
Feature Consistency in
Compile-Time–Configurable System Software

Facing the Linux 10000 Feature Problem

Reinhard Tartler, Daniel Lohmann, Julio Sincero,
Wolfgang Schröder-Preikschat

System Software Group

Friedrich-Alexander University
Erlangen-Nuremberg

September 7, 2011

supported by

Configuration Complexity

Linux has become incredibly configurable

Complexity increases considerably

; Source of bugs!

R. Tartler Feature Consistency in Compile-Time–Configurable System Software (September 7, 2011)
2 – 16

Configuration Complexity

Linux has become incredibly configurable

Complexity increases considerably

; Source of bugs!

R. Tartler Feature Consistency in Compile-Time–Configurable System Software (September 7, 2011)
2 – 16

Configuration Complexity

Linux has become incredibly configurable

Complexity increases considerably

; Source of bugs!

R. Tartler Feature Consistency in Compile-Time–Configurable System Software (September 7, 2011)
2 – 16

Configuration Complexity

Linux has become incredibly configurable

Complexity increases considerably

; Source of bugs!

Linux v3.0 contains:

7.702 Features

893 Kconfig files

31.281 Source files

88.897 #ifdef blocks

R. Tartler Feature Consistency in Compile-Time–Configurable System Software (September 7, 2011)
2 – 16

The Problem

Configuration

Implementation

R. Tartler Feature Consistency in Compile-Time–Configurable System Software (September 7, 2011)
3 – 16

The Problem

Configuration

Implementation

Source of

Inconsistencies!

R. Tartler Feature Consistency in Compile-Time–Configurable System Software (September 7, 2011)
3 – 16

Finding Bugs with Tools for Static Analysis

Bugs in declaration and implementation

Excellent tool support for static analysis:

Coccinelle: Faults in Linux: Ten Years Later (ASPLOS’11)

Dingo: Taming Device Drivers (EuroSys’09)

KLEE: Automatic generation of high-coverage tests (EuroSys’08)

RWset: Attacking path explosion (TACAS’08)

EXE: Automatically generating inputs of death (CCS’06)

...

Each of them check a single configuration:

R. Tartler Feature Consistency in Compile-Time–Configurable System Software (September 7, 2011)
4 – 16

Finding Bugs with Tools for Static Analysis

Bugs in declaration and implementation

Excellent tool support for static analysis:

Coccinelle: Faults in Linux: Ten Years Later (ASPLOS’11)

Dingo: Taming Device Drivers (EuroSys’09)

KLEE: Automatic generation of high-coverage tests (EuroSys’08)

RWset: Attacking path explosion (TACAS’08)

EXE: Automatically generating inputs of death (CCS’06)

...

Each of them check a single configuration:

R. Tartler Feature Consistency in Compile-Time–Configurable System Software (September 7, 2011)
4 – 16

Symbolic Inconsistency

config HOTPLUG_CPU

bool "Support for hot -pluggable CPUs"

depends on SMP && HOTPLUG

---help ---

static int

hotplug_cfd(struct notifier_block *nfb , unsigned long action , void *hcpu)

{

// [...]

switch (action) {

case CPU_UP_PREPARE:

case CPU_UP_PREPARE_FROZEN:

// [...]

#ifdef CONFIG_CPU_HOTPLUG

case CPU_UP_CANCELED:

case CPU_UP_CANCELED_FROZEN:

case CPU_DEAD:

case CPU_DEAD_FROZEN:

free_cpumask_var(cfd ->cpumask);

break;

#endif

};

return NOTIFY_OK;

Symbolic �

Result: Fix for a critical bug

R. Tartler Feature Consistency in Compile-Time–Configurable System Software (September 7, 2011)
5 – 16

Symbolic Inconsistency

config HOTPLUG_CPU

bool "Support for hot -pluggable CPUs"

depends on SMP && HOTPLUG

---help ---

static int

hotplug_cfd(struct notifier_block *nfb , unsigned long action , void *hcpu)

{

// [...]

switch (action) {

case CPU_UP_PREPARE:

case CPU_UP_PREPARE_FROZEN:

// [...]

