [Erh11, 3.7.1],

e removal of unused fields [Erh11, 3.7.3, 2.2.2] and

e optimization of runtime lookups if the result is known at compile-time [Erh11,
3.9].

It is worth noting that some of these optimizations are only worthwhile because
JINO may assume a closed world scenario, i.e., it can analyze the complete codebase
at compile-time. For example, public or protected fields or methods could never be
considered unused in traditional Java according to the Java Language Specifica-
tion [GJST12], because dynamically loaded code (possibly unavailable to analyze
at compile-time) might access the field or call the method in question. For sim-
ilar reasons, virtual method calls can not always be transformed into non-virtual

16

2.1 The JINO Compiler for the KESO Multi-JVM

factorial (I)T {
_B0: (domne; Liveln: [i0]; Philn: []; LiveOut: [i0])

0:

1:
2:
_B5: (done; Liveln: []; Philn: []; LiveOut: [])
%3 = Goto [BI17]
_B7: (done; Liveln: [i0]; Philn: []; LiveOut: [il_1])

%0
%1
%2

%15 =
LivelIn: []; Philn: [il_1]; LiveOut: [])

6:

8: %4
9: %5
10: %6
11: %7
11: %8
11: %9
14: %10
7: %11
14: %12
14: %13
15: %14
15:

_B17: (done;

—1: %16
5: %17
—1: %18
—1: %19
17: %20

IReadLocalVariable i0
IConstant 1
GTConditionalBranch %0, %1, [_B5, _B7]

IReadLocalVariable i0
IConstant 1

ISub %4, %5
IStoreLocalVariable i2 0, %6
IReadLocalVariable i2 0
InvokeStatic test/Factorial.factorial (I)T %8
IStoreLocalVariable i2_1, %9
IReadLocalVariable i0
IReadLocalVariable i2 1

IMul %11, %12
IStoreLocalVariable i1 1, %13
Goto [_BI17]

IReadLocalVariable il 1
IConstant 1

Phi %16 [_B7], %17 [_B5]
IStoreLocalVariable i1 2, %18
Epilog i1_2

Listing 2.2: JINO intermediate code generated from Listing 2.1.

17

2 State of the Art

calls, because new candidates might be added at runtime. JINO will also propagate
constant parameters into methods if all call sites use the same constant. Since load-
ing new code possibly adds new invocation sites, this optimization would be illegal
without the closed-world assumption.

See [ESLSP11] for a case-study of optimizations that are only possible in statically
configured systems.

It would be best to implement the analysis of the escape property in this phase
of the compiler.

Backend Multiple target-specific code emitters make up the backend. Since
code generation for allocations is done in this phase, transforming allocations into
stack allocations should likely be implemented on this level. Aside from generating
C code, the backend also writes an OSEK Implementation Language (OIL) file for
the OSEK/VDX system generator to allow building an application-tailored kernel.

2.2 JINO’s Pass Model

To organize analysis and transformation steps and their relations, JINO employs a
pass model inspired by the Low-Level Virtual Machine (LLVM) compiler infrastruc-
ture!. Analyses and transformations are implemented as passes whose execution or-
der is determined by the pass manager based on dependencies and anti-dependencies
and a flag that allows disabling the pass. Since fixpoint iteration is commonly used
in compilers, a flag to loop while the pass signals that it needs to be run again is of-
fered as a convenience. A pass also holds information which results of earlier passes
it invalidates and thus would require re-calculation if they were to be used again.
Similar to LLVM’s passes, JINO offers a number of abstract base classes for passes
iterating over domains, classes or methods for developers to extend. [Erh11, LLV]

Construction of static single assignment (SSA) form and computation of the dom-
inator tree can serve as example for the pass model: SSA construction uses infor-
mation about the dominance frontier and thus has a dependency on dominator
tree computation. Transforming the program into SSA form does not change the
dominator tree; for this reason, SSA construction will not mark the dominator
tree outdated, allowing re-use rather than re-calculation. Other passes require the
code to be SSA-formed and thus declare a dependency on SSA construction and an
anti-dependency on SSA deconstruction, ensuring these passes will be run between
construction and deconstruction of SSA form. A number of optimizations can be
selected by the user at compile-time. The pass manager computes the execution
order based on the passes requested by the user and their dependency relations.

http://11vm.org/

18

http://llvm.org/

2.3 Existing Escape Analysis

Escape analysis can be implemented as a pass in the JINO compiler. Since we
want to compute the escape property on intermediate code in SSA form, the pass
needs to depend on its construction and anti-depend on its deconstruction.

Because stack-allocation of function-local objects happens in the backend, it can-
not be implemented easily as a pass. However, a pass can instead annotate candidate
allocation operations in intermediate code for the backend to interpret. Since this
pass needs the information collected in escape analysis, it needs a dependency on
the analysis pass.

2.3 Existing Escape Analysis

JINO already features a previous implementation of this kind of analysis, albeit
based on a different algorithmic idea. It runs over the intermediate code repre-
sentation trying to trace paths of memory locations across assignments, method
invocations and other relevant statements. If a variable is found to be passed to a
reference known to escape a method (e.g., because it is a parameter) or to a state-
ment causing the escape of the value (e.g., throw and return), it is marked escaping.
The analysis makes a number of simplifying assumptions and stops tracking memory
location at a couple of statements like assignments to members or array fields.

The proposed implementation of escape analysis will not make any of these simpli-
fying assumptions. It will also not only generate boolean information as to whether
an object escapes or not, but a ternary state divided into local objects (those that
do not escape), method-escaping objects (escaping their method, but not thread of
creation) and global objects (escaping both the method and thread of their alloca-
tion). This partition enables further optimizations like synchronization optimization
or conversion into a “caller allocates” pattern for objects marked method. See Chap-
ter 5, where this is covered in more detail.

19

3 Design and
Implementation

Objects, whose lifetime does not exceed that of the scope in which they were cre-
ated, can be allocated on the stack. Doing so simplifies both their allocation and
deallocation procedure, because stack-based memory is allocated faster and often
reclaimed earlier than memory from the heap managed by a garbage collector. To
determine this property, alias information® is needed. While alias information can be
computed locally, results yielded by global analysis are much more accurate. Since
the architecture of KESO does not allow unknown code to be called, no assumptions

have to be made about the implementation of such unknown functions?.

This chapter explains the algorithm and implementation of said alias analysis and
stack allocation transformation. The implemented algorithm is based on [CGS103].

3.1 Intraprocedural Analysis

A connection graph (CG) as defined in [CGST03, section 2] is used to store the
required alias information. The algorithm to build the CG consists of two separate
phases. First, function-local results are computed in an intraprocedural analysis.
The part of the calculated graph relevant for other methods, the so-called non-local
subgraph is then used in an interprocedural pass to derive complete alias informa-
tion. Reachability in the CG decides whether an allocation can be transformed into
a stack allocation without violating the correctness of the program. [CGST03]

lalias information is the information which object references can — at any point in time in the
runtime of the program — point to a certain object
2with the exception of native code, see Section 3.3.2

20

3.1 Intraprocedural Analysis

3.1.1 The Connection Graph

The CG used to represent the alias information is a graph consisting of several
different vertex and edge types. The following sections describe these vertices and
edges in detail.

