
The Aspect-Aware Design and Implementation
of the CiAO Operating-System Family

Daniel Lohmann1, Olaf Spinczyk2,
Wanja Hofer1, and Wolfgang Schröder-Preikschat1

1 Friedrich-Alexander-Universität Erlangen-Nürnberg
{lohmann,hofer,wosch}@cs.fau.de
2 Technische Universität Dortmund
olaf.spinczyk@tu-dortmund.de

Abstract. CiAO is the first operating-system family that has been developed
with AOP concepts from the very beginning. By its aspect-aware design and
implementation, CiAO reaches excellent configurability, separation of concerns,
and low footprints in the resulting systems that outperform leading commercial
implementations. CiAO implements the automotive operating-system standard
OSEK/AUTOSAR OS and provides configurability of all fundamental system
properties by means of AOP.

We describe the aspect-aware design approach and implementation idioms
that led to this efficiency and flexibility. On the example of three larger case stud-
ies from CiAO, we demonstrate how AOP can be employed in this respect on
different levels of complexity: From highly configurable, yet efficient low-level
hardware abstractions over the implementation of central kernel policies up to the
decomposition of a complete operating-system specification.

Our results show that by a consequent application of the aspect-aware ap-
proach, AOP becomes a promising technology to reach configurability, separation
of concerns, and runtime/memory efficiency on all levels of operating-system
development.

1 Introduction

When, more than a decade ago, the advent of aspect-oriented programming (AOP)
promised a new dimension of separation of concerns in software systems, operating
systems were among the targets that were first mentioned for the new approach [24].
AOP is appealing for this domain, as fundamental operating-system concerns, such as
synchronization, preemption, prefetching, or monitoring, seem to be inherently crosscut-
ting. Their clear separation into dedicated aspect modules would facilitate better evolv-
ability and configurability of operating-system policies [8,11,1]. As operating-system
engineers in the domain of embedded systems – a domain for which configurability is
of utmost importance – we immediately became excited when we first heard about AOP
at ECOOP ’97. This triggered the design and development of the AspectC++ language
and tool suite [44] and extensive studies with aspects in the PURE and eCos operating
system families [43,31].

Now, ten years later, our research activities on applying AOP to the domain of con-
figurable operating systems have culminated in the development of CiAO (CiAO is

G.T. Leavens et al. (Eds.): Transactions on AOSD IX, LNCS 7271, pp. 168–215, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

The Aspect-Oriented Design and Implementation of the CiAO Operating System 169

Aspect-Oriented) – the first operating system family that has been designed and de-
veloped with AOP concepts from scratch. By the application of AOP, CiAO reaches
excellent configurability, a good separation of concerns, and low resource consumption
in the resulting system, which outperforms leading commercial implementations [30].

1.1 Purpose of the Paper

We have described our path to CiAO and its underlying design approach of aspect-
aware operating-system development in two conference publications [30,29]. From
the anonymous reviews to these papers as well as from personal feedback after our
AOSD ’11 presentation, we learned that there is a strong interest in further details about
the design and implementation of CiAO. The reviews especially encouraged us to in-
clude “more examples from CiAO” and “more real aspect code” – which, however, was
not possible within the given page limits. The purpose of this paper is to complement
[30,29] in this spirit.

1.2 Structure and Contributions of the Paper

In this paper, we provide an extensive overview of CiAO: its design goals and architec-
ture (Sect. 2), the resulting aspect-oriented design principles and development idioms
(Sect. 2.3), and three larger case studies that exemplify the application of aspect-aware
development (and its benefits with respect to configurability) in CiAO on three different
levels of granularity:

1. In the “Continuation” study (Sect. 4), we exemplify the aspect-aware decomposi-
tion and implementation of a configurable low-level system abstraction – from
features down to near-hardware code.

2. The “Interrupt synchronization” study (Sect. 5) demonstrates the design (and partly
also the implementation) of a configurable architectural policy – from nonfunc-
tional requirements down to aspect-aware design. (An early draft of this study has
also been presented in [32].)

3. The “CiAO-AS” study (Sect. 6) presents results from the aspect-aware develop-
ment of a complete configurable operating system – from requirements and spec-
ification down to evaluation results. (Some results from this study have also been
presented in [30,29].)

We discuss the results of these studies, which make the main contribution of the paper,
in Sect. 7, related work in Sect. 8, and, eventually, conclude our findings in Sect. 9.

2 An Overview of CiAO

CiAO is a family of research operating systems that has been developed using AOP and
software product line concepts from scratch. CiAO targets the domain of embedded
systems, such as automotive applications. The CiAO-AS family member implements
the automotive AUTOSAR-OS standard with configurable protection policies (memory
protection, timing protection, and service protection) as defined in [3].

170 D. Lohmann et al.

Fig. 1. Layered structure of CiAO. Depicted are the three fundamental layers of the CiAO ar-
chitecture with a selection of their sublayers, components, abstractions, and aspects (depicted
with rounded corners). Each subsystem and sublayer defines a separate namespace. Configurable
architectural properties may have an effect across multiple layers.

2.1 Goals and Approach

Throughout the entire operating-system design cycle, we must be careful to
separate policy decisions from implementation details (mechanisms). This sep-
aration allows maximum flexibility if policy decisions are to be changed later.
(Silberschatz et al., “Operating System Concepts”, p. 72, 2005)

The primary goal of CiAO is architectural configurability – that is, configurability
of even fundamental, architectural kernel policies, like synchronization or protection.
Further engineering goals are efficiency with respect to hardware resources, configura-
bility in general, and portability with respect to hardware platforms.

The approach to achieve these goals in the implementation is aspect-aware operating-
system development. The basic idea behind aspect-aware operating-system develop-
ment is the strict decoupling of policies and mechanisms by using aspects as the primary
composition technique: Kernel mechanisms are glued together and extended by binding,
policy, or extension aspects; they support these aspects by ensuring that all relevant in-
ternal control-flow transitions are available as potential join points.

2.2 General Structure

Figure 1 gives an overview of CiAO’s architecture. Like most operating systems, CiAO
is designed with a layered architecture, in which each layer is implemented using the

The Aspect-Oriented Design and Implementation of the CiAO Operating System 171

functionality of the layers below (Figure 1). The only exceptions from this are the as-
pects implementing architectural policies, which may take effect across multiple layers.

On the coarse level, we have three layers. From bottom-up these are: the hardware
layer (the hardware programming interface), the system layer (the operating system
itself), and the interface layer (the application programming interface).

In CiAO, however, layers do not just serve conceptual purposes, but also are a means
of aspect-aware development. To provide cross-layer control-flow transitions (espe-
cially into and out of os::krn) as potential join points, each layer is represented as a
separate C++ namespace in the implementation (hw::hal, os::krn, AS). Thereby, cross-
layer control-flow transitions (especially into and out of os::krn) can be grasped by
statically evaluable pointcut expressions. The following expression, for instance, yields
all join points where a system-layer component accesses the hardware:

pointcut OStoHW() = call("% hw::...::%(...)") && within("% os::...::%(...)");

Control-flow transitions down the layer hierarchy are established by function calls; as-
pects can interfere with these transitions by giving advice to a pointcut like OStoHW.
Transitions up the hierarchy (upcalls) are only established by aspects.

2.3 CiAO Design Principles

As pointed out in Sect. 2.1, the basic idea behind aspect-aware operating system devel-
opment is to use aspects to achieve a clear separation between policies and mechanisms
in the implementation. This leads to the three fundamental principles of aspect-aware
operating system development:

The Principle of Loose Coupling. Make sure that aspects can hook into all facets of
the static and dynamic integration of system components. The binding of compo-
nents, but also their instantiation (e.g, placement in a certain memory region) and
the time and order of their initialization should all be established (or at least be
influenceable) by aspects.

The Principle of Visible Transitions. Make sure that aspects can hook into all con-
trol flows that run through the system. All control-flow transitions into, out of, and
within the system should be influenceable by aspects. For this they have to be rep-
resented on the joinpoint level as statically evaluable, unambiguous join points.

The Principle of Minimal Extensions. Make sure that the overall system is extensible
by minimal feature increments. System components and system abstractions should
be fine-grained and spares, that is, provide only a minimal implementation of some
feature, on order to be extensible by aspects on a fine granularity.

Aspect awareness, as described by these principles, means that we moderate the AOP
idea of obliviousness. CiAO’s system components and abstractions are not totally obliv-
ious to aspects – they are supposed to provide explicit support for aspects and even
depend on them for their integration.

However, this does not mean that system components and abstractions have to know
the concrete aspects that (potentially) bind to them. It is the responsibility of the aspects
to ensure that all components affected and used by them still work correctly.

172 D. Lohmann et al.

2.4 Roles and Types of Classes and Aspects

The general rule we came up with in the development of CiAO is to provide some
feature as a class if – and only if – it represents a distinguishable instantiable concept
of the operating system. Provided as classes are:

1. System components, which are instantiated on behalf of the kernel and manage its
run-time state (such as the Scheduler or the various hardware devices).

2. System abstractions, which are instantiated on behalf of the application and repre-
sent a system object (such as Task, Resource, or Event).

However, the classes for system components and system abstractions are sparse and to
be further “filled” by extension slices. The main purpose of these classes is to provide a
distinct scope with unambiguous join points for the aspects (that is, visible transitions).1

All other features are implemented as aspects. During the development of CiAO we
came up with three idiomatic roles of aspects:

1. Extension aspects add additional features to a system abstraction or component
(minimal extensions), such as extending the scheduler by means for task synchro-
nization (e.g., AUTOSAR-OS resources).

2. Policy aspects “glue” otherwise unrelated system abstractions or components to-
gether to implement some kernel policy (loose coupling), such as activating the
scheduler from a periodic timer to implement time-triggered preemptive schedul-
ing.

3. Upcall aspects bind behavior defined by higher layers to events produced in lower
layers of the system, such as binding a driver function to interrupt events.

The effect of extension aspects typically becomes visible in the API of the affected
system component or abstraction. Policy aspects, in contrast, lead to a different system
behavior. We will see examples for extension and policy aspects in the following section.
Upcall aspects do not contribute directly to a design principle, but have a more technical
purpose: they exploit advice-based binding and the fact that AspectC++ inlines advice
code at the respective join point for flexible, yet very efficient upcalls.

However, the distinction between the three types is not strict; a policy aspect, for
instance, may also extend some class if this is part of the policy. We will see examples
for all three types of aspects in the following sections.

3 Aspect-Aware Development Idioms

In the design and implementation of the CiAO system, we can find the recurring appli-
cation of three development idioms, which we can understand as the operationalization
of the CiAO design principles discussed in Sect. 2.3:

1 The design decision to model system components and system abstractions as classes is also
motivated by a technicality of the AspectC++ implementation language: Aspects cannot give
advice to other pieces of advice.

The Aspect-Oriented Design and Implementation of the CiAO Operating System 173

Advice-Based Binding. Essentially, advice inverts the direction in which control-flow
relationships are specified. By employing advice as the primary binding mecha-
nism, we achieve an inherently loose self-integration of optional features into the
control flows of the base system. We shall detail this further by concrete examples
from CiAO in Sect. 3.1.

Explicit Join Points. Many semantically important control-flow transitions inside the
kernel are not available as join points / not advisable because of technical reasons
one has to deal with in low-level system software. An explicit join point is a named
join point in the kernel control flow that bears a precisely defined semantics and
can safely be advised. We shall describe this by concrete examples from CiAO in
Sect. 3.2.

Extension Slices. The classes that represent CiAO’s system components and system
abstractions are generally sparse: they are either completely empty or implement
only the minimal base of some feature. Optional features are implemented as ex-
tension slices and introduced by extension aspects into these classes. We shall give
concrete examples from CiAO in Sect. 3.3.

Figure 2 gives a quick overview on the diagram notation we use for class-and-aspect
diagrams in the subsequent sections. Several attempts have been published to extend
UML with a notation of AOP elements.2 However, the existing notations tend to be
either too formal, too close to AspectJ, or both. Hence, we developed our own notation
that offers a suitable level of detail. The notation is related on UML, but intentionally
abstains from the official but verbose UML extension system (e.g., stereotypes) to bring
in the relevant AOP concepts.

BaseClass

method()

explicitJP() • method is explicit join point

SomeClass

#protected()

static()

unadvisable() ◦

method is unadvisable

AnAspect

exec("explicitJP")

intro("SomeClass")

«slice»

ASlice

state_variable_

anotherMethod()

"explicitJP"

advice [of "join point"]

ASlice

introduction [of Slice]

static

call [of method]

elements belong to same concern

know
s

implied relationship

Fig. 2. Diagram notation for class-and-aspect diagrams. The notation is related to the notation of
UML class diagrams, but uses several nonstandard style elements to depict aspects, advice, and
introductions.

2 Well-known examples are: composition patterns [10], Theme/UML [5], the notation by STEIN
and colleagues [46], and AML [19].

174 D. Lohmann et al.

3.1 Loose Coupling by Advice-Based Binding

With advice-based binding components and policies integrate themselves into the sys-
tem.3 This is the most fundamental idiom for the implementation of loose coupling.
It exploits the effect that aspects effectively invert the direction in which control-flow
relationships between components are established. Thereby, optional components and
policies can easily hook into the system’s control flows.

Besides flexibility, advice-based binding also has the advantage that it can be bound
at compile time if the affected join points are statically evaluable. Where appropriate,
the advice code can even be inlined directly at the join point occurrence to avoid the
overhead of extra function calls. This is more efficient than the common approaches for
indirect binding of components, which bind at link time (external functions) or run time
(virtual functions and function pointers).

Component Self-integration. The canonical example of self-integration by advice-
based binding is component initialization: Every CiAO component includes an accom-
panying _Init aspect that gives advice to the system initialization handler hal::init()
to invoke the component’s init()method at system startup time (see Figure 3). Thereby,
the startup code does not have to know which components are present in the actual
CiAO configuration – nevertheless this flexibility does not come at a price, as all initial-
ization code gets bound and inlined at compile time.

Serial0

init()

Sched

init()

Timer0

init()
. . .

«binding aspect»

Serial0_Init

exec("init")

«binding aspect»

Sched_Init

exec("init")

«binding aspect»

Timer0_Init

exec("init")

. . .

in
it

in
it

in
it

init() •

"in
it"

. . .
os::krn

hw::hal

Fig. 3. Self-integration of components by advice-based binding. Depicted is the CiAO component
initialization scheme. Every CiAO component integrates itself into the global system initialization
handler hal::init() by an accompanying _Init aspect.

Figure 3 also demonstrates another advantage of advice-based binding, namely the
transparent support of 1 : n relationships. Without any further preparations, multiple
clients can bind to the same join point by several aspects giving advice for it. The result
is sequential activation of the respective advice implementations at run time.

