
A Wait-Free NCAS Library for Parallel
Applications with Timing Constraints

Philippe Stellwag, Fabian Scheler, Jakob Krainz, Wolfgang Schröder-Preikschat

Friedrich-Alexander University Erlangen-Nuremberg
Computer Science 4

Martensstr. 1, Erlangen, Germany

{stellwag,scheler,krainz,wosch}@cs.fau.de

Abstract

We introduce our major ideas of a wait-free, linearizable, and
disjoint-access parallel NCAS library, called RTNCAS. It focuses
the construction of wait-free data structure operations (DSO) in
real-time circumstances. RTNCAS is able to conditionally swap
multiple independent words (NCAS) in an atomic manner. It allows
us, furthermore, to implement arbitrary DSO by means of their
sequential specification.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming

General Terms Algorithms, Design

1. Introduction

Sequential DSO usually rely on exclusive access to the parts of the
data structure (DS). Their methods are typically implemented using
reads and writes to single words spread out over the whole critical
region to manipulate the state of a DS. This induces convoy effects
and other timing drawbacks. Also prior universal constructions,
such as Herlihy’s work [1], serialize all DSO; this induces priority
inversion in real-time circumstances.

Our Contribution

RTNCAS guarantees that DSO built on top of it are linearizable [2]
and offer the following properties: 1. Lock freedom offers interrupt
transparency, and neither depends on system libraries nor induces
restrictions to the scheduler (we do not consider backoff algorithms
here). Under concurrent usage they also frequently yield better
performance than blocking counterparts. As no local progress
guarantees can be given for such operations, it is usually not possible
to determine an upper bound for the worst-case execution time
(WCET) of such DSO. We use lock-free DSO in RTNCAS to
gain a stronger progress guarantee later on. 2. Wait freedom [1]
is similar to lock freedom, but additionally guarantees a definable
and bounded WCET. Hereby, the temporal progress requirements of
real-time applications can be satisfied. Note that correctness in real-
time systems is both, functional correctness as well as timeliness.
3. Disjoint-access parallelism [3] enables parallel executions of

Copyright is held by the author/owner(s).

PPoPP ’11, February 12–16, 2011, San Antonio, Texas, USA.

ACM 978-1-4503-0119-0/11/02.

f := free opqueue entry

gen. := generation

path of action

user-defined

FIFO queue

head

tail

len

n1 n2 n3

critical region of an
enqueue op

opqueue structure

ptr to NCAS struct

unique ticket

callback λg
en

.
b

y
λ

operation queue:

rtail

rtail->next

rlen

NCAS structure

ptr old new

tail 0x02 0x03

n2->next 0x0 0x03

len 2 3

NCAS status

NCAS word

chronological

order

f f f

operations accessing disjointed memory locations. This yields
additional benefits in terms of parallel performance and minimal
priority inversions.

Starting with a sequential implementation of a DSO, we apply
several transformations to it. Each transformation ensures the next
stronger progress property (from 1. to 3.) and finally, a wait-free and
disjoint-access-parallel DSO is reached.

Our work was inspired by Ramamurthy [4, pp. 138 ff.]. His
NCAS, however, only focuses priority-based real-time systems on
uni-processors. To the best of our knowledge, RTNCAS is the first
generic approach to build interrupt-transparent DSO even in parallel
real-time systems, and also considers disjoint-access parallelism. It
is, furthermore, not restricted to priority-based real-time systems.

2. Design of RTNCAS

The construction of an NCAS library that satisfies the above stated
properties is a rather complex task. Thereby many serious problems
arise on the implementation level that we cannot discuss completely
within these two pages. Thus, we only adumbrate the design of
RTNCAS, and point to some interesting problems and results.