3.1.1.1 Nodes in the Connection Graph

Vertices in a CG are called “nodes” and are either object nodes or reference nodes.

Object nodes represent an object, i.e., an instance of a class. It is important to
note that the analysis creates at most one object node per allocating statement.
Keep in mind that an allocation might be executed multiple times at run-time, but
is still represented by the same object node in the CG [CGS103, p. 879]. Some of the
objects in the program do not have an allocation site, e.g., string constants. Those
are tracked in a subclass of object nodes called constant object node. At some points
in the program, the algorithm requires an object node, but the information available
is not yet sufficient to determine its allocation site. This happens when trying do
dereference a reference, but it is not known at this point in the analysis where the
reference points to. It is usually the case if the reference’s pointees were created
outside of the analyzed method and the reference was passed in via a parameter, or
if the reference is always null. The algorithm conservatively assumes the former,
which might cause the addition of a superfluous edge, but otherwise does not affect
the correctness of the analysis [CGST03, p. 883]. To represent the pointees of the
dereferenced reference in these cases, a phantom object node is created. At most
one phantom object node is created per intermediate code instruction.

Reference nodes are created for every reference used in the analyzed program,
e.g., references in local or global variables, or references returned from function
calls. There are four subgroups of reference nodes:

CG Local Reference Node Local reference nodes represent references stored in
local variables, i.e., slots in Java bytecode.

CG Global Reference Node Global variables® of reference type cause the cre-
ation of a global reference node in the CG.

CG Field Reference Node Member variables of objects are depicted in the CG
by adding a field reference node and a field edge pointing from the object node
to the newly added reference node. Only fields of reference type are of interest;
others are simply ignored. Field reference nodes are annotated with the field’s
name in the class of the object node.

CG Actual Reference Node These nodes are added for every formal parameter
or return value of reference type both on the caller and on the callee side.

3i.e., static class members in Java

21

3 Design and Implementation

node type H object node ‘ field reference node ‘ reference node
object node — field edge —
reference node || points-to edge deferred edge deferred edge

Table 3.1: Type of edge depending on the type of the source node (down) and
destination node (across). “—” denotes impossible combinations. This
is implemented as the attach operation.

3.1.1.2 Edges in the Connection Graph

Nodes are interconnected with a series of different edges. Edges never have any du-
plicates, that is, a CG never contains more than one edge with the same combination
of origin and destination node.

A points-to edge from a reference node to an object node represents the infor-
mation that the reference node can point to a object node at some point in the
program.

To simplify updating the CG with new information, deferred edges are temporar-
ily used: At every point where a reference is copied, rather than copying all existing
points-to edges in the CG, a deferred edge is added from the copy operation’s des-
tination’s representation in the CG to its equivalent of the copy operation’s source.
After intraprocedural analysis these nodes are removed in a path compression step
(see Section 3.1.5).

Field edges point from object nodes to field reference nodes when the class of the
object node has a member variable of reference type identified by the name in the
destination field reference node.

To simplify adding edges in the CG a helper function attach was implemented
to aid in creating the correct edge type depending on the types of the source and
destination node. Its behavior is shown outlined in Table 3.1.

3.1.1.3 Escape State

Analogously with [CGS'03, p. 881], the escape property of objects from methods
and threads is defined as follows: Let O be an object and M be a method invocation.
O escapes M if its lifetime exceeds the lifetime of M. Let T be a thread. O escapes
T if it is reachable from any other thread 7" # T.

To determine the escape state of an object, the escape property is extended to
all nodes in the CG, i.e., each node is annotated with its escape property. Possible
values for the escape state are (1) local, denoting the node does neither escape
its method of creation nor the thread running this method, (2) method, used if the

22

3.1 Intraprocedural Analysis

node escapes its method of creation, but not the thread (or task in a KESO context)
running this method, and (3) global indicating the node escapes both the method
and thread of its creation. These states can be grouped in a total order given by
local < method < global, because a node with a lifetime exceeding the lifetime of the
thread it was created in will also exceed the lifetime of the method it was created
in (i.e., global includes method).

The algorithms start by assuming no node escapes the method or thread of its
creation, i.e., by setting the escape state to local. Performing reachability analysis
in the CG allows determining the escape state of nodes as follows: any node N’
reachable from a given node N must fulfill

escapeState (N') > escapeState (V) (3.1)

For any node found which does not satisfy Equation (3.1), update its escape state
as follows:
escapeState (N') = escapeState (N) (3.2)

Nodes reachable from a node with global escape state are also marked globally
escaping; nodes reachable from a method-escaping node, but not reachable from a
global context get an escape state of method. All other nodes remain at the default
after creation, which is local.

3.1.2 Building the Connection Graph

The CG is constructed by iterating over the intermediate code instructions of every
method in SSA form. For each method, a new CG is created and nodes and edges
are added as follows.

At the beginning of a method, the algorithm creates a callee-side actual reference
node and a local reference node for each formal parameter of reference type and
adds a deferred edge from the local reference node to the actual reference node.
If the analyzed method returns a reference, it also adds an actual reference node
representing the return value. For each actual reference node created on the callee
side, its escape state is set to method.

To further build the CG, the algorithm iterates over all instructions in a method,
ignoring all but the following operations.

3.1.2.1 Local Variables

Assignments to local variables of the form p = ¢ are handled by creating a local
reference node to represent p in the CG if none exists for this variable yet and
adding an edge (by means of attach as described in Table 3.1) from p to ¢*. This

4or rather, their representations in the CG

23

3 Design and Implementation

makes no assumptions about the nature of ¢: it might be another local variable, a
field, or even a method invocation. See the appropriate parts of Section 3.1.2 on
how to handle the right-hand side in an assignment.

Reading a local variable causes the creation of a local reference node for the local
variable if none exists yet. Further handling of the local reference node depends on
the operation that uses the read value.

3.1.2.2 Global Variables

Usage of a global variable as lvalue®, e.g., T.p = ¢, causes the creation of a global
reference node if none exists for T.p yet and the addition of an edge from this node
to ¢ (where the edge type depends on the type of ¢). For every global reference node
created, its escape state is set to global.

Global variables as rvalues® also cause the 1-limited creation of a corresponding
global reference node. Given a statement like ¢ = T.p where T.p is the global
variable, an edge from ¢ to the global reference node representing 7".p is added (where
again, the type of the newly added edge is determined by the attach operation).

3.1.2.3 Allocations

Object allocations like p = new T'() cause the creation of an object node to represent
the newly created instance of T'. At most one object node per allocating instruction
shall be created. Allocations of arrays’ are handled in the same manner.

Constant references (e.g., constant strings and null constants) cause the creation
of a constant object node and are otherwise processed analogously.