3 Note that we understand both as logical concepts. They may technically be implemented by a
set of classes and aspects.

The Aspect-Oriented Design and Implementation of the CiAO Operating System 175

However, with respect to loose coupling and aspect awareness, the most important
benefit of advice-based binding is that we can further influence it by additional as-
pects, for instance with respect to the activation order. Consider an (optional) aspect
Serial0Ext that extends the serial driver from Figure 3 by a task of its own (e.g.,
for some background protocol handling). This aspect effectively inserts a new func-
tional dependency between the serial driver and the scheduler; the serial driver now
uses the scheduler. The consequence for the implementation is that now the scheduler
has to be initialized before the serial driver. This new constraint can easily be real-
ized with order-advice. Additional to the extension of the class Serial0, the aspect
Serial0Ext can specify a relative invocation order for the foreign aspects Sched_Init
and Serial0_Init at the join point execution("void hw::hal::init()") as
follows:4

aspect Serial0Ext {

...

advice execution("void hw::hal::init()"): order(

"Sched_Init", "Serial0_Init");

};

Essentially, the aspect thereby re-establishes the uses—hierarchy of the system.5

Policy Self-integration. Another common use case for advice-based binding in CiAO
is the self-integration of policies. Self-integration of policies is crucial for the aspired
decoupling of policies and mechanisms. Most policy implementations induce new in-
teractions between (otherwise unrelated) components. This may, again, lead to new
functional dependencies that we also have to deal with.

Figure 4 demonstrates self-integration of policies by the example of two variants
of the CiAO preemption policy. Generally, system components report the need for
rescheduling (and, thus, potential preemption of the running task) by calling
Sched::setNeedReschedule(). The actual activation of the scheduler is, however, de-
layed:

The aspect Sched_LeaveBinding in Figure 4.a implements a simple delayed activa-
tion policy for a cooperative system; with this policy, preemption is only possible at the
return from some system service.

The aspect Sched_ASTBinding in Figure 4.b implements a more sophisticated de-
layed activation policy for an interruptive system; with this policy, preemption can also
take place after interrupt termination. Technically, this is realized by binding the sched-
uler activation (Sched::reschedule()) to the function AST0::ast(), which is the han-
dler of an asynchronous system trap (AST).6 Additionally, the triggering of the AST
is bound to setNeedReschedule(). The fact that the scheduler is now activated from

4 A detailed explanation of the syntax of order-advice can be found in [44].
5 The relationship uses describes dependencies between components of a system with respect

to their functional correctness [37]. The uses hierarchy thereby describes the order in which
components can be tested and integrated in a bottom-up development process.

6 An AST is a low-priority interrupt that can be triggered by the handler of a higher prority
interrupt or the kernel to delay activities, such as scheduling, to a later point in time (i.e., when
the kernel is left).

176 D. Lohmann et al.

os::krn

os::krn

hw::hal

«policy aspect»

Sched_LeaveBinding

exec("leaveKernel")

Sched

reschedule()

setNeedReschedule()

enterKernel() •
leaveKernel() •

(a)

re
s
c
h

e
d

u
le

"l
e

a
ve

K
e

rn
e

l"

Sched

reschedule()

setNeedReschedule()

enterKernel() •
leaveKernel() •

«policy aspect»

Sched_ASTBinding

exec("ast")

exec("setNeedReschedule")

«policy aspect»

Kernel_ASTSync

exec("enterKernel()")

exec("leaveKernel()")

AST0

trigger()

disable()

enable()

ast() •

(b)

reschedule

"setNeedReschedule"

"a
s
t"

trig
g

e
r

uses

d
is

a
b
le

/
e

n
a

b
le

"leaveKernel"

"enterKernel"

Fig. 4. Self-integration of policies by advice-based binding. Depicted are two alternatives for the
delayed preemption policy in CiAO. (a) The aspect Sched_LeaveBinding binds to leaveKernel()

to activate the scheduler when some task leaves the kernel. (b) The aspect Sched_LeaveBinding
binds to the handler of an asynchronous system trap (AST) to activate the scheduler when all (po-
tentially nested) interrupt handlers have terminated. This has the consequence that the scheduler
now runs on the AST level, which leads to a new functional dependency between the (otherwise
unrelated) system components AST0 and Sched. The aspect Kernel_ASTSync re-establishes a cor-
rect uses hierarchy by synchronizing AST propagation with other control flows in the kernel.

AST0::ast() leads to a new functional dependency, which has the consequence that the
kernel now has to be synchronized on the AST level. We can, however, easily enforce
this constraint with additional pieces of advice given by the Kernel_ASTSync aspect.

3.2 Visible Transitions by Explicit Join Points

By consequent application of the three principles of aspect-aware development
(Sect. 2.3) in the architecture and design of the system, CiAO already offers a rich
join-point interface “by structure”. Nevertheless, in many cases the implicit join-point
interface is not ample enough. This has conceptual as well as technical reasons:

1. Implicit join points are inherently implementation dependent. Their amount – but
especially their semantics – may be inconsistent between different implementations
of the same concept. This is absolutely acceptable for component-specific extension
aspects, as these aspects have to know the component they extend anyway. It is,
however, not satisfying for system aspects that implement more general policies.

2. Some semantically important control-flow transitions are not visible on joinpoint
level because they do not occur on the boundary of function calls or executions.

The Aspect-Oriented Design and Implementation of the CiAO Operating System 177

Table 1. Explicit join points in CiAO. Listed is a selection of upcall (U) and transition (T) join
points offered by the different layers (respectively components in these layers) of CiAO. The
actual set of available explicit join points is configuration dependent.

type representing function or method description

o
s:

:k
rn

U interalErrorHook() Explicit join points for the support and binding of

OSEK OS and AUTOSAR OS user-level hook
functions, as specified in [36, p. 39] and [4, p. 46].
Triggered in case of an error, a protection violation,

before (pre) and after (post) at high-level task
switch, and at operating-system startup and
shutdown time.

U internalProtectionHook(StatusType error)

U internalPreTaskHook()

U internalPostTaskHook()

U internalStartupHook()

U internalShutdownHook()

T enterKernel() Triggered when a control flow enters (respectively
leaves) the kernel domain.T leaveKernel()

...

h
w

::
h

al

U ThreadFunc() Entry point of a new thread (continuation).

T before_CPURelease(Continuation*& to) Triggered immediately before the running
continuation is deactivated or terminated; to is

going to become the next running continuation.
T before_LastCPURelease(Continuation*& to)

T after_CPUReceive() Triggered immediately after the (new) running
continuation got reactivated or started.T after_FirstCPUReceive()

U AST<#>::ast() Entry point of the respective AST.

U init() Triggered during system startup after memory

busses and stack have been initialized.

...

h
w

::
ir

q U <IRQ_NAME>::handler() Entry point of the respective interrupt handler. (In-

terrupts are still disabled.)

...

In other cases, their place of occurrence is configuration-dependent, or there are
multiple places of occurrence. For example, application �→ kernel transitions might
occur if a kernel function is called, when a trap handler is activated, or during task
switching to another task. However, as CiAO is designed as family of operating
systems, this is not fixed, but a matter of configuration of the actual family member.

3. Several semantically important control-flow transitions are not available as join
points because of technical reasons. This is often the case with low-level system
abstractions, such as interrupt handlers or the implementation of the context switch
mechanism. In the diagram notation, an open dot (◦) is used to mark such unadvis-
able methods.

For these reasons, many CiAO components and layers provide furthermore a well-
defined explicit join-point interface that defines one or several explicit join points.

178 D. Lohmann et al.

An explicit join point is a named join point in the kernel control flow that bears a pre-
cisely defined semantics and can safely be advised. Technically, explicit join points are
implemented as empty methods – provided for the sole purpose that aspects can bind
to them. The joinpoint provider invokes these methods at run time, either directly or
indirectly by component-specific adapter aspects. In the diagram notation, a filled dot
(•) marks a method that represents an explicit join point.

We have already seen several examples: The methods hal::init() and AST0::ast(),
for instance, are actually explicit join points. Both have an empty implementation, but
represent the occurrence of a well-defined, semantically important run-time event. They
are explicitly triggered by their providing components (the startup code; and the
hardware-based or software-based implementation of the AST facility, both of which
are platform-dependent).

Conceptually, explicit joinpoint interfaces can be compared to hooks or interceptor
interfaces in other component models. An advantage of explicit join points is, however,
their low overhead. In most cases (that is, when they do not have to be triggered from
parts written in assembly language) they can be implemented as empty inline methods,
which get optimized away by the compiler if no aspect binds to them. Another advan-
tage is the inherent support for 1 : n relationships, as explained in the previous section
on the example of hal::init().

Table 1 lists a selection of the explicit join points provided by CiAO. We distinguish
between upcall join points and transition join points. This differentiation is not strict
(depending on the client, an upcall can also represent a transition and vice versa); how-
ever, it underlines the primary purpose of the respective explicit join point.

Explicit Upcall Join Points. For the sake of configurability, the processing of most
system-internal events is postponed to a higher layer than the layer on which they occur.
By representing these events as explicit join points, higher layers (up to the application
itself) can subscribe to them with advice-based binding.

The methods hal::init()and AST0::ast() are examples for (internally used) up-
call join points. Other examples include interrupt handlers (<IRQ_NAME>::handler()),
signal handlers (AUTOSAR OS hook functions), the TCBUser::ThreadFunc() start
function of a new coroutine (will be further detailed in Sect. 4), or the method
Sched::idle() that is called from the scheduler idle loop. Besides the direct binding
(and potential inlining) of the event-processing code, the kernel can also exploit these
join points to implement configuration-dependent upcall policies. An upcall-policy as-
pect may, for instance, filter events, or translate them into virtual function invocations,
thread activations, or send message operations.

Explicit Transition Join Points. Control flow transitions inside the kernel, such as
the transition from application level to kernel level, from thread level to interrupt level,
or the context switch from one thread to another one, are important events for the im-
plementation of many policies. Many of these events, however, have multiple sources
(m : n relationships); or they occur in fragile, low-level parts of the implementation. By
representing them as explicit join points, providers, and publishers of transition events
can be decoupled.

The Aspect-Oriented Design and Implementation of the CiAO Operating System 179

as

os::krn

«extension aspect»

ResourceSupport

intro("Task")

intro("Sched")

intro("AS")

Task Sched

AS

«slice»

ResourceSupport_AS

GetResource()

ReleaseResource()

«slice»

ResourceSupport_Task

occupiedResources_

originalPri_

getOccupiedResources()

setOccupiedResources()

getOriginalPri()

«slice»

ResourceSupport_Sched

getResource()

releaseResource()

ResourceSupport_Task ResourceSupport_Sched

ResourceSupport_AS

Fig. 5. Integration of an optional feature by extension slices. The aspect ResourceSupport adds
support for AUTOSAR-OS resources to the CiAO kernel. This requires the introduction of re-
spective extension slices into the Task system abstraction and the Sched system component from
the os::krn layer, as well as into CIAO-AS API, which is contained in the class AS on the interface
layer.

An already mentioned example of transition join points are the application �→ kernel
and kernel �→ application transitions, which are represented in CiAO by the explicit
join points krn::enterKernel() and krn::leaveKernel(). Another example are the
transition join points provided by the CiAO dispatcher (the class Continuation), which
are further detailed in Sect. 4.

3.3 Minimal Extensions by Extension Slices

The use of extension slices is the most relevant idiom for the implementation of mini-
mal extensions: The implementation of optional features does usually not affect a single
component or abstraction, but crosscuts with the implementation of several other con-
cerns – often even across multiple layers. This is, for instance, always the case if the
extension is also to become visible in the API provided by the interface layer.

Figure 5 demonstrates this by the example of the ResourceSupport extension aspect
that adds support for AUTOSAR-OS resources to the CiAO-AS kernel. The actual im-
plementation is introduced as methods and state variables into the os::krn classes Task
and Sched. However, to be accessible from applications, the CIAO-AS API on the inter-
face layer has to be adapted as well – which requires the introduction of the respective
methods into the class AS.

With extension slices, collateral adaptations of several kernel components, abstrac-
tions, and the API can be separated and grouped into a single logical module – the ex-
tension aspect. Basically all optional system services provided by the CiAO-AS kernel
are implemented this way. This ensures that services and abstractions that have not been
configured for the kernel are not reflected in the API either; hence, many configuration
errors can be detected early at compile time.

180 D. Lohmann et al.

We can understand extension slices as the static counterpart of advice-based binding
(see Sect. 3.1); the latter is used for loose coupling and self-integration with respect
to the system’s control flows, whereas the former fulfills the same task for the static
system structure, that is, abstractions and components. Therefore, extension slices and
advice-based binding are often used together. We will see examples for this in the “Con-
tinuation” study in Sect. 4.

3.4 Summary

The CiAO design principles of loose coupling, visible transitions, and minimal exten-
sions, are to a high degree implemented by three development idioms: advice-based
binding, explicit join points, and extension slices. Technically, these idioms exploit the
mechanisms AOP provides for obliviousness: code advice and introductions. Here, they
facilitate the self-integration (and thereby decoupling) of mechanisms and policies in
the implementation –– all “glueing” is done by advice.

The following sections further elaborate on the application of the discussed princi-
ples and idioms by three larger case studies from CiAO:

“Continuation”. In the “Continuation” study we exemplify the aspect-aware decom-
position and implementation of a configurable system abstraction – from features
down to code. The purpose of this study is to demonstrate the need of explicit join
points in even the fundamental low-level system abstractions of the operating sys-
tem to achieve extensibility by visible transitions and loose coupling (Sect. 4).

“Interrupt Synchronization”. The “Interrupt synchronization” study demonstrates
the aspect-aware design (and partly also the implementation) of a configurable
architectural policy. The purpose of this study is to show how architectural con-
figurability can be achieved by means of aspect-aware development (Sect. 5).

“CiAO AS”. The “CiAO-AS” study finally presents results from the aspect-aware de-
velopment of a complete configurable operating system – from requirements and
specification down to evaluation results. The purpose of this study is to show that
the approach does scale up and is applicable for the development of a complete
kernel (Sect. 6).

4 Case Study “Continuation”

In this section we present a detailed example of the aspect-aware design and implemen-
tation of a system abstraction. The Continuation concept is CiAO’s system abstraction
for the instantiation of preemptable control flows (Coroutines, Threads). It is provided
by the hw::hal layer and serves as the base for other subsystems, especially the kernel,
to implement higher-level thread or task abstractions.

We begin with a description of the intended variability of the Continuation concept in
Sect. 4.1 and describe the resulting aspect-aware design in Sect. 4.2. This is followed
by a detailed discussion of an actual implementation in Sect. 4.3, where the technical in-
teractions and subtleties between aspects and near-hardware code are explored. Finally,
Sect. 4.4 sums up our results.

The Aspect-Oriented Design and Implementation of the CiAO Operating System 181

Continuation

Load–Save Switch

Synchronization Bookkeeping

User-level support

Binding

Direct Function ...

rationale:
Binding delegated
to higher layer

Flexible termination

Deterministic Memory efficient

composition rule:
User-level support
requires Switch

Fig. 6. Feature diagram of CiAO’s control flow abstraction. Feature types include mandatory
features (filled circle), optional features (hollow circle), minimum-one feature sets (filled arc), and
exactly-one feature sets (hollow arc). The Continuation concept provides mechanisms to load, save,
and initialize a control flow context (Load–Save); extension stages on top of this are mechanisms
for dispatching (Switch) and the support for user-level control flows (User-level support). Context
switches can be atomic (Synchroniziation) and tracked (Bookkeeping); user-level control flows can
be allowed to terminate while executing subfunctions (Flexible termination). (The coloring is for
the purpose of feature traceability with Figure 7.)