#ifdef CONFIG_CPU_HOTPLUG

case CPU_UP_CANCELED:

case CPU_UP_CANCELED_FROZEN:

case CPU_DEAD:

case CPU_DEAD_FROZEN:

free_cpumask_var(cfd ->cpumask);

break;

#endif

};

return NOTIFY_OK;

Symbolic �

Result: Fix for a critical bug

R. Tartler Feature Consistency in Compile-Time–Configurable System Software (September 7, 2011)
5 – 16

Symbolic Inconsistency

config HOTPLUG_CPU

bool "Support for hot -pluggable CPUs"

depends on SMP && HOTPLUG

---help ---

static int

hotplug_cfd(struct notifier_block *nfb , unsigned long action , void *hcpu)

{

// [...]

switch (action) {

case CPU_UP_PREPARE:

case CPU_UP_PREPARE_FROZEN:

// [...]

#ifdef CONFIG_CPU_HOTPLUG

case CPU_UP_CANCELED:

case CPU_UP_CANCELED_FROZEN:

case CPU_DEAD:

case CPU_DEAD_FROZEN:

free_cpumask_var(cfd ->cpumask);

break;

#endif

};

return NOTIFY_OK;

Symbolic �

Result: Fix for a critical bug

R. Tartler Feature Consistency in Compile-Time–Configurable System Software (September 7, 2011)
5 – 16

Logic Inconsistencies

MEMORY MODEL

FLATMEM

DISCONTIGMEM

SPARSEMEM NUMA

depends on

#ifdef CONFIG DISCONTIGMEM

// Block1

static . . . int pfn_to_mid(. . .)

ifdef CONFIG NUMA

// Block2

else

// Block3

endif

#endif

Feature DISCONTIGMEM requires NUMA

Inner block is not configuration dependent anymore

Result: code cleanup

R. Tartler Feature Consistency in Compile-Time–Configurable System Software (September 7, 2011)
6 – 16

Logic Inconsistencies

MEMORY MODEL

FLATMEM

DISCONTIGMEM

SPARSEMEM NUMA

depends on

#ifdef CONFIG DISCONTIGMEM

// Block1

static . . . int pfn_to_mid(. . .)

ifdef CONFIG NUMA

// Block2

else

// Block3

endif

#endif

Feature DISCONTIGMEM requires NUMA

Inner block is not configuration dependent anymore

Result: code cleanup

R. Tartler Feature Consistency in Compile-Time–Configurable System Software (September 7, 2011)
6 – 16

Logic Inconsistencies

MEMORY MODEL

FLATMEM

DISCONTIGMEM

SPARSEMEM NUMA

depends on

#ifdef CONFIG DISCONTIGMEM

// Block1

static . . . int pfn_to_mid(. . .)

ifdef CONFIG NUMA

// Block2

else

// Block3

endif

#endif

Feature DISCONTIGMEM requires NUMA

Inner block is not configuration dependent anymore

Result: code cleanup

Logic �

R. Tartler Feature Consistency in Compile-Time–Configurable System Software (September 7, 2011)
6 – 16

General Approach

MEMORY MODEL

FLATMEM

DISCONTIGMEM

SPARSEMEM NUMA

depends on

#ifdef CONFIG DISCONTIGMEM

// Block1

static . . . int pfn_to_mid(. . .)

ifdef CONFIG NUMA

// Block2

else

// Block3

endif

#endif

R. Tartler Feature Consistency in Compile-Time–Configurable System Software (September 7, 2011)
7 – 16

General Approach

MEMORY MODEL

FLATMEM

DISCONTIGMEM

SPARSEMEM NUMA

depends on

#ifdef CONFIG DISCONTIGMEM

// Block1

static . . . int pfn_to_mid(. . .)

ifdef CONFIG NUMA

// Block2

else

// Block3

endif

#endif

R. Tartler Feature Consistency in Compile-Time–Configurable System Software (September 7, 2011)
7 – 16

General Approach

MEMORY MODEL

FLATMEM

DISCONTIGMEM

SPARSEMEM NUMA

depends on

#ifdef CONFIG DISCONTIGMEM

// Block1

static . . . int pfn_to_mid(. . .)

ifdef CONFIG NUMA

// Block2

else

// Block3

endif

#endif

C = (FLATMEM → MEMORY MODEL)

∧ (DISCONTIGMEM → MEMORY MODEL)

∧ (SPARSEMEM → MEMORY MODEL)

∧ (NUMA → MEMORY MODEL)

∧ (DISCONTIGMEM → NUMA)
extra

ct

R. Tartler Feature Consistency in Compile-Time–Configurable System Software (September 7, 2011)
7 – 16

General Approach

MEMORY MODEL

FLATMEM

DISCONTIGMEM

SPARSEMEM NUMA

depends on

#ifdef CONFIG DISCONTIGMEM

// Block1

static . . . int pfn_to_mid(. . .)