The remaining assignment in p = new T'() is handled depending on the type of p.
E.g., if p is a local variable, see Section 3.1.2.1.

3.1.2.4 Fields and Arrays

Instructions involving field access® in the form of ¢ = p.f or p.f = ¢ (where p is a
reference to an object holding the field and f is the name of the field being accessed)
are handled as follows:

(1) For p and each reference node reachable from p via deferred edges, make sure
the pointees of this reference node are represented in the CG. This is the case
if the node has any outgoing edges. Thus, for reference nodes without any

5via the Java bytecode instruction putstatic

bvia the Java bytecode instruction getstatic

"Java bytecode instructions anewarray, multianewarray, newarray
8Java bytecodes getfield and putfield

24

3.1 Intraprocedural Analysis

outgoing edge, create a phantom object node and attach it to this reference
node. This might create unnecessary phantom object nodes to temporarily hold
alias information, which will be removed later in Section 3.1.5.

This ensures the pointees of p are represented in the CG, because they will be
needed in step 2.

(2) For each object node reachable from p by deferred edges and points-to edges,
make sure a field reference node attached to the object node exists for the to-
be-accessed field. If necessary, create this field reference node.

Compile a list of the field reference nodes found for step 3.

(3) For each field reference node found in step 2, do the following:
(3a) If the field is written to, i.e., p.f = ¢, attach ¢ to the field reference node.
(3b) If the field is read from, i.e., ¢ = p.f, attach the field reference node to g.

Reading and writing to arrays is handled analogously with field access, i.e., ¢ = pli]
is handled as ¢ = p.a and p[i] = ¢ is handled as p.a = ¢, where « is a special identifier
that can not occur in field operations. The algorithm currently does not distinguish
between different array indices (although that could be done by using a mapping
function a(index) and assuming writing or reading from all indices if the index is
not known at compile time).

3.1.2.5 ®-Functions

Since the analysis is run on code in SSA form, the code may contain ®-functions. To
correctly handle them, ensure a local reference node exists for the result of the ®-
operation and loop through the candidates for the variable, attaching each candidate
to this local reference node.

If the code was not SSA-formed, special care would have to be taken when pro-
cessing assignments and when reaching join points of the control flow. Variable
re-assignments would have to cause any incoming deferred edges to be redirected
to the successors of the reference node before processing the new assignment. To
correctly process alternative control flows assigning the same variable, the CG would
either have to be copied or the changes made to local variables in one of the paths
would have to be reverted before processing the other. Both approaches require
merging the information at control flow join points [CGST03, p. 885]. Using SSA
form, all CG updates can be done in place.

25

3 Design and Implementation

3.1.2.6 Exceptions

Throwing exceptions causes the thrown object to escape the method of its allocation.
In order to represent this information in the CG, throw p statements? need to set
p’s escape state to global.

3.1.2.7 Method Calls

For any method invocation in the form of p = g.method(r, s, t) encountered, create
a caller-side actual reference node for each formal parameter of reference type and
attach it to the representation of the actual parameter given at this invocation site.
The this-parameter is implicitly treated as first parameter and handled like other
parameters.

If the called method returns a reference, also create a caller-side actual reference
node to represent the return value. The further processing of this node depends on
whether the return value is used and how it is used. In the example given above, an
edge would be added from the representation of p to this actual reference node.

3.1.2.8 Return Statements

Returning statements not returning a reference are ignored. Those returning a
reference of the form return p are handled by adding a deferred edge from the actual
reference node representing the return value (which was created in Section 3.1.2) to

p.

3.1.3 Reachability Analysis

To determine which objects in the analyzed method can be stack-allocated, reacha-
bility analysis is performed on the CG of the method. All nodes reachable from a
node with an escape state of global have their escape state set to global, too. Nodes
reachable from a node with an escape state of method are marked with the same
escape state if their escape state is not global.

This step can be done gradually during the creation of the CG by modifying
attach to also update the escape state of any new dependents.

3.1.4 Example

Consider the simple Java class given in Listing 3.1. When compiled to Java bytecode,
the code of the test method looks like Listing 3.2. Note that this example already

9Java bytecode athrow

26

00 ~J O O i W N

11
12
13
14
15
16
17

3.1 Intraprocedural Analysis

public class Test {
public static Object a;
public Object b;
public static String test(String arg) {
Test t = new Test();
t.b = arg;
Object o = new Object () ;
Object p = o;
Test.a = p;
String s = "Hello, World!";
return s;
}
}
Listing 3.1: Example Java code for interprocedural analysis
public static java.lang.String test(java.lang.String);
0: mnew #2; //class Test
3: dup
4: invokespecial #3; //Method "<init >":()V
7: astore__1
8: aload_1
9: aload_0
10: putfield +#4; //Field b:Ljava/lang/Object;
13: mnew #b5; //class java/lang/Object
16: dup
17: invokespecial #1; //Method java/lang/Object."<init >":()V
20: astore_2
21: aload_ 2
22: astore_3
23: aload_3
24: putstatic #6; //Field a:Ljava/lang/Object;
27: 1dc #7; //String Hello, World!
29: astore 4
31: aload 4
33: areturn
}

Listing 3.2: Listing 3.1 compiled to Java bytecode

27

3 Design and Implementation

is in SSA form, because each variable is only assigned once.

To create the CG for this method, start by creating a callee-side actual refer-
ence node for the parameter arg in slot 0 and setting its escape state to method.
In Figure 3.1 the created node is denoted by arn : arg. Note that no node for a
this-parameter is created, because the method is static and thus has no such pa-
rameter. Further, also create a local reference node for the variable in slot 0, denoted
by arg in the graph and add a deferred edge from this node to its corresponding
actual reference node to simulate an assignment.

Since the method returns a reference (a string in this case), create an actual
reference node for the return value ret and set its escape state to method.

For the following object allocation, an object node is created.

The next relevant instruction is the invocation of Test’s constructor. Create an
actual reference node for each formal parameter of reference type, i.e., this, and
add a points-to edge from the created actual reference node, which is denoted by
Object.init(this) in the example, to the actual argument, i.e., the allocated object
node. Since the constructor does not return a reference, do not create a caller-side
actual reference node for the return value.

In instruction 7, the reference to the allocated Test object is stored into a local
variable in slot 1. This causes the creation of a local reference node for this slot (¢
in Figure 3.1) and the addition of a points-to edge from ¢ to the object node.

The two following aload instructions do not modify the CG, because local refer-
ence nodes for these variables already exist in the graph. For the putfield instruc-
tion at position 10, create a field reference node and attach it to the object node
pointed to by t, since none exists for b yet. Finally, process the assignment of arg
to b by adding a deferred edge from b to arg.

Instructions 13 — 20 are handled similarly to the object allocation in 0 — 7.

Bytecode positions 21 and 22 code the copy operation p = o. Since no local
reference node exists for p yet, a new one is created. A deferred edge is added from
p to o to represent the assignment.