4.1 Continuation Features

Figure 6 depicts the variability of the Continuation concept as a feature diagram [12]. A
CiAO continuation provides at least mechanisms to load, save, and initialize a control-
flow context (Load–Save). Optional extension stages (features) are the mechanisms to
dispatch from one continuation to another (Switch) and the interface for the kernel to im-
plement user-level control flows (User-level support). User-level control flows can have
an explicit entry point where they begin their execution; however, the actual represen-
tation of the entry point (Binding) is left open and postponed to a higher layer, which
might implement it, for instance, as C-style function address, virtual function pointer,
or a macro that is directly inlined into the Continuation concept. The extension stages
can be further specialized by additional features to keep track of the running continua-
tion (Bookkeeping), ensure atomicity of context switches (Synchronization), and permit
user-level control flows to terminate from subfunctions (Flexible termination).

4.2 Continuation Design

The Continuation abstraction is provided by the hw::hal layer as a set of classes and
aspects around the class Continuation. Figure 7 shows the resulting class-and-aspect
diagram. The three extension stages Load–Save, Switch, and User-level support have been
implemented as classes ContinuationBase, Contination, and TCBUser, respectively.
In theory it would also have been possible to implement Switch and User-level support
as extension aspects of ContinuationBase; the class-based design was chosen to sup-
port control-flow instances of different extension stages to coexist in the system (e.g.,
to execute interrupt handlers as Continuation instances while user-level threads are
instances of TCBUser).

182 D. Lohmann et al.

os::krn

hw::hal

ContinuationBase

#init()

#save() ◦
#load() ◦
#go() ◦

Continuation

init()

hasSeenCPU()

switchTo() ◦
saveAndSwitchTo() ◦
start() ◦
saveAndStart() ◦
before_CPURelease() •
before_LastCPURelease() •
after_CPUReceive() •
after_FirstCPUReceive() •

TCBUser

#kickoff()

init()

start()

saveAndStart()

ThreadFunc() •

a
fte

r_
F

irs
tC

P
U

R
e
c
e
ive

«extension aspect»

TCBUser_Cleanup

call("after_FirstCPUReceive")

intro("TCBUser")

exec("before_LastCPURelease")

«slice»

CleanupSupport

cleanup()

"before_LastCPURelease"

CleanupSupport

«extension aspect»

Continuation_Active

intro("Continuation")

exec("after_%CPUReceive")

«slice»

ActiveSupport

setActive()

getActive()

ActiveSupport

«policy aspect»

Continuation_SyncIRQ

exec("before_%CPURelease")

exec("after_%CPUReceive")

CPU

disable()

enable()

disable

enable

«binding aspect»

Task_TCBBinding

exec("ThreadFunc")

enterKernel() •
leaveKernel() •

"ThreadFunc"

leaveKernel TaskFunc

Fig. 7. Design of CiAO’s control flow abstraction. Depicted is the static structure of classes and
aspects that implement the features from Figure 6. Central element is the class Continuation,
which provides an interface of four explicit transition join points; the class TCBUser extends
Continuation by an additional upcall join point for the kernel. All other features are modeled as
policy, binding, or extension aspects that bind to these join points.

Besides the relevant mechanisms, the classes Continuation and TCBUser each pro-
vide certain events by an explicit join-point interface (methods marked with •) for po-
tential aspects to bind to. Thereby, all other functions could be implemented as loosely
coupled policy, extension, or binding aspects that use advice-based binding and exten-
sion slicing to integrate themselves into the respective abstraction.

The explicit join-point interface is of particular importance here. As pointed out in
Sect. 3.2, implicit join points in the implementation of low-level mechanisms can be
fragile or completely invisible and, hence, have to be considered as unadvisable (meth-
ods marked with ◦). Even if they are visible, their semantics can bear subtle differences
across platforms and implementations. The four explicit transition join points provided
by the class Continuation, on the other hand, make all relevant transitions in the life cy-
cle of a control flow (start, deactivation, reactivation, and termination, see also Table 1)
visible on the join point level with well-defined semantics. In a similar manner the class

The Aspect-Oriented Design and Implementation of the CiAO Operating System 183

1 class ContinuationBase {

2 protected:

3 _tc::PCXI_t_nonv pcxi_; // previous context pointer (caller’s context)

4 void* addr_; // return address (caller)

5

6 void init() {

7 pcxi_.reg = 0;

8 }

9 void CIAO_INLINE save() {

10 addr_ = _getRA(); // save return address (caller)

11 pcxi_.reg = _mfcr($pcxi); // save PCXI register (caller’s context)

12 _dsync(); // sync data pipeline

13 }

14 void CIAO_INLINE load() {

15 _mtcr($pcxi, pcxi_.reg); // restore PCXI register (caller’s context)

16 _setRA(addr_); // restore return address (caller)

17 _isync(); // sync instruction pipeline

18 }

19 void CIAO_INLINE go(void* tos, StartFunc starter) {

20 _mtcr($pcxi, 0); // new control flow has no caller

21 _setSP(tos); // set the stack pointer

22 _isync();

23 hw::JUMP1(starter, this); // jump to start address

24 }

25 };

Fig. 8. TriCore implementation of the class ContinuationBase

TCBUser provides with ThreadFunc() an upcall join point with a well-defined semantics
for the binding of further kernel policies or abstractions.

In the following, we illustrate these constraints, the join point interfaces, and how
they are used by extension, policy, or binding aspects by an actual implementation of
the Continuation abstraction, namely for the Infineon TriCore platform [21], a modern
32-bit microcontroller that is used in the automotive domain.

4.3 Implementation for TriCore

On the TriCore platform with G++ as the compiler, all context switch functionality
could be implemented in C++ (with utilization of a few assembler intrinsics that are
provided as function-like macros, identifiable by their leading underscore).7

The Foundation: Continuation, ContinuationBase, and TCBUser

ContinuationBase. Listing 8 shows the TriCore implementation of the class
ContinuationBase. The purpose of this class is to encapsulate the elementary state
of a continuation and to provide the elementary operations to initialize, save, load, and

7 This is also the reason we use the TriCore as illustration platform here: The respective imple-
mentation for other platforms supported by CiAO (IA32, ARM Cortex, ...) require the use of
inline assembler statements, which makes them more verbose and less comprehensible.

184 D. Lohmann et al.

begin a continuation context (init(), save(), load(), go()). As the TriCore CPU au-
tomatically saves and restores all non-volatile registers around function calls, the state
to be managed in the continuation object itself is relatively small: Only the register that
contains the return address and the register that points to the implicitly saved caller
context have to be dealt with in the save(), load(), and go() operations.8

However, even though these operations are implemented in C++ they must not be ad-
vised – they are fragile. As save() and load() effectively store and restore the caller’s
context (the actual switch after a load() operation takes place when the surrounding
function returns), they must be inlined into their invoker, which itself must not be in-
lined. The go() operation must be inlined, too – otherwise the call context that was
implicitly created for the call to go() would never be freed.

The explicit control over inlining versus noninlining depends on compiler-specific
language extensions.9 As pointed out in Sect. 3.2, the nontrivial transformations of the
aspect weaver might easily break such code. However, even if it were safely possible to
give advice to these implicit join points we should refrain from doing so – they might
be unavailable or bear subtle semantical differences in other implementations of the
load–save mechanisms.
Continuation. The class Continuation implementation-inherits from
ContinuationBase and uses the elementary operations to provide the four higher-level
context-switch operations that are available to clients:

class Continuation : public ContinuationBase {

void ... start(void* tos, StartFunc starter, Continuation* to);

void ... switchto(Continuation* to);

void ... saveAndStart(void* tos, StartFunc starter, Continuation* to);

void ... saveAndSwitchto(Continuation* to);

...

These operations have to be considered as nonadvisable, too. They are also fragile with
respect to inlining and may bear subtle semantical differences in other implementations.
However, all control-flow transitions that result from using these operations are made
visible on the join-point level by an explicit join-point interface:

...

void before_CPURelease(Continuation*& to) {}

void before_LastCPURelease(Continuation*& to) {}

void after_CPUReceive() {}

void after_FirstCPUReceive() {}

};

8 A peculiarity of the TriCore platform is that call frames are not managed on the stack, but in
linked lists of dedicated context save areas (CSAs) that are implicitly created and destroyed
by the call and ret instructions. A CSA is a memory block of 128 bytes that represents
a function frame including all nonvolatile registers and the pointer to the previous context.
The PCXI (previous context information) CPU register always points to the most recent CSA,
which is the head of the CSA list of the currently active thread. Consult [21, pp. 5-1ff] for
further details.

9 On G++ CIAO_INLINE and CIAO_NOINLINE expand to __attribute__((always_inline)) and
__attribute__((noinline)), respectively.

The Aspect-Oriented Design and Implementation of the CiAO Operating System 185

The explicit join points are triggered by the context switch operations. The start() and
switchto() operations, for instance, are used to start, respectively reactivate, another
continuation to without saving their own context. Both operations never return; the call-
ing continuation terminates. Immediately before termination they trigger
before_LastCPURelease() to signal this transition to interested aspects. In the imple-
mentation of start() this looks as follows:

void CIAO_INLINE start(void* tos, StartFunc starter, Continuation* to) {

before_LastCPURelease(to); // we are going to leave forever

to->go(tos, starter); // start ’to’

} // <-- we never come here

Thereby, an aspect that gives advice to before_LastCPURelease() is activated when-
ever the current continuation control flow is about to terminate for to to receive the
CPU. Note that to is passed as a reference parameter to before_[Last]CPURelease()

– an aspect could not only inspect, but even influence the ongoing transition by choosing
another continuation to receive the CPU.

The saveAnd...() context switch operations work similarly, but save the calling’s con-
tinuation context first. They return when the calling continuation gets reactivated. Hence,
they trigger before_CPURelease() and after_CPUReceive(), which signal these tran-
sitions. In the implementation of saveAndSwitchto() this looks as follows:

void Continuation::saveAndSwitchto(Continuation* to){

int_saveAndSwitchto(to); // call (!) internal implementation

// <-- point of reactivation

after_CPUReceive(); // hello, again

}

void CIAO_NOINLINE Continuation::int_saveAndSwitchto(Continuation* to) {

before_CPURelease(to); // we are going to leave for ’to’...

save(); // but not forever

to->load(); // load ’to’

} // <-- point of ’to’ reactivation

The explicit join point after_FirstCPUReceive() signals that a continuation has been
started (activated for the very first time).

TCBUser. Class Continuation employ three constraints that have to be obeyed by its
clients: (1) Every start function that is passed as parameter starter to the start()

or saveAndStart() operations has to trigger the explicit join point after_FirstCPU-
Receive(). (2) starter has to adhere to a platform/compiler-dependent signature (that
often involves using non-standard compiler features expressed by #pragma statements
or __attribute__((...)) qualifiers). (3) The control flow must not terminate (invoke
start() or switchTo()) from a function call level below starter.

Whereas the above constraints are perfectly acceptable for system-internal control
flows, they might be inappropriate for continuations that start in user-level code. In gen-
eral, the decision how the user-level code has to be shaped, is bound, and gets activated
should be understood as a policy decision of the kernel – and not be prescribed by the
hw::hal layer.

186 D. Lohmann et al.

The class TCBUser implements a continuation interface for the kernel that deals with
these issues. It is intended as the base for user-level control flows and provides an ex-
plicit upcall join-point (ThreadFunc()) to which the kernel can bind its own policy for
the binding and activation of user code without having to deal with constraints (1) and
(2) imposed by Continuation. (The third constraint is tackled by the TCBUser_Cleanup

extension aspect, which will be discussed further below.):

class TCBUser : public Continuation {

...

// the internal Continuation start function

static void cfHAL_STARTFUNC_ATTRIBUTES kickoff(TCBUser* me) {

me->after_FirstCPUReceive(); // we are alive

me->ThreadFunc(); // and this is what we do
_debug(); // <-- we should never come here!

}

public:

void inline TCBUser::ThreadFunc() { /* upcall JP for the kernel*/ }

};

Technically, TCBUser uses an internal start function (kickoff()) that fulfills the Conti-

nuation contract10 and then triggers the explict upcall join point. As ThreadFunc() can
be inlined by the compiler, this indirection does not cause an overhead.

The Aspects: Utilizing the Explicit Join-Point Interfaces. The remaining optional or
alternative features have been implemented as aspects; they integrate themselves into
the continuation classes with advice-based binding and extension slices (see Figure 7).
Continuation_IRQSync. Continuation_IRQSync is a platform-independent policy as-
pect that implements the optional Synchronization feature. It ensures atomicity of context
switches by disabling interrupts in before_[Last]CPURelease() and reenabling them
in after_[First]CPUReceive(). The implementation of this aspect is straightforward:

aspect Continuation_IRQSync {

...

advice execution("void ...::before_%CPURelease(...)") && ... : before() {

hw::hal::CPU::disable();

}

advice execution("void ...::after_%CPUReceive(...)") && ... : after() {

hw::hal::CPU::enable();

}

};

Continuation_Active. Continuation_Active is a platform-independent extension as-
pect that implements the optional Bookkeeping feature. It upgrades the class
Continuation to a full-blown dispatcher that “knows” the currently running continua-
tion. For this purpose, an extensions slice is used to introduce the static active_ pointer
10 The cfHAL_STARTFUNC_ATTRIBUTES macro encapsulates the platform/compiler-dependent sig-

nature attributes with respect to constraint (2). On the TriCore platform, no such attributes are
required, so it expands to nothing.

The Aspect-Oriented Design and Implementation of the CiAO Operating System 187

along with corresponding accessor functions into class Continuation; advice-based
binding is employed to update the pointer after a context switch transition:

aspect Continuation_Active {

pointcut pcClass() = "hw::hal::Continuation";

advice pcClass() : slice class ActiveSupport {

static ActiveSupport* active_;

public:

static void setActive(ActiveSupport* to) {active_ = to;}

static ActiveSupport* getActive() {return active_;}

};

advice execution("void ...::after_%CPUReceive(...)")

&& within(pcClass()) : before() {

JoinPoint::That::setActive(tjp->that());

}

};

TCBUser_Cleanup. TCBUser_Cleanup is an extension aspect that implements the Flexi-
ble termination feature. For the sake of potential stack sharing, continuation control flows
are generally constrained to terminate only from the call-depth level of their start func-
tion – otherwise remaining call contexts may not be freed. On platforms that implicitly
share call contexts between all control flows (as on the TriCore) this constraint is com-
pulsory. However, as a restriction for the user level it might be inappropriate.11 With
the Flexible termination feature, it becomes permissible for user-level control flows to
terminate even while executing some subfunction.