The figure shows the major idea and all data structures involved
in RTNCAS. It illustrates an example of adding a node n3 to a FIFO
queue by using RTNCAS. An enqueue operation implemented via
locks would modify tail, tail->next, len inside a critical region
to ensure atomicity. To add n3 to the queue using RTNCAS, all
words of the data structure are encapsulated into NCAS words.
The thread performing the enqueue operation has to create an



opqueue structure containing a unique ticket to be able to deduce a
chronological order and a user-defined callback λ to create an NCAS
structure describing the atomic state transformation to enqueue n3.
This opqueue structure is enqueued to the operation queue providing
a wait-free helping scheme, where concurrent threads help each
other to perform those stalled operations.

2.1 Lock-Free Operations

In a first step the formerly sequential DSO has to be transformed into
a lock-free operation. This is accomplished by reading the old state
of the DS via a read method, computing a new state, and, finally,
atomically exchanging the old state with the new one by an NCAS
operation. In case of concurrent interference the NCAS operation
may fail and the complete operation including reading the old state
and computing the new state has to be repeated.

The usage of the NCAS operation as described above is both
lock-free and linearizable. We have implemented a NCAS method
to support lock-free DSO and a read method to retrieve the actual
value from the DS. Both are weakly wait-free, i.e. they respond
within finite time, but may fail due to concurrent interferences and
then have to be repeated.

2.2 Wait-Free Operations

The usage of the NCAS operation within such a retry-loop prevents
the estimation of a WCET in the presence of contention. This is due
to the unknown number of retries needed to successfully complete
the DSO; under hard real-time conditions this is unacceptable. To
overcome this, we transform the lock-free DSO into a wait-free
one by means of a helping scheme implemented via an operation
queue. This helping scheme facilitates the implementation of wait-
free DSO. Thereby, wait freedom allows to determine the WCET
that is essential in real-time circumstances.

The operation queue is implemented by a wait-free FIFO and
works as follows: Every thread encapsulates its DSO into a so-called
opqueue structure. This structure contains a pointer to a callback
λ, a pointer to the NCAS structure (which contains the addresses
of the words to be changed, and the corresponding old/new values)
generated by the callback λ, and a unique ticket to establish a
chronological order among all elements within the operation queue.
λ is a user-defined callback that uses the sequential DSO to build
the NCAS structure with old and new values.

After inserting its own DSO to the operation queue, each thread
performs the following steps until its own DSO is completed: Get
the oldest opqueue structure from the operation queue and try to
perform the encapsulated operation. The latter is done as follows:
1. The opqueue structure is checked for an active NCAS structure,
i.e. a structure whose associated NCAS operation might still be
executed. If one is found, the second step is skipped. 2. λ is used
to create a new NCAS structure. A thread then tries to atomically
replace the reference to the NCAS structure in the opqueue structure
with a reference to the newly created one by means of a CAS
instruction. 3. The NCAS structure is then executed in a cooperative
manner. Thereby all threads always working on the same active
NCAS structure (consensus object). Finally, in case of a successful
execution, the opqueue structure is dequeued.

The operation queue, however, requires (1) a wait-free FIFO
that allows us to find and use the oldest entry, and (2) the NCAS
implementation has to support cooperation: If all active threads work
on the same NCAS operation (using the same NCAS structure), the
described NCAS operation must be completed successfully.

2.3 Disjoint-Access-Parallel Operations

The helping scheme implemented by the operation queue has one
disadvantage: All DSO are performed sequentially as be known from
previous approaches that may results in convoy effects, and may

cause poor performance. To avoid this, we introduce the concept of
speculative execution.

Before inserting an opqueue structure into the operation queue,
each thread tries to execute the DSO speculatively by the corre-
sponding lock-free operation. If the speculative execution fails, an
opqueue structure will be enqueued into the operation queue and
the thread carries on as described in the previous section. If the
speculative execution is successful, the thread still works on the
oldest entry of the operation queue. This is required to guarantee
progress for the oldest entry in the operation queue. Otherwise, the
oldest entry might starve due to continuously interfering speculative
executions. By forcing every thread to execute at least one opqueue
structure from the operation queue, it can be guaranteed that the
oldest entry in the operation queue is completed in finite time.