Putstatic marks a write to a global variable. No global reference node exists for
the field T'est.a yet, so a new one is created and its escape state is set to global. The
assignment from slot 3 to the global variable is handled by adding a deferred edge
from Test.a to the variable in slot 3, p. This causes all nodes reachable from p to
be marked with a global escape state (either in reachability analysis after building
the graph, or immediately if attach propagates escape information).

Instructions 27 — 29 load a string constant into a slot. According to Section 3.1.2.3,
constants are handled like allocations, and thus create a constant object node for the
string. The following assignment to the local variable in slot 4 causes the creation
of a local reference node, denoted by s in Figure 3.1, and a points-to edge from s to
the constant object node.

28

3.1 Intraprocedural Analysis

' arnarg ret
e - '--.I.--'
Df ;D
........ I
Test.init(this) D, P

Figure 3.1: The CG of the method given in Listing 3.1 after interprocedural analysis
but before path compression. Elliptic vertices represent reference nodes.
Field reference nodes have a red e border, other reference nodes have
blue e borders. Dotted borders mark actual reference nodes. Vertices
with a rectangle shape and green e border are object nodes. Rectangles
with dashed borders (not present in this graph) are phantom object
nodes.

Deferred edges are dashed and annotated with the letter “D”. “P” marks
points-to edges and “F” is used for field edges.

The escape state of nodes in the CG is denoted by the fill color. White
indicates local, orange « stands for method and red « marks global.

Finally, statements 31 — 33 require a deferred edge to be added from ret to s in the
CG. This also causes the propagation of ret’s escape state method to its descendants
s and the constant object node.

3.1.5 Graph Compression

At the end of intraprocedural analysis the resulting graph can be compressed by
removing all deferred edges. An incoming points-to edge can always be removed
from the CG by replacing it with edges to successor nodes. The type of the new
edge is equal to the type of the edge pointing to the successor node. If a reference
node does not have any outgoing edges (i.e., it is a “terminal” node), create a
phantom object node and attach it to the node (which adds a points-to edge).
Applying this algorithm recursively will remove all remaining deferred edges from

29

3 Design and Implementation

[N e .
' <phantom> <——arn:arg :

Figure 3.2: The CG given in Figure 3.1 after path compression. Colors and shapes
as described in Figure 3.1 with the addition of phantom object nodes
with dashed green e border.

the CG [CGST03, p. 880]. Figure 3.2 depicts the example given in Section 3.1.4
after applying path compression.

The graph can be simplified further by removing all phantom object nodes which
are siblings of any other object node to remove any phantom object nodes unnec-
essarily added in Section 3.1.2.4. If the phantom object node to be removed has
any outgoing field edges, re-create the field reference nodes reachable via these field
edges and their dependents below all sibling object nodes of the phantom object
node. Figure 3.3 illustrates this step.

3.1.6 Interim Results

The results generated in the intraprocedural analysis are only final for nodes that are
not reachable from callees of this method. Consider Listing 3.3 for a case where the
local alias information is not sufficient to determine whether a node can be allocated
on the stack: The newly created ListElement in addElement would be marked local
by intraprocedural analysis, but is passed as argument to appendAfter (i.e., it is
reachable from a callee). If it was stack-allocated, it would no longer be available
after the lifetime of the addElement method, which contradicts the principle of a
linked list.

Global analysis is needed to convey the information that an edge is added from

30

0 ~J O U i W N -

11
12
13
14
15
16
17
18
19
20

3.1 Intraprocedural Analysis

P P

:\’<phant0m>—‘: (Object J (Object J

? |

Figure 3.3: Removal of superfluous phantom object nodes (see Section 3.1.5). Colors
and shapes as described in Figure 3.2.

public class LinkedList {
private static final class ListElement {
ListElement next;
Object elem;
public ListElement (Object o) {
elem = o;
}
}
private ListElement head;
public static void addElement(LinkedList 1, Object o) {
appendAfter (1.head, new ListElement (o)) ;
}
private static void appendAfter(ListElement pred, ListElement succ) {
pred.next = succ;
}
}

Listing 3.3: Example where intraprocedural analysis does not generate sufficient
information

31

3 Design and Implementation

1.head.next to the new list element by the invocation of appendAfter. Section 3.2
describes further analysis solving this problem.

3.2 Interprocedural Analysis

To solve the problem outlined in Section 3.1.6, a global analysis, i.e., an analysis
spanning multiple methods, is needed. In this step, the summary information cal-
culated for a method in intraprocedural analysis is used to update the CG of any
callers. The algorithm described in [CGST03, section 4] allows using a single CG
to represent the effects of a method independently of the various possible calling
contexts. The relevant part of the CGs calculated in intraprocedural analysis are
the nodes with an escape state of global or method, the so-called non-local subgraph.

Information needs to be propagated from a callee’s CG to the CG of its callers,
i.e., bottom-up in the call graph. Since this step might modify the caller’s CG its
callers would have to be updated in turn. To prevent recalculation of information,
this should be done bottom-up in a topological order. Because recursion will cause
cycles in the call graph, such a topological order does not always exist. Fixpoint
iteration could solve this problem, but is very expensive when applied to the whole
graph. Instead, iterating over each strongly connected component in the graph sepa-
rately until its partial solution converges and processing other vertices in bottom-up
topological sorting gives acceptable runtime. To find the strongly connected com-
ponents and sort them topologically, Tarjan’s algorithm [Tar72] is used, because it
computes both the strongly connected components and the sorting simultaneously.

3.2.1 = Node Propagation

Each invocation in the currently analyzed method is processed as follows: Starting
with each pair of caller-side and callee-side actual reference nodes (a, a) recursively
determine further equivalence pairs between caller and callee and ensure nodes and
edges between them that are present in the callee CG are also represented in the

caller CG.

Consider the example given in Listing 3.3 where intraprocedural analysis did not
generate complete information. The CGs for addElement and appendAfter are
given in Figures 3.4 and 3.5, respectively. There are two method invocations in
addElement: (1) the constructor of ListElement, which will not be discussed in
this example for simplicity reasons, and (2) the call to appendAfter. The procedure
to update the caller CG with the information from appendAfter would start at the
tuple

(appendAfter(pred), arn:pred) (3.3)

32

3.2 Interprocedural Analysis

<phantom>?3 i

1
1
1
(S

Figure 3.4: The CG of addElement as given in Listing 3.3 after intraprocedural
analysis. Colors and shapes as described in Figure 3.2.

@ arn:succ
P P P s y

<phantom>2

[}
[}
1
(S

P

Figure 3.5: The CG of appendAfter as given in Listing 3.3 after intraprocedural
analysis and path compression. Colors and shapes as described in Fig-
ure 3.2.