Listing 9 shows the source code of TCBUser_Cleanup, which implements the Deter-
ministic alternative of Flexible termination for the TriCore platform. When a continuation
terminates, it adds all remaining call contexts to the free list of the CPU (lines 17–22).
In order to not have to collect them by walking down the whole list (which would take
an indeterministic amount of time), the aspect creates an extra dummy context that
serves as a tail pointer (fcxi_) at the beginning of a TCBUser continuation. By using
call-advice instead of execution-advice, the creation of this extra context only affects
TCBUser continuations (lines 12–16).

Task_TCBBinding. The last aspect under discussion is not provided by the hw::hal
layer as part of the continuation concept; it is an example of the implementation of the
alternative Binding feature by the kernel. Task_TCBBinding is the binding aspect that is
employed by the CiAO-AS kernel implementation to bind the user-level task implemen-
tations to continuations via an AUTOSAR-OS–compatible TaskFunc function pointer.
As the switch to user level is itself a semantically important transition (for which the
kernel employs separate explicit join points, see Table 1), the aspect furthermore signals
this transition before activating the user code:

11 This depends on the kernel personality and, hence, should be configurable. AUTOSAR OS,
for instance, constrains the allowed termination points of user-level task functions in a similar
manner; however, other operating systems do not impose such a restriction.

188 D. Lohmann et al.

aspect Task_TCBBinding {

...

advice execution("% hw::hal::TCBUser::ThreadFunc(...)") : around() {

os::krn::leaveKernel(); // we are going up

hw::JUMP (tjp->that()->start_); // execute user-level code

}

};

4.4 “Continuation” Summary

The CiAO control flow abstraction is a good example of the aspect-aware design and
implementation of a low-level system abstraction by applying the idioms discussed in
Sect. 3. Visible transitions by explicit join-points and advice-based binding facilitate the
loose coupling of the core abstraction, its optional extensions, and the related policies.
The result is a perfect one-to-one mapping from features to implementation components.
New policies or extensions – either platform-independent or for some particular hard-
ware platform – are easy to add. A good example of the latter would be an extension
with respect to the amount of context information. If, for instance, a CPU architecture
provides dedicated floating-point registers, saving and restoring these registers could be
left to an extension aspect.

Especially the four explicit join points provided by class Continuation, which make
all relevant transitions from the life cycle of a control flow visible on the join-point
level, turned out as particularly useful. Besides the aspects depicted in Figure 7, we can
find customer aspects that make use of them in many other parts of the kernel. This
includes policy aspects from the implementation of the architectural policies memory
protection and timing protection, but also extension aspects that implement optional
kernel features, such as the support for AUTOSAR-OS hook functions.

1 aspect TCBUser_Cleanup {
2 pointcut pcClass() = "hw::hal::TCBUser";
3 advice pcClass() : slice class CleanupSupport {
4 _tc::PCXI_t_nonv fcxi_; // tail pointer (for dummy CSA)
5 public:
6 void CIAO_INLINE cleanup() {
7 _tc::PCXI_t_nonv head = _mfcr($pcxi); // get head of CSA list
8 _mtcr($pcxi, 0); // "forget" it
9 _tc::free_cx_list(head, fcxi_); // add CSAs to the CPU’s free list

10 }
11 };
12 advice call("% ...::after_FirstCPUReceive(...)") // when a *TCBUser* starts...
13 && within (pcClass()) : after() {
14 _svlcx(); // create and link a CSA
15 tjp->target()->fcxi_ = _mfcr($pcxi); // remember it in fcxi_

16 }
17 advice execution("% ...::before_LastCPURelease(...)")
18 && within (base(pcClass())) : after() {
19 if(_mfcr($pcxi) != 0) { // still CSAs left?
20 ((hw::hal::TCBUser*)(tjp->target()))->cleanup(); // we need to cleanup
21 }
22 }
23 };

Fig. 9. TriCore implementation of the aspect TCBUser_Cleanup

The Aspect-Oriented Design and Implementation of the CiAO Operating System 189

5 Case Study “Interrupt Synchronization”

In the domain of event-triggered systems, interrupt requests (IRQs) are the common
approach to signal events from peripheral devices (such as the expiry of a timer or a
level change on a digital I/O line) to the CPU. The CPU deals with the event by the
(immediate or delayed) execution of a corresponding interrupt service routine (ISR). To
ensure consistency of system state that is accessed by ordinary control flows as well
as by ISRs, the operating system has to apply measures for interrupt synchronization.
Interrupt synchronization is an architectural policy – the chosen strategy is transparent
to the application, but can have a notable influence on non-functional properties, such as
latency and performance. For these reasons, interrupt synchronization is implemented
in CiAO as a configurable policy.

We begin with a description of the intended variability of interrupt synchronization
in Sect. 5.1 and the resulting aspect-aware design in Sect. 5.2. This is followed by an im-
plementation sketch in Sect. 5.3 and a comparison of the resulting latencies in Sect. 5.4.
Finally, Sect. 5.5 sums up our results.

5.1 CiAO Interrupt Synchronization Models

Interrupt handling in CiAO device drivers is explicitly divided into two parts: The first
part, called prologue, is intended for time-critical actions and restricted with respect to
the resources it may access, typically only hardware registers. Before termination, the
prologue may request the (potentially delayed) execution of a second part. The second
part, called epilogue in CiAO, is allowed to access other system components, such as the
scheduler. The general idea is to execute the time-critical part immediately on interrupt
level and the synchronized second part with a lower priority or at a later time when the
required resources are available.

Interrupt synchonization

Coarse grained

Hard synchronization Delayed synchronization

Fast epilogues

Fine grained

Continuation synchronization

Piggybacking

composition rule: Continuation synchronization
requires Continuation.Switch.Bookkeeping
and Continuation.Switch.Synchronization

Fig. 10. Feature diagram of the configurable architectural policy interrupt synchronization. CiAO
supports three different strategies for interrupt synchronization: Hard synchronization, Delayed syn-
chronization, and Continuation synchronization. Continuation synchronization requires, however, cer-
tain Continuation features (see Figure 6) to be present. (The coloring is for the purpose of feature
traceability with Figure 11.)

190 D. Lohmann et al.

The feature diagram in Figure 10 depicts the offered variability for the architectural
property interrupt synchronization. CiAO currently provides two different models for
coarse-grained interrupt synchronization (Hard synchronization and Delayed synchroniza-
tion) and one model for fine-grained interrupt synchronization (Continuation synchroniza-
tion). They are all based on well-known techniques that are also used in other operating
systems.

Hard Synchronization. In this configuration, the two parts are actually combined into
one. When an interrupt occurs, prologue and epilogue are just executed consecutively
on the interrupt level (interrupts remain disabled). Before accessing shared resources,
threads have to enter interrupt level as well, that is, they have to disable interrupts.

The advantage of this model is its simplicity and low overhead. It is employed in
many proprietary operating systems but also in sensor-network operating systems like
TinyOS [6]. However, if interrupts are disabled too long or the interrupt handler has to
perform a time-consuming task, latency rises and IRQ signals might be lost.

Delayed Synchronization. The prologue is executed with low latency at interrupt level.
Epilogues are executed on their own epilogue level; they are queued until the kernel
propagates them for execution, which is the case after all nested prologues have termi-
nated and before the scheduler is activated. Epilogues thereby have priority over threads,
but are interruptible by prologues if new IRQ signals come in. Threads inside the kernel
can temporarily disable the propagation of epilogues to access shared resources. In this
case, epilogue propagation is delayed until the thread finishes its access. Interrupts only
have to be disabled if a thread or epilogue operates on prologue-accessible state.

If low latencies for critical handler code are crucial, this is our model of choice, as
prologue deferment is rare and short. Many operating systems employ means for such a
delayed execution of the major handler code: The term epilogues as used in CiAO stems
from PEACE [41]; in eCos, epilogues are called delayed service routines (DSRs) [35],
in Linux Tasklets [39,33], and Windows calls them deferred procedure calls (DPCs)
[42].

The optional Fast epilogues feature represents an optimization. When this feature is
applied, epilogues are – if possible – executed directly without queueing them first.12

Continuation Synchronization. In this configuration, the role of the prologue is the
same as above. If an epilogue is requested, interrupts are reenabled and a new continu-
ation (basic thread abstraction in CiAO, see Sect. 4) is started to execute the epilogue
code in its own control-flow context. Epilogues synchronize with other continuation ob-
jects (epilogues or threads) via mutex objects using a priority inheritance protocol: The
execution of the epilogue continuation can block on such mutex if a shared resource is
currently in use by some thread or lower-priority epilogue; in this case, the owning con-
trol flow is reactivated until it frees the mutex. Hence, interrupts (respectively epilogues)
and threads share (logically) a common priority space.

The major advantage of this model is that it thereby becomes permissible for in-
terrupt control flows to block. This facilitates on-demand and fine-grained locking
12 This is possible, when (a) there are currently no nested prologues and (b) epilogue propagation

has not been temporarily disabled.

The Aspect-Oriented Design and Implementation of the CiAO Operating System 191

of kernel components. The implementation in CiAO was inspired by the interrupt-as-
coroutines approach from Solaris [25]; however, the earliest references to this idea can
be found in Moose [40] and Mach [2]. Several other systems, such as FreeBSD [34]
and L4 [27], also execute interrupt handlers as threads.

The optional Piggybacking feature represents an optimization. When this feature is
applied, interrupts “borrow” – if possible – the interrupted continuation control flow
for the execution of their epilogue instead of starting their own continuation for this
purpose.13

5.2 Design

In the following, we sketch the functional layers and their relevant components of in-
terrupt synchronization in a bottom-up manner. The achieved separation of concerns
through aspect-aware design will then be further detailed in Sect. 5.2; the implementa-
tion in Sect. 5.3.

Functional Layers. Figure 11 shows the structure of interrupt synchronization in CiAO
as a layered model:

(1) Interrupt handling starts in the hw::irq layer (the interface to the underlying hard-
ware), which contains one separate system component (a C++ class) for each
(platform-specific) interrupt source. Each interrupt class provides a static
handler() method as an explicit upcall join point (see Table 1). This join point
is triggered when the corresponding interrupt occurs.

(2a) Binding aspects from the os::dev layer establish the link from hardware inter-
rupt sources to corresponding system layer components (drivers). As a driver may
service more than one IRQ, prologue and epilogue are contained in virtual IRQ
(VIRQ) components inside the driver. VIRQs are the operating system’s software
abstraction for hardware interrupt sources and the corresponding handlers. Each
VIRQ class provides an empty handler() method as an explicit transition join
point for the execution policy.

(4a) The Executor policy aspect from the policy layer binds the proper activation
of the actual interrupt handler implementation in VIRQ::prologue() and VIRQ::

epilogue() to VIRQ::handler().
(2) The os layer and its sublayers (os::dev, os::krn) contain the functional parts of

the operating system, which are independent of the interrupt synchronization pol-
icy. Device drivers, but also other system components (such as the scheduler) are
placed in this layer. Device drivers implement the interrupt service code as VIRQs
(that is, define the behavior of prologue() and epilogue()), but have neither
information nor any influence on the actual circumstances of their execution. De-
pending on the chosen synchronization model, a VIRQ may also act as a continua-
tion or a delayed execution object. Every system component used by interrupts (ei-
ther directly or indirectly) is subject to interrupt synchronization and provides an
accompanying ..._IntSync aspect that describes its synchronization requirements.

13 This is possible when the interrupted continuation has not aquired a mutex.

192 D. Lohmann et al.

Fig. 11. Design model of the architectural policy interrupt synchronization in CiAO. Depicted
is, on the example of a Timer0 device driver and the Continuation synchronization strategy, how
interrupt processing engages with the policy implementation (Executor, Locker) of the chosen
strategy. (The coloring indicates the corresponding feature from Figure 10.)

(3) The os::irq layer is responsible for enforcing the synchronization constraints. The
aspect Block enforces disabling of interrupts when methods are called that operate
on prologue-accessible state (explained in the following section). It may be deac-
tivated if we want to combine prologues and epilogues, which means that they are
actually synchronized with the same mechanism. This is always the case with the
Hard synchronization strategy. The Sync aspect enforces protection of all methods
that run on the epilogue level.

(4) Finally, a (logical) policy layer implements the chosen model of interrupt synchro-
nization. A policy layer contains at least a Locker and an Executor. Whereas the
Locker encapsulates the implementation of the locking mechanism, the Executor

applies the policy-dependent mechanisms for the activation of prologues and epi-
logues. This responsibility includes the necessary transformations of VIRQs in a
way that they are able to act as a continuation or a delayed execution object.

The Aspect-Oriented Design and Implementation of the CiAO Operating System 193

In the shown policy::continuation strategy, the Executor activates epilogues as new
continuations using the Continuation abstraction as dispatcher. VIRQs have to be
equipped with their own Continuation context for this purpose; locking is implemented
by mutex objects. As the context switch mechanisms are now also activated from in-
terrupt level (the Executor aspect introduces a new functional dependency between
interrupts and the class Continuation), they have to be synchronized on the interrupt
level. For this purpose the Continuation_SyncIRQ aspect we discussed in Sect. 4 is
employed.

Separation of Policies and Mechanisms. With respect to aspect-aware operating sys-
tem development, the most interesting point of the sketched design is how the separation
of policies and mechanisms is achieved. We can roughly divide the architectural policy
of interrupt handling in two concerns:

Synchronization. The synchronization concern deals with the question of which mech-
anism is used for the coordination of interrupt and thread control flows (deferring
of interrupts, deferring of epilogues, mutex) and where it has to be applied.

Execution. The execution concern deals with the question of which mechanism is used
for the activation of interrupt control flows (direct, delayed, as separate continua-
tion) and where it has to be applied.

Both concerns are not independent of each other – if we choose a blocking synchro-
nization mechanism (such as mutex) we also need a preemptable execution mechanism
(such as continuation). Hence, they together constitute an implementation of the inter-
rupt synchronization policy.

To be able to develop system components (such as device drivers) in a way that they
are transparent with respect to such a policy, a further separation is necessary. It can be
expressed as simple questions of how, where, and what:

How. The answer to the question how we want to synchronize is the policy-dependent
part of interrupt synchronization and execution. It defines which mechanisms are
to be used for synchronization of components (Locker) together with a suitable
execution model for prologues and epilogues (Executor).

Where. The answer to the question where synchronization measures have to be applied
is the component-dependent part of interrupt synchronization. We need a represen-
tation of the synchronization requirements of each operating system component. As
this knowledge depends on the component implementation, it has to be provided by
the component developer. In the current implementation, synchronization require-
ments are encoded on a per-method level in the accompanying ...IntSync aspects,
which provide named pointcuts that specify the members of each synchronization
class.14 We distinguish between three synchronization classes.

14 The specification of the synchronization requirements on method granularity and by manual
maintenance of named pointcuts is not optimal. Ideally, we would be able to tag methods
directly with their synchronization class – instead of listing them in a named pointcut. Even
better would be the possiblity to apply tags on a finer granularity, such as on the level of code
blocks. Such tagging concept is currently being implemented for AspectC++; once it becomes
available it will be easy to catch this up in the discussed design as no policy-related parts will
be affected.