Using speculative execution, finally, we support the implementa-
tion of wait-free and disjoint-access-parallel DSO based on top of
the wait-free operations provided by the helping scheme introduced
in Sec. 2.2. Furthermore, the degree of disjoint-parallel accesses can
be chosen with respect to the number of speculative executions that
can take place concurrently.

3. Preliminary Results

We have implemented several DSO, such as push/pop on a stack
or enqueue/dequeue on a queue, by means of spinlocks as well
as RTNCAS. Numerous benchmarks that perform DSO (a) with
increasing concurrency, and (b) with an increasing number of
words to be touched simultaneously show very encouraging results:
On the one hand and without speculative executions, RTNCAS
operations show at average four times less jitter than operations with
spinlocks. Moreover, RTNCAS-based operations show about ten
times higher average times; however, the throughput of RTNCAS-
based operations per time unit are slightly higher compared to the
spinlock case. This is due to our helping scheme and is the crucial
factor for our significant low execution jitter. On the other hand,
these advantages go along with comparable maximal response times
of operations built on top of RTNCAS.

Furthermore, with an increasing number of speculative execu-
tions, we are able to trade a higher degree of disjoint-access paral-
lelism to a higher jitter. This allows us to achieve a higher average-
case performance for appropriate (e.g., soft real-time) use cases.

4. Conclusion and Further Work

We have sketched the design of RTNCAS, a library offering lineariz-
able, lock-free, wait-free and disjoint-access-parallel interfaces for
reading and conditionally swapping multiple words in an atomic
manner. Developers of shared data structures now have an easy
way to achieve full interrupt-transparency with a strong progress
guarantee. With RTNCAS, developers can, furthermore, use their
sequential algorithms on top of it without modifications. Currently,
we are still working on several optimizations to reduce the WCET
of RTNCAS-based DSO. Moreover, we are also close to complete a
formal proof of correctness for RTNCAS and its components.

References

[1] M. P. Herlihy. Wait-free synchronization. in ACM Transactions on

Programming Languages and Systems, 11(1):124–149, January 1991.

[2] M. P. Herlihy and J. M. Wing. Linearizability: A correctness condi-
tion for concurrent objects. in ACM Transactions on Programming

Languages and Systems, 12(3):463–492, 1990.

[3] A. Israeli and L. Rappoport. Disjoint-access-parallel implementations
of strong shared memory primitives. in Proc. of the Symp. on Principles

of Distributed Computing, pages 151–160, 1994.

[4] S. Ramamurthy. A lock-free approach to object sharing in real-time
systems. PhD thesis, Univ. of North Carolina at Chapel Hill, 1997.



Chair in Distributed Systems 
and Operating Systems

A Wait-Free NCAS Library for Parallel Applications with Timing Constraints

Philippe Stellwag, Fabian Scheler, Jakob Krainz, and Wolfgang Schröder-Preikschat

Implicit Transaction Explicit Transaction
per Mutual Exclusion per Cooperation

--Begin CS-- read WORD{1-3}
read WORD{1-3} NEW{1-3} = calc(WORD{1-3})
NEW{1-3} = calc(WORD{1-3}) mk ncas(NEW{1-3},WORD{1-3})
write NEW{1-3},WORD{1-3}

--End CS--

•Problem. Sequential code is the root of many problems in paral-
lel real-time systems, e.g., priority inversion/violation, convoy ef-
fects, jitter, or scalability issues. Not only mutual exclusion, but
also previous work on wait-free universal constructions, induces
"sequential code". These interrupt-transparent mechanisms are
based on auxiliary schemes and perform operations usually co-
operatively, one after another.