33

3 Design and Implementation

P mapsTo(p)
<phantom>! | <phantom>*

<phantom>? | <phantom>°, ListElement

Table 3.2: The mapsTo relation for the example given in Listing 3.3

and continue to drill down recursively finding the two phantom object nodes
(<phantom>4, <phantom>1). (3.4)

Since the field edge to the next field only exists in the callee CG, the same field
is created in the caller’s CG. The node reachable from the next field reference
node corresponds to the ListElement object node; however, this information is not
available at this point in the analysis, because the invocation’s second parameter
has not been analyzed yet. For this reason, a phantom object node (henceforth
denoted by <phantom>9) is created to represent the pointee of next. Since there
are no further outgoing edges in the CG of appendAfter, analysis of this parameter
is finished. Processing restarts at the next pair of parameters, i.e.,

(appendAfter(succ), arg:succ) (3.5)
and will find the tuple
(ListElement, <phantom>2>. (3.6)

Since there are no edges outgoing from the phantom object node, the analysis is
complete. While these steps are executed, the algorithm keeps track of a mapping
from object nodes in the callee’s CG to nodes in the caller’s CG. [CGST03, 4.4.1] calls
this the mapsTo(p) relation; see Table 3.2 for the mapsTo relation in our example.
Figure 3.6 shows the intermediate state of the CG for addElement after these steps.

Algorithm 1: The updateCaller procedure [CGST03, Fig. 7]
Input : an invocation site
Result: calls updateNodes for all pairs of actual reference nodes

1 updateCaller (¢ : invocation)
2 begin
3 L foreach (acanee; Geanler) € ParameterPairs(i) do

4 L updateNOdeS(acalleeyacaller))

34

3.2 Interprocedural Analysis

Figure 3.6: The CG of addElement as given in Listing 3.3 after updateNodes in
interprocedural analysis. Colors and shapes as described in Figure 3.2.

These steps are formalized in Algorithms 1 and 2. They ensure all object nodes
in the non-local subgraph'® of the callee’s CG are represented in the caller’s CG and
construct the mapsTo(p) relation that will be needed in Section 3.2.2.

Algorithm 1 finds all actual reference nodes in both the caller’s and the callee’s
CGs (see line 3 in Algorithm 1) and calls updateNodes for each corresponding pair
in statement 4.

The updateNodes procedure shown in Algorithm 2 is invoked by updateCaller and
calls itself recursively. Its parameters are a pair of corresponding reference nodes,
denoted by f for the callee side and g for the caller side. The algorithm loops
for each object node pointed to by f (statement 3) and ensures these nodes are
represented in the caller CG, creating a new node if they are not, in statements 4
to 6. Statements 7 to 10 then ensure all object nodes below g in the caller’s CG
are present in the mapsTo(p) set of the callee object node f. If a node was added
to the set, the following instructions are also executed: First, if the escape state of
the callee object node is global, the escape state of the nodes mapping to this object
node in the caller’'s CG are also marked global in line 13. Second, the algorithm
makes sure all fields present in the callee’s CG below the currently analyzed object
node (statement 14) are also present in the caller’s CG, creating them if they are
not in line 16. Finally, any two corresponding fields found at this level are used to
recursively call updateNodes in statement 17.

10Since processing always starts at callee-side actual reference nodes which are always part of the
non-local subgraph, all nodes reachable from these must also be part of the non-local subgraph.

35

3

Design and Implementation

Algorithm 2: The updateNodes procedure [CGST03, Fig. 7]

[uny

© W

10

11
12

13
14

15

16
17

Input : a pair of corresponding reference nodes on the caller and callee side
Result: ensures all nodes in the callee CG are represented in the caller’s CG

updateNodes(f : reference node, g :

reference node mapping to f in the caller’'s CQG)
begin

foreach n € PointsTo(f) do

if PointsTo(g) = () then

// Make sure the pointees of f are represented in the caller’s CG

B CreateTargetNode(g) ;

foreach m € PointsTo(g) do

if m ¢ MapsTo(n) then

// Update the MapsTo(n) relation

MapsTo(n) U= {m} ;

if Global == EscapeState(n) then

// Nodes globally escaping the callee also escape the caller

| EscapeState(m) = Global ;
foreach k € Fields(n) do

// Make sure the fields of n are represented in the caller’s
CG

caller Field = GetField(m, FieldName(k)) ;
| updateNodes(k, caller Field) ;

36

3.2 Interprocedural Analysis

3.2.2 Edge Propagation

While the steps in Section 3.2.1 ensure that all nodes in the non-local subgraph of
the callee’s CG are represented in the CG of the caller, this alone is not sufficient
to generate correct information, because edges present in the callee’s CG have not
been propagated to the caller yet. To do this, we iterate over the object nodes in
the callee’s non-local CG and call updateEdges (see Algorithm 3).

Algorithm 3: The updateEdges procedure [CGST03, 4.4.2]

Input : An object node in the callee’s non-local subgraph
Result: Points-to edges present in the callee’s CG are added to the caller’s CG

updateEdges(n : callee-side object node)
begin
foreach k € Fields(n) do
foreach m € MapsTo(n) do
caller Field = GetField(m, FieldName(k));
foreach o € PointsTo(k) do
L PointsTo(caller Fiield) U= MapsTo(o);

i I =>RE | SN VU R

UpdateEdges operates on a given object node in the callee’s CG and starts by
getting the field reference nodes reachable from this object node (see statement 3
in Algorithm 3). Lines 4 and 5 compute the equivalent of these field reference nodes
on the caller side by using the mapsTo(p) property as computed in updateNodes.
The two following statements in lines 6 and 7 finally propagate any edges present in
the callee’s CG into the caller’'s CG.

Applied to the previously discussed example, calling
updateEdges(<phantom>1) (3.7)

results in the operation

PointsTo(next) U= {<phant0m>6, ListElement}, (3.8)

i.e., adding an edge from next to both <phantom>® and ListElement. Since both
object nodes are now reachable from a node with an escape state of method, ap-
plying Equations (3.1) and (3.2) yields a new escape state method for both object
nodes. Figure 3.7 depicts the CG after applying updateFdges.

37

3 Design and Implementation

Figure 3.7: The CG of addElement as given in Listing 3.3 after interprocedural
analysis. Colors and shapes as described in Figure 3.2.

3.3 Static Stack Allocation

Every allocation site with an escape state of local after the analysis in Sections 3.1
and 3.2 is eligible for dynamic stack allocation. Choi et al. suggest using alloca(3),
but this function is not standardized and it might not be known how much memory
will be allocated on the stack at runtime when using it, e.g., within a loop or when
called with a dynamic size. Because alloca(3) moves the stack pointer by the
number of bytes given as argument, generating code that calls it with a dynamic
size or a fixed size but a dynamic number of times (such as in a loop) might overflow
the stack. These overflows could possibly endanger the safety of the KESO virtual
machines.

For these reasons, statically allocating as many objects as possible on the stack
is desirable. However, not all allocation sites with a local escape state can always
be statically allocated on the stack. This section describes when an allocation can
safely be transformed into a static stack allocation.