194 D. Lohmann et al.

1. Most methods belong to the class synchronized, which means that they get
synchronized on the epilogue level.

2. Methods that access prologue-accessible state belong to the class blocked in-
stead, which means that they are synchronized on the prologue level.

3. Methods that only perform atomic or interrupt-transparent operations do not
need to be subject of any synchronization measures and belong to the class
transparent.

In principle, the where of prologue/epilogue activation is component-dependent,
too. However, this knowledge is already encoded in an aspect-aware manner by
the common structure and join-point interface of the VIRQ classes. Thereby it is
possible to quantify over all points of prologue/epilogue activation with a single
pointcut expression. Hence, in the actual implementation the where of the execution
concern is not component-dependent and can directly be encoded as a pointcut in
the Executor aspect.

What. Finally, we have to ensure that the chosen synchronization mechanism actually
gets applied appropriately at the correct positions in the control flow. This part is
independent of both the policy and the component. It is accomplished by pieces of
advice given by the aspects Sync and Block from the os::irq layer. For the execution
mechanism it is taken care of by pieces of generic advice given by the Executor

aspect.

The concerns and their corresponding aspects are briefly summarized in Table 2.

Table 2. Concerns of interrupt handling and corresponding aspects in CiAO

aspect # concern

Binder per IRQ–VIRQ mapping upcall binding, hardware decoupling

VIRQ per VIRQ per component execution domain specification

Executor per policy execution mechanism and enforcement

Locker per policy synchronization mechanism

Sync 1 synchronization enforcement

Block 1 synchronization enforcement

IntSync per component synchronization domain specification

5.3 Implementation

In the following, we provide a closer look at some selected parts of the implementation.
A typical characteristic of architectural policies is that their implementation homoge-
neously crosscuts with the implementation of a (potentially unknown) number of kernel
components. In the actual implementation, this is tackled with generic advice.

Component Implementation. Listing 12.a shows excerpts from the driver implemen-
tation for the Timer0 timer device: The windupPeriodical() method arms the timer

The Aspect-Oriented Design and Implementation of the CiAO Operating System 195

(a) Timer0.h

1 class Timer0 ... {

2 ... // state

3 public:

4 void windupPeriodical(long time);

5 long value() const;

6 void addEvent(const EventCB* cb);

7 private:

8 void tick();

9 void processEvents();

10 class VIRQ ... {

11 void handler();

12 void prologue() {

13 tick();

14 }

15 void epilogue() {

16 process_events();

17 }

18 };

19 ...
20 };

(b) Timer0_IntSync.ah

1 aspect Timer0_IntSync : public IntSync {

2 pointcut pcClass = "os::dev::Timer0";

3

4 pointcut virtual pcSynchronized() =

5 within(pcClass()) && (

6 "% addEvent(...)"

7 || "% processEvents()"

8);

9

10 pointcut virtual pcBlocked() =

11 within(pcClass()) && (

12 "% windupPeriodical(...)"

13 || "% tick()"

14);

15

16 pointcut virtual pcTransparent() =

17 within(pcClass()) && (

18 "% value()"

19);

20 };

Fig. 12. A CiAO device driver with corresponding ..._IntSync aspect. (a) Class Timer0 with inner
class Timer0::VIRQ implements the driver for an interrupt-driven timer device. (b) The accompa-
nying aspect Timer0_IntSync encodes the synchronization requirements of Timer0 methods by
assigning them to one of the pointcuts pcSynchronized(), pcBlocked(), or pcTransparent().

device to request an interrupt after the specified time. However, for the timer to do
this periodically, the tick() method has to be invoked from the interrupt handler to
rearm the timer. This is considered time-critical, so it is done in the prologue. There-
fore, the timer hardware registers and the period belong to prologue-accessible state.
Consequently, windupPeriodical() and tick() belong to the synchronization class
blocked. The callback functions, which are registered by addEvent() and eventually
get triggered by processEvents(), are held in a queue. This queue belongs to the
epilogue-accessible state; hence addEvent() and processEvents() are members of
the synchronization class synchronized. The value() method simply reads the timer
value; this happens atomically on this hardware architecture and does not need to be
synchronized, so value() belongs to the synchronization class transparent. The accom-
panying Timer0_IntSync aspect in Listing 12.b encodes these decisions by specifying a
named pointcut for each class. The named pointcuts pcSynchronized(), pcBlocked(),
and pcTransparent() are actually definitions of pure virtual pointcuts from the as-
pects Block and Sync (Sect. 5.3), from which (indirectly) every ..._IntSync aspect
inherits.15

15 An aspect may give advice to an yet undefined (pure virtual) pointcut, which turns the aspect
into an abstract aspect; the pure virtual pointcut eventually has to be defined by some derived
aspects [44].

196 D. Lohmann et al.

Policy Implementation. The Locker is simply a type alias to a class which provides
methods to be called in order to protect critical method calls. In the case of Hard syn-
chronization that class looks like this:

struct Hard {

static void enter() {

hw::hal::CPU::disable();

}

static void leave() {

hw::hal::CPU::enable();

}

};

For the other models, more sophisticated actions are to be performed by these two meth-
ods. With Continuation synchronization, for instance, Locker is aliased to the kernel mu-
tex class IMutex, which has to deal with priority inheritance and potential dispatching
in enter() and leave().

With respect to configurability, the more interesting part of model implementation is
the Executor aspect, which again looks relatively simple in the case of Hard synchro-
nization:

aspect Executor_Hard {

advice execution("% os::...::VIRQ%::handler(...)") : after() {

if (JoinPoint::That::prologue()) // execute prologue

JoinPoint::That::epilogue(); // execute epilogue

}

};

The Executor aspect is quantified over all VIRQ classes; it uses generic advice [28] to
bind prologue() and epilogue() via their static type (given by JoinPoint::That), so
they can be inlined.

If we want to run the Delayed synchronization policy, the aspect has to enqueue the
VIRQ for later execution of the epilogue. For this, it is necessary to transform VIRQ
classes into queueable objects by introducing a Queueable base class:

aspect Executor_Delayed {

advice "os::...::VIRQ%" : slice class Gate : public Queueable {};

advice execution("...::VIRQ%::handler(...)") : after() {

if (JoinPoint::That::prologue()) { // execute prologue

Guard::relay(JoinPoint::That::Inst()); // enqueue for later exec.

} }

};

To be queueable, an actual instance is needed for each VIRQ class, even though the
VIRQ classes contain just static elements. To provide such instance the introduced slice
Gate also transforms VIRQs into singletons.

The Aspect-Oriented Design and Implementation of the CiAO Operating System 197

The realization of Continuation synchronization requires one separate continuation con-
text per VIRQ class to which the Executor may switch for epilogue activation:

aspect Executor_Continuation {

advice "...::VIRQ%" : slice class { // introduce its own Continuation

static Continuation ctx; // into every VIRQ

static char *stack[cfIRQ_EPISTACK];

static void cfHAL_STARTFUNC_ATTRIBUTES entry(Continuation* me) {

me->after_FirstCPUReceive();

epilogue(); // run epilogue

} };

advice execution("...::VIRQ%::handler(...)") : after() {

...

typedef JoinPoint::That VIRQ;

if (VIRQ::prologue()) { // execute prologue

Continuation::getActive()->saveAndStart(// save current context and

&VIRQ::stack[cfIRQ_EPISTACK], // start epilogue in its own

VIRQ::entry, &VIRQ::ctx); // continuation

} ... }

};

No object instance for the VIRQ is needed in this case as all members can be static.

Enforcement of Synchronization. To accomplish the task of combining what, how
and where, the aspects of this layer use pure virtual pointcuts to which they give pieces
of advice that contain the synchronization code. These pointcuts are later defined by
the component-specific ..._IntSync aspects. The pcExclude() pointcut protects syn-
chronized but magic code (for example the epilogue itself) from being affected by the
piece of advice:

aspect Sync : Locker {

pointcut virtual pcSynchronized() = 0;

pointcut pcToSync() = call(pcSynchronized()

&& !pcExclude())

&& !within(pcSynchronized());

advice pcToSync() : around() {

enter();

tjp->proceed();

leave();

}

};

For fine-grained locking as used by the Continuation synchronization strategy, every com-
ponent has to be synchronized independently. This is achieved by the fact that a separate
instantiation of the whole synchronization hierarchy is performed for each (component-
specific) ..._IntSync aspect, resulting in one IMutex per component. In this case the

198 D. Lohmann et al.

Sync aspect instruments all calls into “foreign” synchronization domains to obtain and
release the respective Mutex instance around the call.

With coarse-grained locking as used by the Hard synchronization and Delayed syn-
chronization strategies, all components share a single synchronization domain. This
is realized by combining the component-specific definitions of the virtual pointcuts
pcSynchronized(), pcBlocked(), and pcTransparent().

5.4 Interrupt Latency Comparison

Table 3 compares the relative prologue and epilogue activation overhead of the three im-
plementations.16 The numbers represent the latency in the optimal case: no other control
flow is in the kernel that blocks or delays the execution of prologues and epilogues. It is
therefore not surprising that the implementation of Hard synchronization performs best
as this model involves the lowest ground overhead. With Delayed synchronization, the
prologue activation time is identical, however the potentially delayed execution of the
epilogue causes some overhead. As expected, the overhead is highest in the implementa-
tion of Continuation synchronization. For the later context switch out of interrupt state, the
TriCore CPU requires some additional processing before entering the prologue, which
causes the higher latency for its activation. The context switch to activate the epilogue
itself comes at a price, too, even though 60 cycles can still be considered as a fairly
small overhead for the gained flexibility of fine-grained locking.

Although the latency of Continuation synchronization is highest in Table 3 (the ideal
case without any delays), it can quickly pay off: If the length of epilogue locks caused
by other interrupt handlers or kernel components exceeds the amount of 20 cycles, we
already could have a break-even to Delayed synchronization. This, however, always de-
pends on particularities of the concrete application (event frequency, deadlines, proces-
sor utilization, ...) and, thus, should be configurable.

The last two rows show the interrupt latency of category 1 and category 2 ISRs in a
commercial OSEK implementation.17 In OSEK OS, ISRs cannot be split into two parts;
instead they run either, as a prologue, outside of the kernel (category 1 ISR) or, similar
to an epilogue, synchronized with the kernel (category 2 ISR) [36, p. 25].

5.5 “Interrupt Synchronization” Summary

Interrupt synchronization is a good example of the decoupling of policies and mecha-
nisms of even architectural policies in CiAO. Whereas the enforcement of a usual kernel

16 All measurements in this paper base on variants that were woven and compiled for the Infineon
TriCore platform with AC++-1.0PRE3 and TRICORE-G++-3.4.3 using -O3 -fno-rtti -funit-at-
a-time -ffunction-sections -Xlinker --gc-sections optimization flags. Memory numbers were
retrieved byte-exact from the linker-map files. Run-time numbers were measured with a high-
resolution hardware trace unit (Lauterbach PowerTrace TC1796).

17 Pro​OSEK is the leading commercial implementation of the OSEK standard and part of the
BMW and Audi/VW standard cores. We compare CiAO against Pro​OSEK since (1) AU-
TOSAR is a true superset of OSEK and (2) we do not yet have access to a complete AUTOSAR
implementation.

The Aspect-Oriented Design and Implementation of the CiAO Operating System 199

Table 3.  Latencies for non-delayed interrupts in CiAO and OSEK. Depicted numbers are
the elapsed time [cycles] from the begin of the hardware interrupt handler to the first prologue
instruction, epilogue instruction, and until interrupt termination (iret).

tprologue tepilogue t iret

hard 8 8 16

delayed 8 40 60

continuation 16 60 108

OSEK category 1 ISR 12 – 20

OSEK category 2 ISR – 12 20

policy (such as the preemption strategy presented in Figure 4) affects only a small se-
lection of well-known components, it is characteristic for an architectural policy that its
implementation crosscuts with the implementation of a (potentially unknown) number
of kernel components. Hence, it has to be quantifiable – which requires some prepa-
rations on the side of the affected components. CiAO’s kernel components are aware
of interrupt synchronization – they adhere to a common driver model for VIRQs and
explicitly specify their synchronization requirements. However, they do not have to
know the concrete strategy. Thanks to generic advice and static typing, this architec-
tural transparency can be implemented in way that leads to quite efficient yet flexible
and concern-separated code.

6 Case Study “CiAO-AS”

AUTOSAR is an initiative formed by all major automotive manufacturers and suppliers
like BMW, Ford, Toyota, and Bosch. Their goal is to standardize the interfaces and
functionality of the operating system and drivers in automotive microcontrollers in order
to facilitate application development in the domain. The operating system standard,
AUTOSAR OS [4,3] describes a kernel that is completely statically configured; the
overall system configuration is known at compile time.

The main point that distinguishes AUTOSAR OS from its predecessor OSEK OS
[36] and other operating systems in the domain of statically configured embedded sys-
tems is its configurable support for properties of architectural kinds: These include the
decision to make the system fully-, mixed-, or non-preemptable, and different levels of
protection between AUTOSAR applications. Protection entails memory protection to
prevent memory corruption, timing protection to ensure that applications will not miss
their deadlines because of a misbehaving component, and service protection, which
checks for correct usage and context of system-service invocation.

The purpose of the “CiAO-AS” study was to evaluate the identified principles and
idioms of aspect-aware operating-system development on a larger scale, that is, by con-
struction of a complete kernel. The AUTOSAR OS standard is a particularly interesting
test subject for this kind of evaluation:

– AUTOSAR OS is not a concrete system but a standard, described by a set of require-
ments and a detailed specification of the system services (API) and abstractions.

200 D. Lohmann et al.

This makes it possible to evaluate the approach with a top-down implementation of
real-world requirements.

– The suggested protection facilities (memory protection, timing protection, and ser-
vice protection) make AUTOSAR OS a convincing case for architectural configura-
bility by aspects.

– AUTOSAR is currently a “hot topic” in the embedded systems domain.

CiAO-AS is an AUTOSAR-OS operating system based on the CiAO kernel. In the fol-
lowing, we present and discuss some results from the “CIAO-AS” study. As we already
have discussed several examples for the aspect-aware design and implementation of
CiAO’s system abstractions on a relatively high level of detail, we shall concentrate
more on the achieved general results. This includes the global analysis of AUTOSAR-
OS concerns in Sect. 6.1 and their interdependencies in Sect. 6.2, the implementation
of these concerns by aspect-aware operating-system development in CiAO (Sect. 6.3),
and the memory and execution-time footprint of the resulting kernel in Sect. 6.4. Finally,
Sect. 6.5 summarizes our results.

6.1 AUTOSAR OS Abstractions in a Nutshell

AUTOSAR OS offers different kinds of abstractions to the application programmer.
Among the control flows, there are tasks (named threads in other operating systems) and
hooks (comparable to signal handlers in other operating systems), which are invoked in
case of certain control-flow events (e.g., upon a task switch, or upon a protection vio-
lation). Interrupt services routines (ISRs) are invoked asynchronously by the hardware;
ISRs of category 1 must not use OS services, whereas ISRs of category 2 are allowed
to invoke the kernel and must therefore be synchronized with the kernel in order not
to corrupt kernel state. Tasks and ISRs themselves can synchronize by acquiring and
releasing AUTOSAR resources; AUTOSAR events can be used for task and ISR notifi-
cation. AUTOSAR alarms allow the application to take action after a specified amount
of time has elapsed.