•rtNCAS. Our approach allows building linearizable wait-free op-
erations. Developers are, furthermore, able to re-use their se-
quential algorithms in multi-core environments without further care
about concurrency. In addition, rtNCAS is able to speculatively
execute operations that reduces sequential code.

Introduction

goals:RTNCAS

techniques:
data structure

sequential operation

lock-free operation

wait-free operation

wait-free and

disjoint-access-

parallel operation

NCAS method

read method

operation queue

speculative execution

<< uses >>

<< uses >>

<< uses >>

<< uses >>

p
ro

g
re

s
s

p
ro

p
e
rtie

s

stronger

Architecture

NCAS method read method operation queue speculative execution
•gets an NCAS struct as input

generated through callback λ

• tries to swap the NCAS words:
1. insert refs. to NCAS struct
(consensus obj.) into words

2.change values of all words
simultaneously

3. replace refs. of the NCAS
words with their actual values

•constant-time wait-free value
function on NCAS words

• returns the value of the word
that has been valid for some
moment during the invocation
of the read method

•may fail to reliably read the
value, if the NCAS struct has
been deallocated

•wait-free FIFO on the basis of
an array of size N (number of
threads)

•uses tickets to build a
chronological relation

•uses fetch-and-add instructions
to create unique tickets

•avoids ticket cycles, if number
of threads <= 4096

•similar to the lock-free case
•might violate the progress of

stalled operations; to avoid this,
rtNCAS uses priorities of NCAS
structs to be performed

• threads that succeed in
speculative perform operations
additionally have to help to
perform stalled ones

Implementation

f := free opqueue entry
gen. := generation

path of action

user-defined
FIFO queue

head

tail

len

n1 n2 n3

critical region of an
enqueue op

opqueue structure

ptr to NCAS struct

unique ticket

callback λ

g
e
n
.

b
y

λ

operation queue:

rtail

rtail->next

rlen

NCAS structure

ptr old new

tail 0x02 0x03

n2->next 0x0 0x03

len 2 3

NCAS status
NCAS word

chronological

order

f f f

Involved Data Structures

The plots show the maximal and average execution times as well
as the coefficient of variation as indication for jitter. The testbed
uses four Intel Xeon E7340 quad-core CPUs, and Linux 2.6.29.4
with RTAI 3.7.1 as real-time extension.
(1) rtNCAS benchmark without speculative executions:

 0

 100

 200

 300

 400

 500

 600

 2
 3

 4
 5

 6
 7

 8
 9

 10
 11

 12

Number of threads

 5
 10

 15
 20

 25
 30

Number of NCAS words

 0

 500

 1000

 1500

 2000

 2500

 0

 100

 200

 300

 400

 500

 600

 2
 3

 4
 5

 6
 7

 8
 9

 10
 11

 12

Number of threads

 5
 10

 15
 20

 25
 30

Number of NCAS words

 0

 100

 200

 300

 400

 500

 600

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 2
 3

 4
 5

 6
 7

 8
 9

 10
 11

 12

Number of threads

 5
 10

 15
 20

 25
 30

Number of NCAS words

 0

 0.2

 0.4

 0.6

 0.8

 1

(2) rtNCAS benchmark with five speculative executions:

 0

 500

 1000

 1500

 2000

 2500

 2
 3

 4
 5

 6
 7

 8
 9

 10
 11

 12

Number of threads

 5
 10

 15
 20

 25
 30

Number of NCAS words

 0

 500

 1000

 1500

 2000

 2500

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 2
 3

 4
 5

 6
 7

 8
 9

 10
 11

 12

Number of threads

 5
 10

 15
 20

 25
 30

Number of NCAS words

 0

 100

 200

 300

 400

 500

 600

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 2
 3

 4
 5

 6
 7

 8
 9

 10
 11

 12

Number of threads

 5
 10

 15
 20

 25
 30

Number of NCAS words

 0

 0.2

 0.4

 0.6

 0.8

 1

Micro-Benchmarks