3.3.1 = Determining Overlapping Liveness Regions
Allocations can only be easily transformed into static stack allocations if there are no

two objects allocated by the same statement in use at the same time [CGST03, 6.2].
To determine whether this is the case, the liveness property of variables can be used

38

0 3 O O s W N

11
12
13
14
15

3.3 Static Stack Allocation

public class Overlap {
Overlap next;

public static void main(String[] args) {
Overlap o = new Overlap () ;
Overlap p = null;

for (;;) {
P = 0]
o = new Overlap();
System.out.println (p);
System .out.println (o) ;
}

}

}

Listing 3.4: Example Java code with objects not easily statically stack-allocatable

as follows: Using existing liveness information on basic block level, iterate over the
basic blocks in reverse instruction order and carry along a set of variables alive at
the current intermediate code instruction. Update this set when the current instruc-
tion changes the set of live variables. When encountering an allocating instruction
which is a candidate for stack allocation, perform reachability analysis in the CG to
determine whether the object allocated is reachable from any of the variables live
at this point in the program. If this is the case, multiple objects created at this
allocation site are used simultaneously. Since these objects must be distinct and
cannot share the same storage location, they cannot trivially be stack-allocated in a
static manner'!. Listing 3.4 gives an example where an allocation (instruction 10),
although correctly marked local, cannot be turned into a static stack allocation, be-
cause the objects allocated by the instruction are reachable from a live variable (p,
live starting at instruction 9, ending at 11) at the time of allocation.

3.3.2 Handling Portals and Native Methods

KESO offers so-called “portal” methods allowing domains to exchange data. De-
pending on the implementation of this mechanism, passing an object to a portal
method could require it to be heap-allocated. However, since KESO creates deep
copies of objects passed into portals, the memory pool used to allocate the source
object is not relevant. Escape analysis can thus simply ignore portal methods.

1Tf it is possible to determine how many objects allocated by an instruction are alive simultane-
ously, this number of objects can be statically stack-allocated and managed in a bounded buffer
with random access. Every read of one of these objects must be matched to the correct index
in the bounded buffer. This is, however, beyond the scope of this thesis.

39

3 Design and Implementation

Native methods, on the other hand, could cause its parameters to escape. To
handle this correctly, KESO offers annotations on native methods, allowing the pro-
grammer to specify whether parameters passed to a native method escape (e.g., via
a global variable). If no annotation is present, the analysis conservatively assumes
any object passed to a native method escapes and sets its escape state to global.

3.3.3 Stack Allocation

To turn the allocations identified as local into stack allocations, JINO’s backend
supports emitting C code that will cause objects to be created on the stack rather
than using KESO’s dynamic memory allocation strategy. To achieve this, JINO
uses standard C mechanisms and does not rely on alloca(3).

Since KESO’s heap object allocation API also initializes the object’s meta infor-
mation, a variant of this API was developed that will initialize these fields from a
given pointer to an object. For stack-allocated objects, these functions are called
instead of their counterparts allocating from heap.

As part of this thesis, JINO’s backend was also modified to support stack-
allocating single-dimension arrays of both primitive and complex type. Arrays with
constant sizes are allocated on the stack up to a configurable threshold of bytes.
Experimental support was also added for stack-allocation of arrays with dynamic
sizes, but uses alloca(3) and is thus potentially unsafe without further checks.

40

4 Ewvaluation

The previous chapter detailed the design and implementation of new analysis and
optimization passes to stack-allocate objects not escaping their context of creation.
This chapter compares the effectiveness of the new optimization pass on the basis
of measurements against both no similar optimization and the analysis previously
implemented as described in Section 2.3.

4.1 Benchmark CD,

When evaluating optimizations, benchmarks are a widely used instrument. In order
to generate meaningful results a benchmark should be similar to real-world tasks.
On the other hand, a benchmark should produce simple numerical output that can
easily be processed, compared and graphed. Previous work on the KESO system put
an emphasis on the similarity to common real-world applications rather than using
a series of micro-benchmarks gauging isolated aspects [Erh11, ESLSP11,STWSP12]
by using the CD; benchmark from the CD, family of benchmarks first published in
2009 in [KHP*09]. CD, is “an open-source real-time Java benchmark family that
models a hard real-time aircraft collision detection application.” [KHP*09] This
benchmark consists of two main components: (1) an air traffic simulator (ATS)
generating a stream of radar frames, which are passed via a non-blocking queue to
(2) the collision detector (CD), which detects potential collisions among aircraft in
these radar frames.

Two variants of this benchmark were used when evaluating the optimization:

1. The “on-the-go” variant generates the necessary radar frames in the collision
detection thread as needed for the detection, avoiding the queue at the cost of
less realism.

This variant was tested on a TriCore TC1796 microprocessor running a CiAO
system.

2. The “simulated” flavor, where the ATS runs in a concurrent task in a separate

41

4 FEvaluation

’ H CD. on-the-go \ CD. simulated
CPU Infineon TriCore TC1796 Intel Core 15 650
150 MHz CPU 3.2 GHz

75 MHz system
Memory || 2 MiB Flash, 1 MiB SRAM | 4 GiB DDR3-PC1333

OS || GiAO r1689 Linux 3.2.0
Compiler || GCC 4.5.2, Binutils 2.20 GCC 4.5.3, Binutils 2.22
KESO r2988

Table 4.1: Hard- and software configuration used to run the benchmarks.

KESO domain. Frames are passed to the collision detector thread via a queue
and are dropped on overflow (i.e., when frames are generated faster than they
can be processed).

Since no TriCore port of this variant is available, all measurements were exe-
cuted on a PC using Trampoline as OSEK abstraction layer.

4.2 Measurements and Results

See Table 4.1 for the hardware and software configuration used to run the bench-
marks. The following sections detail and interpret the measurements and their
results conducted.

4.2.1 Number of Stack Allocations

The number of stack allocation instructions in the generated code can serve as
criterion as to the quality of our analysis, since more stack allocations mean less
work for the garbage collector. Figure 4.1 graphs the number of objects and arrays
that both the old and new algorithm found stack-allocatable and turned into stack
allocations relative to the number of allocations in the whole program. In the
“on-the-go” test, previously 27.5 % of objects were found to be eligible for stack
allocation. This number increased by 25.0 % to 34.4 % with the newly implemented
analysis. The bigger “simulated” build configuration shows similar, albeit smaller
numbers: 14.2 % were found stack-allocatable by the old algorithm. This thesis’
algorithm increased this number by 27.8 % to 18.1 %.