6.2 Analysis Results – From Requirements to Concerns

The AUTOSAR-OS standard proposes a set of conformance-and-scalability classes for
the purpose of system tailoring [36,4]. These classes are, however, relatively coarse-
grained and do not clearly separate between conceptually distinct concerns. As CiAO
aims at a much better granularity (see Sect. 2.1), every AUTOSAR-OS concern is rep-
resented as an individual feature in CiAO-AS.

Table 4 presents – in a condensed form – an excerpt of the results of the analy-
sis of the AUTOSAR-OS concerns.18 It lists some of the identified concerns of AU-
TOSAR OS (column headings) and how we can expect them to interact with the named
entities of the implementation (row headings), that is, the 44 system services (e.g.,
ActivateTask()) and the relevant system object types (e.g., TaskType) specified in
[36,4]. Additionally examined in Table 4 are some internal concerns (Preemption) and

18 For the complete table please consult our AOSD ’11 paper [29].

The Aspect-Oriented Design and Implementation of the CiAO Operating System 201

Table 4. Influence of configurable concerns (columns) on system services, system types, and
internal events (rows) in AUTOSAR OS [4,36]. Kind of influence: ⊕ = extension of the API
by a service or type, � = extension of an existing type, �� = modification after service or event,�� = modification before, � = modification before and after.

System abstractions (functional) Callbacks Protection facilities (architectural) Internal

O
S

co
nt

ro
l

Ta
sk

s

IS
R

s
ca

te
go

ry
1

IS
R

s
ca

te
go

ry
2

R
es

ou
rc

es

E
ve

nt
s

A
la

rm
s

H
oo

ks

... T
im

in
g

pr
ot

ec
tio

n

In
va

lid
pa

ra
m

et
er

s

W
ro

ng
co

nt
ex

t

In
te

rr
up

ts
di

sa
bl

ed

F
or

ei
gn

O
S

ob
je

ct
s

... P
re

em
pt

io
n

...
... <3 OS services> ⊕ �� ... �� �� �� ��
ActivateTask() ⊕ �� ... �� �� �� �� ... �� ...
TerminateTask() ⊕ �� ... �� �� ... �� ...
Schedule() ⊕ �� ... �� �� ... �� ...
... <3 more task services> ⊕ �� ... �� �� �� �� ... �� ...
ResumeAllInterrupts() ⊕ ... �� ��
SuspendAllInterrupts() ⊕ ... �� ��
... <7 more ISR services> ⊕ ⊕ �� ... � �� �� �� ��
GetResource() ⊕ �� ... �� �� �� �� ��
ReleaseResource() ⊕ �� ... �� �� �� �� �� ... �� ...
... <4 event services> ⊕ �� ... �� �� �� �� ... �� ...
... <6 alarm services> ⊕ �� ... �� �� �� �� ... �� ...
... <7 schedule table services> ⊕ �� ... �� �� �� ��
... <7 OS application services> �� ... �� �� �� ��

TaskType ⊕ � � ... � � ... � ...
ResourceType ⊕ ... �
... <4 more structures> ⊕ � ⊕ � ⊕ ... � �

System startup �� �� ��
Task switch � ... �
Protection violation ��
... <4 more internal points> �� �� �� ... � �� ... �� ...

internal transitions (events) that are not mentioned explicitly in the AUTOSAR-OS
specification, but that are nevertheless of high relevance. These concerns were exam-
ined by experience and deduction [29].

Table 4 thereby provides an idea of how we can expect AUTOSAR-OS concerns to
crosscut with each other in the structural space (types, services) and behavioral space
(control flows events) of the implementation. We can see, for instance, that the design
of the API is canonical – each system service and object type is motivated (introduced)
by exactly one concern. The state to be maintained in the listed object types, however, is
influenced by several concerns, so is the behavior that is associated with the execution of
a system service. In fact, there is not a single AUTOSAR-OS service that is influenced
by only one concern!

Some concerns are “highly crosscutting”, in the sense that their implementation is
expected to touch a high number of system services or object types. The Hooks facility,
for instance, includes support for several application-specific signal handlers, among
them the ErrorHook that is to be invoked in case of an error. In the implementation, this
touches every system service that may return with an error code (i.e., those that return
a StatusType).

As expected, some of the architectural protection properties classify as “highly cross-
cutting”, too. This is particularly true for the various Protection constraints to be checked
for – the enforcement of these constraints is naturally associated with the execution of
system services.

202 D. Lohmann et al.

The identified system internal events are of particular importance with respect to
an aspect-aware development as they reflect relevant transitions that are not implicitly
provided by a system service. Instead, we had to deal with these transitions explicitly
in the design and implementation, for example, model them as explicit join-points. We
have already seen several examples for this in Sect. 3.2.

Overall, the concerns defined by the AUTOSAR-OS specification documents [4,36]
bear a surprisingly high amount of crosscutting in the specified services and abstrac-
tions. A concrete implementation should profit significantly from the aspect-aware de-
velopment approach.

6.3 Development Results – From Concerns to Classes and Aspects

In its full configuration, the CiAO-AS kernel contains three basic system components
(cf. Sect. 2.4) that are singletons by definition and implemented as classes:

1. The scheduler (Scheduler) takes care of the dispatching of tasks and the scheduling
strategy.

2. The alarm manager (AlarmManager) takes care of the management of alarms and
the underlying (hardware / software) counters.

3. The OS control facility (OSControl) provides services for the controlled startup
and shutdown of the system and the management of OSEK-OS / AUTOSAR-OS
application modes.

Also represented as classes are the system abstractions (the types that represent instan-
tiable system objects, such as TaskType, ResourceType, and so on) and the namespace
of the API (AS).

However, as described in Sect. 2.4, these classes are sparse or even empty. If at all,
they implement only a minimal base of their respective concern. All further features and
variants are brought into the system by aspects. The class Scheduler, for instance, pro-
vides only the minimal base of the scheduling facility, which is nonpreemptive schedul-
ing with single task activations. Support for more sophisticated preemption or activation
modes is provided by additional policy aspects and extension aspects. Table 5 displays
an excerpt of the list of AUTOSAR-OS concerns that have been implemented as aspects
in CiAO-AS.

The first three columns list for each concern the number of extension, policy, and
upcall aspects that implement the concern. For all concerns, the implementation could
be realized as a single aspect. (The further separation into an extension aspect and a
policy aspect in two cases (Resource support and Protection hook) is owed to the goal
of strict decoupling of mechanisms and policies suggested by the CiAO approach, see
Sect. 2.1.)

The majority of concerns from Table 5 contributes to the set of policy aspects (12
aspects), which by extension is followed by the set of extension aspects (9 aspects).
The number of upcall aspects (3+n+m) differs from these in so far as it does not only
depend on the system configuration, but also on the application configuration: Each
specified ISR in the application is bound with the respective interrupt source in the
kernel or HAL by its own upcall aspect. These aspects are, however, not to be provided

The Aspect-Oriented Design and Implementation of the CiAO Operating System 203

Table 5. CiAO-AS kernel concern implemented as aspects with number of affected join points.
Listed are kernel concerns that are implemented as extension, policy, or upcall aspects (not in-
cluding aspects for memory protection, timing protection, and hw::hal-bindings), together with
the related pieces of advice (not including order-advice), the affected join points, and a short
explanation for the purpose of each join point (separated by “|” into introductions of extension
slices | advice-based binding).

concern ex
te

n
si

o
n

p
o

lic
y

u
p

ca
ll

ad
vi

ce

jo
in

p
o

in
ts

extension of | advice-based binding to

ISR cat. 1 support 1 m 2+m 2+m API, OS control | m ISR bindings

ISR cat. 2 support 1 n 5+n 5+n API, OS control, scheduler | n ISR bindings

ISR abortion support 1 2 1+m+n scheduler | m+n ISR functions

Resource support 1 1 3 5 scheduler, API, task | PCP policy implementation

Resource tracking 1 3 4 task, ISR | monitoring of Get/ReleaseResource

Event support 1 5 5 scheduler, API, task, alarm | trigger action JP

Alarm support 1 1 1 API

OS application support 1 2 3 scheduler, task, ISR

Full preemption 1 2 6 | 3 points of rescheduling

Mixed preemption 1 3 7 task | 3 points of rescheduling for task / ISR

Multiple activation support 1 3 3 task | binding to scheduler

Stack monitoring 1 2 3 task | CPU-release JPs

Context check 1 1 s | s service calls

Disabled interrupts check 1 1 30 | all services except interrupt services

Enable w/o disable check 1 3 3 | enable services

Missing task end check 1 1 t | t task functions

Out of range check 1 1 4 | alarm set and schedule table start services

Invalid object check 1 1 25 | services with an OS object parameter

Error hook 1 2 30 scheduler | 29 services

Protection hook 1 1 2 2 API | default policy implementation

Startup / shutdown hook 1 2 2 | explicit hooks

Pre-task / post-task hook 1 2 2 | explicit hooks

by the application developer; they are generated automatically during the build process
from the application configuration.

Another interesting point is the realization of synergies by quantification. If for some
concern the number of pieces of advice is lower than the number of affected join points,
(displayed in the last two columns of Table 5) we have actually profited from the AOP
concept of quantification. For 14 out of the 22 concerns listed in Table 5 this is the case.

The net amount of this profit, however, depends on the type of the concern and aspect.
Extension aspects typically crosscut inhomogeneously with the implementation of other

204 D. Lohmann et al.

Table 6. Distribution analysis of CiAO base code and aspect code. Listed are the number of
files and the lines of code (LOC) in the C++ base code (headers and implementation) and the
AspectC++ aspect code, counted using CLOC [13].

Base code Aspect code

Files LOC Files LOC

CiAO kernel only 423 21,086 333 5,923

CiAO COM 112 8,689 297 5,552

CiAO IP stack 45 5,038 96 3,230

CiAO overall 580 34,813 726 14,705

concerns, which does not leave much potential for synergies by quantification. Policy
aspects on the other hand – especially those for architectural policies – tend to crosscut
homogeneously with the implementation of other concerns; here quantification creates
significant synergies. Note, however, that in many cases the necessary homogeneity of
the affected join points could only be achieved by using generic advice.

Table 6 shows the distribution of aspects and base code in the CiAO operating sys-
tem; its communication stack (COM) and the IP stack are listed separately since they
constitute large modules of the system. Overall, CiAO exhibits about one line of aspect
code per 2.4 lines of C++ base code in the system, showing the focus on aspect orienta-
tion in the implementation. We discuss implications of this fact on CiAO developers in
Sect. 7.

Overall, the identified AUTOSAR-OS concerns (cf. Sect. 6.2) could be well sepa-
rated into distinct implementation units in terms of class modules and aspect modules
by applying the principles and idioms of aspect-aware operating system development.

6.4 Evaluation Results – From Configurations to Cost

In the following, we present some results from the performance and memory footprint
evaluation of the CiAO-AS implementation that demonstrate the achieved granularity.

Execution Time. The effects of the achieved configurability also become visible in
the CPU overhead. Table 7 displays the execution times of a number of tasking related
micro-benchmark scenarios (a) – (j) and a comprehensive application (k) on CiAO
and the commercial OSEK implementation. For each scenario, we first configured both
systems to support the smallest possible set of features (min columns in Table 7). The
differences between CiAO and OSEK are considerable: CiAO is noticeably faster in all
test scenarios.

One reason for this is that CiAO provides a much better configurability (and thereby
granularity) than OSEK. As the micro-benchmark scenarios utilize only subsets of the
OSEK/AUTOSAR features, this has a significant effect on the resulting execution times.
The smallest possible configurations of the commercial OSEK still contained a lot of
unwanted functionality. The scheduler is synchronized with ISRs, for instance; however,
most of the application scenarios do not include any ISRs that could possibly interrupt
the kernel.

The Aspect-Oriented Design and Implementation of the CiAO Operating System 205

To judge these effects, we performed additional measurements with an “artificially
enriched” version of CiAO that provides the same amount of unwanted functionality
as OSEK (column full in Table 7). This reduces the performance differences; however,
CiAO is still faster in 6 out of 11 test cases. This is most notable in test case (k), which
is a comprehensive application that actually uses the full feature set.

Another reason for the relative advantage of CiAO is that OSEK’s internal thread-
abstraction implementation is less efficient. This is mainly due to particularities of
the TriCore platform, which renders standard context-switch implementations ported
to that platform very inefficient. CiAO, however, has a highly configurable and adapt-
able thread abstraction, therefore not only providing for an upward tailorability (i.e., to
the needs of the application), but also downward toward the deployment platform.

Table 7. Performance measurement comparison from CiAO and OSEK. Listed numbers represent
execution times [cycles] taken by CiAO and OSEK .

test scenario CiAO OSEK
min full min

(a) voluntary task switch 160 178 218

(b) forced task switch 108 127 280

(c) preemptive task switch 192 219 274

(d) system startup 194 194 399

(e) resource acquisition 19 56 54

(f) resource release 14 52 41

(g) resource release with preemption 240 326 294

(h) category 2 ISR latency 47 47 47

(i) event blocking with task switch 141 172 224

(j) event setting with preemption 194 232 201

(k) comprehensive application 748 748 1216

Memory Requirements. In embedded systems, tailorability is crucial – especially with
respect to memory consumption, because RAM and ROM are typically limited to sizes
of a few kilobytes. Since system software does not directly contribute to the business
value of an embedded system, scalability is of particular importance here. Thus, we also
investigated how the memory requirements of the CiAO-AS kernel scale up with the
number of selected configurable features; the condensed results are depicted in Table 8.
Listed are the deltas in code, data, and BSS section size per feature that are added to the
CiAO base system.

Each Task object, for instance, takes 20 bytes of data for the kernel task context (pri-
ority, state, function, stack, and interrupted flag) and 16 bytes (bss) for the underlying
CiAO thread abstraction structure. Aspects from the implementation of other features,
however, may extend the size of the kernel task context. Resource support, for instance,
crosscuts with task management in the implementation of the Task structure, which
it extends by 8 bytes to accommodate the occupied resources mask and the original
priority.

206 D. Lohmann et al.

Table 8. Scalability of CiAO’s memory footprint. Listed are the increases in static memory de-
mands [bytes] of selected configurable CiAO features.

feature with feature or instance text data bss

Base system (OS control and tasks)
per task + func + 20 + 16 + stack
per application mode 0 + 4 0

ISR cat. 1 support 0 0 0
per ISR +func 0 0
per disable–enable + 4 0 0

Resource support + 128 0 0
per resource 0 + 4 0
per task 0 + 8 0

Event support + 280 0 0
per task 0 + 8 0
per alarm 0 + 12 0

Full preemption 0 0 0
per join point + 12 0 0

Mixed preemption 0 0 0
per join point + 44 0 0
per task 0 + 4 0

Wrong context check 0 0 0
per void join point 0 0 0
per StatusType join point + 8 0 0

Interrupts disabled check 0 0 0
per join point + 64 0 0

Invalid parameters check 0 0 0
per join point + 36 0 0

Error hook 0 0 + 4
per join point + 54 0 0

Startup hook or shutdown hook 0 0 0
Pre-task hook or post-task hook 0 0 0

The cost of several features does not simply induce a constant cost, but depends on
the number of affected join points, which in turn can depend on the presence of other
features. This effect underlines again the flexibility of loose coupling by advice-based
binding.