42

4.2 Measurements and Results

Z 1,000 -
3 851
O
5800 | -
B
n
R | 01 all allocations
g [0 stack allocations, new algorithm
B 400 | [0 stack allocations, old algorithm
(]
3
= 200 189 154 121
: R []
BiS 0 T T
on-the-go simulated
Testcase

Figure 4.1: Number of stack allocations per test and algorithm relative to all allo-
cating instructions

4.2.2 Amount of Stack-allocated Memory

The more memory is allocated on the stack, the smaller is the strain on the garbage
collection methods, because the heap memory does not fill up as quickly. The mem-
ory savings can be measured using the CD, benchmark by comparing the amounts of
memory allocated in each run of the collision detector with the same values without
using stack allocation. Figure 4.2 depicts the amount of memory used relative to a
run without escape analysis for both the “on-the-go” and the “simulated” variant
of CD,. It can be seen that having stack allocation enabled reduces the amount of
memory allocated from heap in every case. Savings range from 0.23 % to 9.04 %
with a median of 0.30 % in the “on-the-go” variant and 2.86 % up to 29.10 % with
the median at 15.15 % in the “simulated” configuration. There is no difference be-
tween the old and the new escape analysis in this benchmark, because the objects
additionally found to be stack-allocatable are not located in the measured regions
of the test.

It is worth noting that the previously implemented analysis benefits from im-
provements added to the backend in this thesis (most notably the stack-allocation
of array types).

4.2.3 Runtime Savings through Stack Allocation

To answer the question whether stack allocation has an impact on the runtime of the
system, the “on-the-go” timing results were compared against those of a run without

43

4 Evaluation

--- reference: without stack allocation
—— with stack allocation

)

3 T T T T

< T bm o s o e o e __ -] -

(&)

s

=

<

8

I3 0.9 |- -

>,

N

— 095 -

S

) 0.8 |- —

&0

@

+—

=

<b]

o 07| .

<B) | | | | | | | | | | | |

s} 0 200 400 600 800 1,000 0 200 400 600 800 1,000
Collision detector iteration Collision detector iteration

(a) on-the-go (b) simulated

Figure 4.2: Amount of memory used from heap relative to a run without stack
allocation

1.02 | :
1 —— old stack allocation
WH“I 'I\!W lw'WW'|l“|>ll“|‘|'w|w' —— new stack allocation
ol --- median of old stack allocation

| . -| --- median of new stack allocation
W {m ﬂn W —— reference: no stack allocation
0.96 |-
| | | | | |
0 200 400 600 800 1,000

Percentage of reference runtime

Collision detector iteration

Figure 4.3: Runtime of “on-the-go” relative to a run without stack allocation

44

4.2 Measurements and Results

stack allocation enabled. See Figure 4.3 for a graphical rendering of these results.
Surprisingly, although the measured parts of the code do not differ in both the old
and new escape analysis, the old came out ahead with a median speed improvement
of 2.34 % compared to the reference run, while the new analysis lost 1.40 % of
performance.

The “simulated” test case does not show this slow-down and both the old and
new escape analysis algorithm are on par as expected. Figure 4.4 graphs the results,
which are scattered compared to the “on-the-go” test, because they were measured
on x86 hardware running a Linux operating system, where scheduling effects and
other load might have affected the measurement.

45

4 Evaluation

37
2.5
o
£
=
— 2+
©
(]
=
5}
—
L
5}
~ 1.5
Gy
o
©
)
g |
= \
5}
5}
o
5}
ol

- IU',I ’ gl | | n i |\|| il ||w| i ;n. Ui

[w

W ’ v||w‘
0.5 |- ‘I

0 100 200 300 400 500 600 700 800 900 1,000

Collision detector iteration

—— with old stack allocation

—— with new stack allocation

--- median of old stack allocation

--- median of new stack allocation
--- reference: without stack allocation

Figure 4.4: Runtime of “simulated” relative to a run without stack allocation

46

5 Conclusion and
Future Work

In this thesis, design and implementation of an algorithm to automatically convert
object allocations from heap to stack allocations where legal was presented and
evaluated. This algorithm was written for the middle-end of JINO, the KESO Java-
to-C compiler in the form of one analysis and one optimization pass. KESO is a
Multi-Java virtual machine for statically configured embedded systems.

The analysis was required to be automatic, i.e., it should not require the program-
mer to decide and specify which objects should be allocated on the stack. Especially
applications with intensive dynamic allocation behavior should benefit from the new
optimization.

Analysis and optimization are based on a paper implementing stack allocation
and synchronization optimizations for Java using escape analysis by Choi et al.
first published in 2003 [CGST03]. The algorithm was re-implemented in JINO and
adapted to the needs and environment posed by KESO’s target domain, statically
configured systems for small embedded systems. To simplify the analysis, the exist-
ing SSA form was used rather than running the algorithm on non-SSA formed code.
This simplified the flow-sensitive part of the analysis. Changes were also required to
handle the native code interface available in the KESO API. An analysis suggested
in [CGST03, 6.2] was implemented to determine which objects’ liveness periods are
non-overlapping and can be statically allocated on the stack, instead of allocating
all stack memory using alloca(3) at runtime.

Future Work

The results of the analysis can not only be used for the implemented stack allo-
cation. Further possibilities are opened up by the information gathered, such as

47

5 Conclusion and Future Work

transforming more allocations into stack allocations and removing synchronization
primitives where superfluous.

Synchronization Optimizations

Apart from stack allocation, [CGST03] also discussed removing synchronization in-
structions where unneeded, because the objects used from synchronization are only
reachable from a single thread. To achieve this, the escape state of objects is di-
vided into three stages, global, method and local. Objects which are not marked
global and are used for synchronization are possible targets for this kind of opti-
mization, because there is at most one thread holding a reference to these objects.
This means there will be no second concurrent thread attempting to lock the object
simultanously, lifting the requirement for expensive atomic synchronization primi-
tives.

It is not clear how much performance could be gained from implementing this.
Considering concurrency is not very common in small embedded systems, a large
number of objects and synchronized operations in standard library code are possible
targets for this optimization.

Stack Allocation in the Caller’s Stack Frame

Objects which escape the method of their allocation, but not the thread in which
they were allocated, i.e., which have an escape state of method, might be eligible for
another optimization frequently seen as a pattern in C code: instead of allocating
and returning a pointer to memory, these functions require the caller to provide a
pointer to a sufficiently large buffer and write their results into this buffer. This
leaves the decision on the storage class of the memory to the caller, who could
allocate the buffer both on the stack and from heap memory.

Similarly, an object allocated in and returned from a method in Java could be
turned into a stack allocation from the caller’s stack frame and passed as reference
into the called method. Since the new operation and the constructor invocation are
separate bytecode instructions in Java, the allocation could be moved to the caller,
leaving the call to the constructor in place without affecting legality.

Special care needs to be taken as to whether this is legal in situations where a
number of methods can call themselves recursively, i.e., when the call graph forms
a strongly connected component.

This optimization has the potential to serve another considerable share (starting
from 23 % up to 56 % in the benchmarks used in this thesis) of allocations from
stack memory, further lifting the strain on garbage collection mechanisms and speed
up the execution. Ideally, the use of a garbage collector could be avoided completely.