6.5 “CiAO-AS” Summary

The results from the “CiAO-AS” study show that the approach of aspect-aware operating-
system development is both feasible and benefitial for the implementation of real-world
operating systems. The concerns, services, and abstractions defined by the AUTOSAR-
OS standard bear a noticeable amount of internal crosscutting. Nevertheless, by apply-
ing the principles and idioms of aspect-aware operating system development, they could
be implemented in a well separated and fine grained manner in CiAO-AS.

The Aspect-Oriented Design and Implementation of the CiAO Operating System 207

7 Discussion of Results

With respect to the goals described in Sect. 2.1, the approach of aspect-aware operating
system development was quite successful. CiAO reaches the primary research goal of
architectural configurability. The system combines a good separation of concerns in
the implementation with excellent granularity and configurability, and – thereby – a
quite competitive efficiency regarding hardware resources.

In the following, we discuss the combination of AOP and operating systems in gen-
eral, how our approach can be applied to other system software, and the lessons learned
with respect to language and tooling.

7.1 AOP and Operating Systems

Aspects as First-Class Citizens. AOP has been facing much critique in the sense that
aspects (in contrast to classes) do not represent real domain concepts, but (only) “as-
pects of programming”. STEIMANN details this in [45]: “literally all aspects discussed
in the literature are technical in nature: authentication, caching, distribution, logging,
persistence, synchronization, transaction management, etc.”

There might be some truth in this for the kind of software STEIMANN had in mind
when writing his paper, but for the domain of system software, we have to clearly re-
but this argument: System software is very technical in nature, too; the above men-
tioned “technical” aspects are text-book examples for the dominant concerns of system-
software development. In the specification of AUTOSAR OS [3], for instance, we can
find the requirement OS093:

If interrupts are disabled and any OS services, excluding the interrupt services,
are called outside of hook routines, then the operating system shall return
E_OS_DISABLEDINT.

This requirement (which maps to the Interrupts disabled concern in Table 4) translates
almost “literally” to an AspectC++ aspect:

aspect DisabledIntCheck { // implements OS093

advice call(pcOSServices() && !pcInterruptServices())

&& !within(pcHookRoutines()) : around() {

if(interruptsDisabled())

*tjp->result() = E_OS_DISABLEDINT;

else

tjp->proceed();

} };

So for our domain, we can assess that aspects lead to a much more natural separation
of domain-specific concepts – if considered as first-class design elements from the very
beginning.

Quantification and Obliviousness. The DisabledIntCheck aspect is also a good ex-
ample of the benefits of quantification because of homogeneous cross cutting. Given
that other studies [22] about applying AOP for the fine-grained configuration of system

208 D. Lohmann et al.

software (in this case embedded databases) came to the conclusion that quantification is
“rarely applicable”, these benefits seem to be domain-specific to a certain degree. How-
ever, for the implementation of operating system policies, especially architectural ones,
quantification clearly creates synergies. For 8 out of the 14 aspects listed in Table 5, this
is the case.

With respect to obliviousness, the situation is less clear. In [16], FILMAN and FRIED-
MAN describe the obliviousness ideal of AOP, according to which obliviousness can be
a bidirectional relationship between components and aspects: The programmers of the
base system and the aspect developers can work completely independent of each other.
However, in actual applications of AOP, obliviousness is usually understood to be uni-
directional: The components of the base system are kept oblivious of aspects – at the
price that the aspects have to be perfectly aware of the components they affect. This
often involves knowledge about certain implementation details, which in turn leads to
fragile pointcuts if the component developers are kept oblivious of the aspects, too. Fur-
thermore, this approach hits its limits when the base code just does not offer the required
join-point shadows.

Aspect-aware operating system development moderates these issues by pragmati-
cally considering obliviousness and awareness as two ends of a continuum: The more
oblivious a component should be of the aspects that potentially engage with it, the more
aware the aspects have to be of the component – and vice versa. Much of the flexibility
and configurability of CiAO stems from the freedom to decide for each relationship
about the placement on this continuum.

In our opinion, the advantage of the advice-mechanism of AOP is not so much quan-
tification and obliviousness, but loose coupling: Essentially, advice inverts the direction
in which control-flow relationships are specified. This facilitates the self-integration of
the implementation of optional features into the control flows of the base system. Fur-
thermore, advice-based binding is inherently loose – if the addressed join point is not
present, the binding is silently dropped. This property is useful for the implementation
of interacting optional features, which are difficult to tackle with other decomposition
approaches [23].

Extensibility. We are convinced that the three design principles of aspect-aware
operating system development (loose coupling, visible transitions, and minimal exten-
sions) also lead to an easy extensibility of the system for new, unanticipated features.
While it is generally difficult to prove the soundness of an approach for unanticipated
change, we have at least some evidence that our approach has clear benefits here:

In a specific real-time application project that we implemented using CiAO, mini-
mal and deterministic event-processing latencies were crucial. The underlying hardware
platform was the Infineon TriCore, which actually is a heterogeneous multi processor-
system-on-chip that comes with an integrated peripheral control processor (PCP). This
freely programmable co-processor is able to handle interrupts independently of the main
processor. We decided to extend CiAO in a way that the PCP pre-handles all hard-
ware events (interrupts) in order to map them to activations of respective software tasks,
thereby preventing the real-time problem of rate-monotonic priority inversion [14]. That
kind of priority inversion occurs when low-priority control flows are executed in inter-
rupt handlers, which can disturb execution of high-priority control flows executed in

The Aspect-Oriented Design and Implementation of the CiAO Operating System 209

1 aspect PCP_Extension {

2 advice execution("void hw::init()") : after() {

3 PCP::init();

4 }

5 advice execution("% Scheduler::setRunning(...)") :

6 before() {

7 PCP::setPrio(os::krn::Task::getPri(tjp->args<0>()));

8 }

9 advice execution("% enterKernel(...)") : after() {

10 // wait until PCP has left kernel (Peterson)

11 PCP_FLAG0 = 1; PCP_TURN = 1;

12 while ((PCP_FLAG1 == 1) && (PCP_TURN == 1)) {}

13 }

14 advice execution("% leaveKernel(...)") : before() {

15 PCP_FLAG0 = 0;

16 }

17 advice execution("% AST0::ast(...)") : around() {

18 // AST0::ast() is the AST handler that activates

19 // the scheduler (bound by an upcall aspect)

20

21 // wait until PCP has left kernel (Peterson)

22 PCP_FLAG0 = 1; PCP_TURN = 1;

23 while ((PCP_FLAG1 == 1) && (PCP_TURN == 1)) {}

24

25 // proceed to aspect that activates scheduler

26 tjp->proceed();

27 PCP_FLAG0 = 0;

28 }

29 advice execution("% Scheduler::schedule(...)") : after() {

30 // write priority of running task to PCP memory

31 PCP::setPrio(Task::getPri(

32 Scheduler::Inst().getRunning()));

33 }

34 };

Fig. 13. PCP co-processor extension aspect. The listing shows the complete implementation for
integrating the PCP into CiAO, except for 10 lines of initialization code and the PCP code itself
(which has to be programmed in assembly language).

threads. With the CiAO PCP extension, the CPU is only interrupted when there is ac-
tually a control flow of a higher priority than the currently executing one ready to be
dispatched.

This relatively complex and unanticipated extension could nevertheless be integrated
into CiAO by a single extension aspect, which is shown in Figure 13. The
PCP_Extension aspect is itself a minimal extension; its implementation profited espe-
cially from the fact that all other CiAO components are designed according to the princi-
ple of visible transitions. This ensures here that all relevant transitions of the CPU, such
as when the kernel is entered or left (lines 9 and 14, respectively) or when the running
CPU task is about to be preempted (line 17), are available as statically evaluable and
unambiguous join points to which the aspect can bind.

210 D. Lohmann et al.

7.2 Language and Tooling – Lessons Learned

AspectC++ – How the Language Is Evolving. When we started with the development
of AspectC++ it seemed “natural to use AspectJ as a foundation when creating a set of
extensions for the C/C++ language”. This led to many similarities between the two
languages such as advice code that is anonymous, and thereby cannot be overridden by
a derived aspect or the explicit interface for accessing join-point context information
within advice code (thisJoinPoint-API).

However, it turned out that there are more differences between C++ and Java than
initially expected, and also our application domain of deeply embedded systems forced
us to rethink the language design with resource consumption in mind. In contrast to the
beginning, AspectC++ now has a much stronger focus on static typing and language
features that can be implemented completely at compile time. Run-time mechanisms
such as the dynamic thisJoinPoint-API, which is typically used in combination with
run-time reflection, are too expensive, and thus have been mostly replaced by a static
counterpart. For instance, the “join point API” of AspectC++ provides static type infor-
mation for advice code. As a consequence, multiple variants of the same advice code
can be instantiated at compile time, which depend on the matched set of join points.
Additionally, the advice can use the type information to instantiate C++ templates or
even template meta-programs. Thereby, a complex chain of code generation steps can
be triggered. It turned out that this combination of aspects and C++ templates is a very
powerful mechanism that is a unique feature of AspectC++ [28].

Currently, a complete static introspection mechanism for all program entities – and
not only join points – is under development. This will, for instance, allow generic as-
pects to very efficiently marshall/unmarshall any objects in order to transparently per-
form remote method invocations or to manage a persistent state. In the context of CiAO,
this feature shall be used to transparently copy objects between address spaces when
isolation is turned on and tasks in different address spaces interact.

Even though AspectC++ is already very useful, we identified the following missing
features, which are on the agenda for future enhancements:

Free Variables in Pointcut Expressions. This is a language feature (implemented, for
instance, in LogicAJ [26]) that can be very beneficial for a further decoupling of aspects
and base code [20]. It would significantly enhance the expressiveness of AspectC++
pointcut expressions.

Extensible Pointcuts. Self integration of components such as device drivers would be
easier if named pointcuts could be extended or composed from collected fragments. For
instance, a driver has certain properties: It services interrupts, it handles a block device,
and it needs a helper thread. Aspects should be able to affect all components with a
specific property. However, the system configuration – including the set of configured
drivers – is unknown before compile time. AspectJ 5 users can achieve this goal by
exploiting Java 5 annotations. For AspectC++, a similar mechanism shall be integrated.

More Control Over Code Generation. When low-level assembler code and AspectC++
are combined, it is often necessary to control the code generation very precisely. For in-
stance, in a function or advice that implements a context switch between tasks and
that contains inline assembler code, it is crucial to know whether the function will be

The Aspect-Oriented Design and Implementation of the CiAO Operating System 211

inlined by the compiler. If the compiler behaves unexpectedly, a machine crash will be
unavoidable.

NonJoin Points. Some parts of the CiAO operating system should simply be guaranteed
to never be touched by any aspect. We aim at providing mechanisms to specify these
parts in a modular manner and a weaver extension that obeys these rules.

User Experience – AOP for “Hackers”. More than a dozen master students were in-
volved in the development of CiAO and our previous work with aspectizing the PURE
and eCos operating system [43,31,29], and contributed a significant amount of the as-
pect code to these systems. All of them were advanced C/C++ hackers, the majority
already had some experience in low-level kernel programming, and all of them carried
on with R&D in the domain of low-level system software after finishing their studies.
So, to a certain degree this group represents the typical “kernel hacker”, whose take on
AOP might be interesting to the AOSD community. While we have not evaluated this
in a systematic way, we nevertheless observed some recurring peculiarities:

AOP Semantics Is Generally Easy to Grasp. To our (pleasant) surprise, the students
generally had, after a brief introduction into the topic (a 3 h lecture plus a “toy” exer-
cise), little to no problems in understanding AOP concepts, the AspectC++ language,
and the particularities of its application to embedded systems. They grasped the CiAO
development idioms and application patterns by examining the existing code and were
quickly able to contribute their own aspects.

Technical Side Effects of Aspect Weaving Are More Challenging. In theory, aspect
weaving should be a transparent process, but in practice it is not – due to technical side
effects. A frequent and always challenging issue, for instance, was the understanding
and resolving of #include cycles. Such a cycle appears if two header files (indirectly)
#include each other, which in most cases leads to uncompilable code. Unexpected
#include cycles are a tough problem for any larger C/C++ project. The point is that they
appear a lot more frequently with aspect weaving: An aspect that itself #includes some
external module (a property that holds for any nontrivial aspect) thereby also contributes
to the list of #include files of the modules it affects in the weaving process, which often
results in #include cycles that are very hard to hunt down. As a consequence, we have
improved the AspectC++ weaver to detect and report #include cycles caused by aspects
already at weaving time. While this has certainly improved on the situation, it is still
up to the developer to resolve the conflict (e.g., by means of forward declarations or by
splitting larger aspects into smaller pieces).

“Hackers Hate IDEs.” Even though all students at some point ran into difficulties with
respect to join-point tracking, it turned out to be more than difficult to convince them
to use the AspectC++ plug-in for ECLIPSE (ACDT), which provides features (such as
join-point visualization) for exactly this kind of problem. Even the majority of students
working on CiAO – who had to use ECLIPSE anyway to configure the operating system
– did not use it for anything else. They considered it to be “too clumsy” compared to the
shell and their favorite VIM editor, and preferred hunting for join-point mismatches by
analyzing the woven source code or by GREP’ing through the (XML-based) join-point
repository that AC++ generates for the ECLIPSE plug-in. We have learned from this

212 D. Lohmann et al.

that (even in the case of relatively young students) tool support has to fit the – domain-
specific – habits of the developers to get accepted. As a consequence, we are working
on a more generic interface to the join-point repository and a set of command-line tools
to query and analyze it in a “no-frills” fashion.

Another consequence in this direction is that we migrated CiAO’s configuration man-
agement from the commercial Eclipse-based PURE::VARIANTS variant-management
tool [7] to a (less convenient and powerful, but more “hacker-compatible”) tool chain
based on Linux KCONFIG as front end and a set of PERL scripts for the variant genera-
tion process.

It would be interesting to look more systematically into these (in its present form
only anecdotical) experiences regarding the longer term use of AOP in systems software.
Such an empirical study remains a topic for further research.

8 Further Related Work

There are several other research projects that investigate the applicability of aspects
in the context of operating systems. Among the first was the α-kernel project [11], in
which the evolution of four scattered OS concern implementations (namely: prefetching,
disk quotas, blocking, and page daemon activation) between versions 2 and 4 of the
FreeBSD kernel was analyzed retroactively. The results show that an aspect-oriented
implementation would have led to better evolvability of these concerns.

C4 [17,38] is an example of a special-purpose AOP-inspired language. It is intended
for the application of kernel patches in Linux. Other related work concentrates on dy-
namic aspect weaving as a means for run-time adaptation of operating system kernels:
TOSKANA provides an infrastructure for the dynamic extension of the FreeBSD ker-
nel by aspects [15]; KLASY is used for aspect-based dynamic instrumentation in Linux
[47].

All of these studies demonstrate that there are good cases for aspects in system soft-
ware. However, the work of ÅBERG in Linux [1] and our own work on eCos [31] show
that a useful application of AOP to existing operating systems often requires additional
AOP expressivity that results in run-time overheads (e.g., temporal logic or dynamic
instrumentation). This paper shows that such overhead is not inevitable; by the aspect-
aware design and development “from scratch” it is even possible to outperform existing
systems with respect to their CPU and memory footprint..

Even though the Flux OSKit [18] is not aspect-oriented, it shares common goals
with CiAO. Both aim at being highly flexible OS construction kits with an overhead-
free composition mechanism. Also related is the approach of Event-Based Systems
[9]. This is a popular architectural style that lets components interact by generating or
receiving event notifications. A component can select events, for instance, by the event
type, by the event message content, or even by pattern matching. This is very similar to
AOP where events are join points and selection is done with the pointcut language. Both
approaches lead to loose coupling; the advantage of advice-based binding in CiAO is a
technical one: As AspectC++ inlines advice code, loose coupling can be implemented
very efficiently.

The Aspect-Oriented Design and Implementation of the CiAO Operating System 213

9 Summary and Conclusions

The CiAO project contributes a large-scale case study for the application of aspect tech-
nology in the domain of system software. From a systems researcher’s perspective, the
properties (such as code size, performance, and especially configurability) of the result-
ing systems are convincing. Two main insights can be learned: (1) Operating systems
for the domain of resource-constrained embedded systems have to be highly config-
urable. Our analysis of the AUTOSAR OS specification revealed that these effects can
already be found in the requirements; they are an inherent phenomenon of complex sys-
tems. (2) AOP is very well suited for the design and implementation of such systems
under the premise that it is applied with the aspect awareness principles in mind. This
paper has shown how this aspect awareness can be put into practice.

Acknowledgments. We would like to thank the anonymous reviewers of this paper for
their helpful and detailed feedback! This work was partly supported by the German Re-
search Council (DFG) under grants no: LO 1719/1-1, SFB/TRCRC 89 “Invasive Com-
puting” (subproject C1), SP 968/4-1, SP 968/5-1, and SFB 876 “Providing Information
by Resource-Constrained Data Analysis“ (subprojects A1 and A4).

References

1. Åberg, R.A., Lawall, J.L., Südholt, M., Muller, G., Le Meur, A.-F.: On the automatic evolu-
tion of an OS kernel using temporal logic and AOP. In: Proceedings of the 18th IEEE Inter-
national Conference on Automated Software Engineering (ASE 2003), pp. 196–204. IEEE
Computer Society Press, Montreal (2003)

2. Accetta, M., Baron, R., Golub, D., Rashid, R., Tevanian, A., Young, M.: MACH: A New
Kernel Foundation for UNIX Development. In: Proceedings of the USENIX Summer Con-
ference, pp. 93–113. USENIX Association (June 1986)

3. AUTOSAR. Requirements on operating system (version 2.0.1). Technical report, Automotive
Open System Architecture GbR (June 2006)

4. AUTOSAR. Specification of operating system (version 2.0.1). Technical report, Automotive
Open System Architecture GbR (June 2006)

5. Baniassad, E., Clarke, S.: Theme: An approach for aspect-oriented analysis and design. In:
Proceedings of the 26th International Conference on Software Engineering (ICSE 2004), pp.
158–167. IEEE Computer Society Press, Washington, DC (2004)

6. UC Berkeley. TinyOS homepage, http://www.tinyos.net
7. Beuche, D.: Variant management with pure:variants. Technical report, pure-systems GmbH

(2006), http://www.pure-systems.com/fileadmin/downloads/
pv-whitepaper-en-04.pdf(visited November 12, 2011)

8. Beuche, D., Fröhlich, A.A., Meyer, R., Papajewski, H., Schön, F., Schröder-Preikschat, W.,
Spinczyk, O., Spinczyk, U.: On architecture transparency in operating systems. In: Proceed-
ings of the 9th ACM SIGOPS European Workshop Beyond the PC: New Challenges for the
Operating System, pp. 147–152. ACM Press (September 2000)

9. Carzaniga, A., Di Nitto, E., Rosenblum, D.S., Wolf, A.L.: Issues in supporting event-based
architectural styles. In: Proceedings of the 3rd International Workshop on Software Architec-
ture (ISAW 1998), pp. 17–20. ACM Press, New York (1998)

10. Clarke, S., Walker, R.J.: Composition patterns: An approach to designing reusable aspects.
In: Proceedings of the 23rd International Conference on Software Engineering (ICSE 2001),
pp. 5–14. IEEE Computer Society Press, Washington, DC (2001)

http://www.tinyos.net
http://www.pure-systems.com/fileadmin/downloads/pv-whitepaper-en-04.pdf
http://www.pure-systems.com/fileadmin/downloads/pv-whitepaper-en-04.pdf

214 D. Lohmann et al.

11. Coady, Y., Kiczales, G.: Back to the future: A retroactive study of aspect evolution in op-
erating system code. In: Akşit, M. (ed.) Proceedings of the 2nd International Conference
on Aspect-Oriented Software Development (AOSD 2003), pp. 50–59. ACM Press, Boston
(2003)

12. Czarnecki, K., Eisenecker, U.W.: Generative Programming. Methods, Tools and Applica-
tions. Addison-Wesley (May 2000)

13. Al Danial. CLOC – count lines of code homepage, http://cloc.sourceforge.net/
14. del Foyo, L.E.L., Mejia-Alvarez, P., de Niz, D.: Predictable interrupt management for real

time kernels over conventional PC hardware. In: Proceedings of the 12th IEEE International
Symposium on Real-Time and Embedded Technology and Applications (RTAS 2006), pp.
14–23. IEEE Computer Society Press, Los Alamitos (2006)

15. Engel, M., Freisleben, B.: TOSKANA: A Toolkit for Operating System Kernel Aspects.
In: Rashid, A., Aksit, M. (eds.) Transactions on AOSD II. LNCS, vol. 4242, pp. 182–226.
Springer, Heidelberg (2006)

16. Filman, R.E., Friedman, D.P.: Aspect-oriented programming is quantification and oblivious-
ness. In: Workshop on Advanced SoC (OOPSLA 2000) (October 2000)

17. Fiuczynski, M., Grimm, R., Coady, Y., Walker, D.: Patch(1) considered harmful. In: Proceed-
ings of the 10th Workshop on Hot Topics in Operating Systems (HotOS 2005). USENIX
Association (2005)

18. Ford, B., Back, G., Benson, G., Lepreau, J., Lin, A., Shivers, O.: The Flux OSKit: A sub-
strate for kernel and language research. In: Proceedings of the 16th ACM Symposium on
Operating Systems Principles (SOSP 1997). ACM SIGOPS Operating Systems Review, pp.
38–51. ACM Press (October 1997)

19. Groher, I., Baumgarth, T.: Aspect-orientation from design to code. In: Proceedings of the
2004 AOSD Early Aspects Workshop, AOSD-EA 2004 (March 2004)

20. Gybels, K., Brichau, J.: Arranging language features for pattern-based crosscuts. In: Akşit,
M. (ed.) Proceedings of the 2nd International Conference on Aspect-Oriented Software De-
velopment (AOSD 2003), pp. 60–69. ACM Press, Boston (2003)

21. Infineon Technologies AG, St.-Martin-Str. 53, 81669 München, Germany. TriCore 1 User’s
Manual (V1.3.5), Volume 1: Core Architecture (February 2005)

22. Kästner, C., Apel, S., Batory, D.: A case study implementing features using AspectJ. In:
Proceedings of the 11th Software Product Line Conference (SPLC 2007), pp. 223–232. IEEE
Computer Society Press (2007)

23. Kästner, C., Apel, S., Saif ur Rahman, S., Rosenmüller, M., Batory, D., Saake, G.: On the
impact of the optional feature problem: Analysis and case studies. In: Muthig, D., McGre-
gor, J.D. (eds.) Proceedings of the 13th Software Product Line Conference (SPLC 2009),
Carnegie Mellon University, Pittsburgh (2009)

24. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier, J.-M., Irwin,
J.: Aspect-Oriented Programming. In: Aksit, M., Matsuoka, S. (eds.) ECOOP 1997. LNCS,
vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

25. Kleiman, S., Eykholt, J.: Interrupts as threads. ACM SIGOPS Operating Systems Re-
view 29(2), 21–26 (1995)

26. Kniesel, G., Rho, T.: A definition, overview and taxonomy of generic aspect languages.
L’Objet, Special Issue on Aspect-Oriented Software Development 11(2-3), 9–39 (2006)

27. Liedtke, J.: On μ-kernel construction. In: Proceedings of the 15th ACM Symposium on Op-
erating Systems Principles (SOSP 1995). ACM Press (December 1995)

28. Lohmann, D., Blaschke, G., Spinczyk, O.: Generic Advice: On the Combination of AOP
with Generative Programming in AspectC++. In: Karsai, G., Visser, E. (eds.) GPCE 2004.
LNCS, vol. 3286, pp. 55–74. Springer, Heidelberg (2004)

http://cloc.sourceforge.net/

The Aspect-Oriented Design and Implementation of the CiAO Operating System 215

29. Lohmann, D., Hofer, W., Schröder-Preikschat, W., Spinczyk, O.: Aspect-aware operating-
system development. In: Chiba, S. (ed.) Proceedings of the 10th International Conference on
Aspect-Oriented Software Development (AOSD 2011), pp. 69–80. ACM Press, New York
(2011)

30. Lohmann, D., Hofer, W., Schröder-Preikschat, W., Streicher, J., Spinczyk, O.: CiAO: An
aspect-oriented operating-system family for resource-constrained embedded systems. In: Pro-
ceedings of the 2009 USENIX Annual Technical Conference, pp. 215–228. USENIX Asso-
ciation, Berkeley (2009)

31. Lohmann, D., Scheler, F., Tartler, R., Spinczyk, O., Schröder-Preikschat, W.: A quantitative
analysis of aspects in the eCos kernel. In: Berbers, Y., Zwaenepoel, W. (eds.) Proceedings
of the ACM SIGOPS/EuroSys European Conference on Computer Systems (EuroSys 2006),
pp. 191–204. ACM Press, New York (2006)

32. Lohmann, D., Streicher, J., Spinczyk, O., Schröder-Preikschat, W.: Interrupt synchronization
in the CiAO operating system. In: Proceedings of the 6th AOSD Workshop on Aspects, Com-
ponents, and Patterns for Infrastructure Software (AOSD-ACP4IS 2007), ACM Press, New
York (2007)

33. Love, R.: Linux Kernel Development, 2nd edn. Novell Press (2005)
34. Neville-Neil, G.V., McKusick, M.K.: The Design and Implementation of the FreeBSD Oper-

ating System. Addison-Wesley (2004)
35. Massa, A.: Embedded Software Development with eCos. New Riders (2002)
36. OSEK/VDX Group. Operating system specification 2.2.3. Technical report, OSEK/VDX

Group (February 2005), http://portal.osek-vdx.org/files/pdf/specs/os223.pdf (vis-
ited August 17, 2011)

37. Parnas, D.L.: Some hypothesis about the “uses” hierarchy for operating systems. Technical
report, TH Darmstadt, Fachbereich Informatik (1976)

38. Reynolds, A., Fiuczynski, M.E., Grimm, R.: On the feasibility of an AOSD approach to Linux
kernel extensions. In: Proceedings of the 7th AOSD Workshop on Aspects, Components, and
Patterns for Infrastructure Software (AOSD-ACP4IS 2008), pp. 1–7. ACM Press, New York
(2008)

39. Rubini, A., Corbet, J.: Linux Device Drivers. O’Reilly (2001)
40. Schröder, W.: Eine Familie von UNIX-ähnlichen Betriebssystemen – Anwendung von

Prozessen und des Nachrichtenübermittlungskonzeptes beim strukturierten Betriebssyste-
mentwurf (December 1986)

41. Schröder-Preikschat, W.: The Logical Design of Parallel Operating Systems. Prentice Hall
PTR (1994)

42. Solomon, D.A., Russinovich, M.: Inside Microsoft Windows 2000, 3rd edn. Microsoft Press
(2000)

43. Spinczyk, O., Lohmann, D.: Using AOP to develop architecture-neutral operating system
components. In: Proceedings of the 11th ACM SIGOPS European Workshop, pp. 188–192.
ACM Press, New York (2004)

44. Spinczyk, O., Lohmann, D.: The design and implementation of AspectC++. Knowledge-
Based Systems, Special Issue on Techniques to Produce Intelligent Secure Software 20(7),
636–651 (2007)

45. Steimann, F.: Domain Models Are Aspect Free. In: Briand, L.C., Williams, C. (eds.) MoD-
ELS 2005. LNCS, vol. 3713, pp. 171–185. Springer, Heidelberg (2005)

46. Stein, D., Hanenberg, S., Unland, R.: A UML-based aspect-oriented design notation for As-
pectJ. In: Proceedings of the 1st International Conference on Aspect-Oriented Software De-
velopment (AOSD 2002), pp. 106–112. ACM Press, New York (2002)

47. Yanagisawa, Y., Kourai, K., Chiba, S., Ishikawa, R.: A dynamic aspect-oriented system for
OS kernels. In: Proceedings of the 6th International Conference on Generative Programming
and Component Engineering (GPCE 2006), pp. 69–78. ACM Press, New York (2006)

http://portal.osek-vdx.org/files/pdf/specs/os223.pdf

	The Aspect-Aware Design and Implementation of the CiAO Operating-System Family
	Introduction
	Purpose of the Paper
	Structure and Contributions of the Paper

	An Overview of CiAO
	Goals and Approach
	General Structure
	CiAO Design Principles
	Roles and Types of Classes and Aspects

	Aspect-Aware Development Idioms
	Loose Coupling by Advice-Based Binding
	Visible Transitions by Explicit Join Points
	Minimal Extensions by Extension Slices
	Summary

	Case Study ``Continuation''
	Continuation Features
	Continuation Design
	Implementation for TriCore
	``Continuation'' Summary

	Case Study ``Interrupt Synchronization''
	CiAO Interrupt Synchronization Models
	Design
	Implementation
	 Interrupt Latency Comparison
	``Interrupt Synchronization'' Summary

	Case Study ``CiAO-AS''
	AUTOSAR OS Abstractions in a Nutshell
	Analysis Results – From Requirements to Concerns
	Development Results – From Concerns to Classes and Aspects
	Evaluation Results – From Configurations to Cost
	``CiAO-AS'' Summary

	Discussion of Results
	AOP and Operating Systems
	Language and Tooling – Lessons Learned

	Further Related Work
	 Summary and Conclusions