48

Bibliography

[CGS+03]

[Col12]

[Dib06]

[Erh11]

[ESLSP11]

[GJST12]

[KHP*09]

[LLV]

Jong-Deok Choi, Manish Gupta, Mauricio J. Serrano, Vugranam C.
Sreedhar, and Samuel P. Midkiff. Stack allocation and synchronization
optimizations for Java using escape analysis. ACM Trans. Program.
Lang. Syst., 25(6):876-910, November 2003.

Bernard Cole. KESO: A Java VM an MCU devel-
oper could love? maybe. Jul 2012. http://wuw.
eetimes.com/electronics-blogs/cole-bin/4389892/

KESO--A-Java-VM-an-MCU-developer-could-love--Maybe-, ac-

cessed 2012-08-04.

TimeSys Corp. Dibble, Peter. The Real-Time Specification
for Java 1.0.2, 2006. http://www.rtsj.org/specjavadoc/mem_
overview-summary.html, accessed 2012-08-06.

Christoph Erhardt. A Control-Flow-Sensitive Analysis and Optimiza-
tion Framework for the KESO Multi-JVM. Diplomarbeit, Friedrich-
Alexander University Erlangen-Nuremberg, March 2011.

Christoph Erhardt, Michael Stilkerich, Daniel Lohmann, and Wolfgang
Schroder-Preikschat. Exploiting static application knowledge in a Java
compiler for embedded systems: A case study. In JTRES ’11: 9th Int.
W’shop on Java Technologies for real-time € embedded Systems, pages
96-105, New York, NY, USA, 2011. ACM.

James Gosling, Bill Joy, Guy Steele, Gilad Bracha, and Alex Buckley.
The Java Language Specification. Java SE 7 edition, Feb 2012. http:
//docs.oracle.com/javase/specs/jls/se7/jls7.pdf.

Tomas Kalibera, Jeff Hagelberg, Filip Pizlo, Ales Plsek, Ben Titzer,
and Jan Vitek. CD,: a family of real-time java benchmarks. In JTRES
'09: 7th Int. W’shop on Java Technologies for real-time € embedded
Systems, pages 41-50, New York, NY, USA, 2009. ACM.

The LLVM Project. Writing an LLVM Pass. http://1lvm.org/docs/
WritingAnLLVMPass.html, accessed 2012-06-28.

49

http://www.eetimes.com/electronics-blogs/cole-bin/4389892/KESO--A-Java-VM-an-MCU-developer-could-love--Maybe-
http://www.eetimes.com/electronics-blogs/cole-bin/4389892/KESO--A-Java-VM-an-MCU-developer-could-love--Maybe-
http://www.eetimes.com/electronics-blogs/cole-bin/4389892/KESO--A-Java-VM-an-MCU-developer-could-love--Maybe-
http://www.rtsj.org/specjavadoc/mem_overview-summary.html
http://www.rtsj.org/specjavadoc/mem_overview-summary.html
http://docs.oracle.com/javase/specs/jls/se7/jls7.pdf
http://docs.oracle.com/javase/specs/jls/se7/jls7.pdf
http://llvm.org/docs/WritingAnLLVMPass.html
http://llvm.org/docs/WritingAnLLVMPass.html

BIBLIOGRAPHY

[Orall]

[STWSP12]

[Tar72]

20

Oracle Corp. JavaCompiler (Java Platform SE 7), Jul 2011.
http://docs.oracle.com/javase/7/docs/api/javax/tools/
JavaCompiler.html, accessed 2012-08-06.

Michael Stilkerich, Isabella Thomm, Christian Wawersich, and Wolf-
gang Schroder-Preikschat. Tailor-made JVMs for statically configured
embedded systems. Concurrency and Computation: Practice and Ez-
perience, 24(8):789-812, 2012.

R. Tarjan. Depth-first search and linear graph algorithms. STAM Jour-
nal on Computing, 1(2):146-160, 1972.

http://docs.oracle.com/javase/7/docs/api/javax/tools/JavaCompiler.html
http://docs.oracle.com/javase/7/docs/api/javax/tools/JavaCompiler.html

List of Figures

1.1

3.1
3.2
3.3
3.4

3.5

3.6

3.7

4.1

4.2

4.3
4.4

Schematic overview of the KESO system at runtime 12

The CG of the method given in Listing 3.1 after interprocedural analysis 29

The CG given in Figure 3.1 after path compression 30
Removal of superfluous phantom object nodes 31
The CG of addElement as given in Listing 3.3 after intraprocedural
analysis 33
The CG of appendAfter as given in Listing 3.3 after intraprocedural
analysis 33
The CG of addElement as given in Listing 3.3 after updateNodes in
interprocedural analysis o0 35

The CG of addElement as given in Listing 3.3 after interprocedural
analysis L 38

Number of stack allocations per test and algorithm relative to all

allocating instructionso oL 43
Amount of memory used from heap relative to a run without stack

allocation 44
Runtime of “on-the-go” relative to a run without stack allocation . . 44
Runtime of “simulated” relative to a run without stack allocation . . 46

51

List of Tables

3.1 Type of edge depending on the type of source and destination node
3.2 The mapsTo relation for the example given in Listing 3.3

4.1 Hard- and software configuration used to run the benchmarks.

92

22
34

42

List of Algorithms

1 The updateCaller procedure
2 The updateNodes procedure
3 The updateEdges procedure

23

List of Listings

o4

2.1
2.2

3.1
3.2
3.3

3.4

Java bytecode of a method computing the factorial 16
JINO intermediate code generated from Listing 2.1. 17
Example Java code for interprocedural analysis 27
Listing 3.1 compiled to Java bytecode 27
Example where intraprocedural analysis does not generate sufficient

information 31
Example Java code with objects not easily statically stack-allocatable 39

Acronyms

CG connection graph. 20-26, 28-30, 32-39, 51
JNI Java native interface. 13
LLVM Low-Level Virtual Machine. 18

SSA static single assignment. 18, 19, 23, 25, 28, 47

95

	Contents
	Introduction
	The KESO Multi-JVM
	Motivation
	Document Structure

	State of the Art
	The JINO Compiler for the KESO Multi-JVM
	JINO's Pass Model
	Existing Escape Analysis

	Design and Implementation
	Intraprocedural Analysis
	The Connection Graph
	Nodes in the Connection Graph
	Edges in the Connection Graph
	Escape State

	Building the Connection Graph
	Local Variables
	Global Variables
	Allocations
	Fields and Arrays
	-Functions
	Exceptions
	Method Calls
	Return Statements

	Reachability Analysis
	Example
	Graph Compression
	Interim Results

	Interprocedural Analysis
	Node Propagation
	Edge Propagation

	Static Stack Allocation
	Determining Overlapping Liveness Regions
	Handling Portals and Native Methods
	Stack Allocation

	Evaluation
	Benchmark CDx
	Measurements and Results
	Number of Stack Allocations
	Amount of Stack-allocated Memory
	Runtime Savings through Stack Allocation

	Conclusion and Future Work
	Bibliography
	List of Figures
	List of Tables
	List of Algorithms
	List of Listings
	Acronyms