ifdef CONFIG NUMA

// Block2

else

// Block3

endif

#endif

C = (FLATMEM → MEMORY MODEL)

∧ (DISCONTIGMEM → MEMORY MODEL)

∧ (SPARSEMEM → MEMORY MODEL)

∧ (NUMA → MEMORY MODEL)

∧ (DISCONTIGMEM → NUMA)
extra

ct

I = (Block1 ↔ DISCONTIGMEM)

∧ (Block2 ↔ Block1 ∧ (NUMA)

∧ (Block3 ↔ Block1 ∧ ¬Block2)

extra
ct

R. Tartler Feature Consistency in Compile-Time–Configurable System Software (September 7, 2011)
7 – 16

General Approach

MEMORY MODEL

FLATMEM

DISCONTIGMEM

SPARSEMEM NUMA

depends on

#ifdef CONFIG DISCONTIGMEM

// Block1

static . . . int pfn_to_mid(. . .)

ifdef CONFIG NUMA

// Block2

else

// Block3

endif

#endif

C = (FLATMEM → MEMORY MODEL)

∧ (DISCONTIGMEM → MEMORY MODEL)

∧ (SPARSEMEM → MEMORY MODEL)

∧ (NUMA → MEMORY MODEL)

∧ (DISCONTIGMEM → NUMA)
extra

ct

I = (Block1 ↔ DISCONTIGMEM)

∧ (Block2 ↔ Block1 ∧ (NUMA)

∧ (Block3 ↔ Block1 ∧ ¬Block2)

extra
ct

Crosscheck both formulas with a SAT solver:

dead? = sat(C ∧ I ∧ BlockN)

undead? = sat(C ∧ I ∧ ¬BlockN ∧ parent(BlockN))

R. Tartler Feature Consistency in Compile-Time–Configurable System Software (September 7, 2011)
7 – 16

Implementation Challenges

Accuracy

Conceptually no false positives

Exact identification of variation points

Coverage

Extract configuration model for all 22 architectures

Defect ; detected on each architecture

Performance

Easy and fast to use during incremental builds

Possible by problem slicing

Complete run on Linux in less than 10 minutes

R. Tartler Feature Consistency in Compile-Time–Configurable System Software (September 7, 2011)
8 – 16

Implementation Challenges

Accuracy

Conceptually no false positives

Exact identification of variation points

Coverage

Extract configuration model for all 22 architectures

Defect ; detected on each architecture

Performance

Easy and fast to use during incremental builds

Possible by problem slicing

Complete run on Linux in less than 10 minutes

R. Tartler Feature Consistency in Compile-Time–Configurable System Software (September 7, 2011)
8 – 16

Implementation Challenges

Accuracy

Conceptually no false positives

Exact identification of variation points

Coverage

Extract configuration model for all 22 architectures

Defect ; detected on each architecture

Performance

Easy and fast to use during incremental builds

Possible by problem slicing

Complete run on Linux in less than 10 minutes

R. Tartler Feature Consistency in Compile-Time–Configurable System Software (September 7, 2011)
8 – 16

Results

subsystem #ifdefs logic symbolic total
arch/ 33757 345 581 926
drivers/ 32695 88 648 736
fs/ 3000 4 13 17
include/ 7241 6 11 17
kernel/ 1412 7 2 9
mm/ 555 0 1 1
net/ 2731 1 49 50
sound/ 3246 5 10 15
virt/ 53 0 0 0
other subsystems 601 4 1 5∑

85291 460 1316 1776
fix proposed 150 (1) 214 (22) 364 (23)
confirmed defect 38 (1) 116 (20) 154 (21)
confirmed rule-violation 88 (0) 21 (2) 109 (2)
pending 24 (0) 77 (0) 101 (0)

R. Tartler Feature Consistency in Compile-Time–Configurable System Software (September 7, 2011)
9 – 16

Results

subsystem #ifdefs logic symbolic total
arch/ 33757 345 581 926
drivers/ 32695 88 648 736
fs/ 3000 4 13 17
include/ 7241 6 11 17
kernel/ 1412 7 2 9
mm/ 555 0 1 1
net/ 2731 1 49 50
sound/ 3246 5 10 15
virt/ 53 0 0 0
other subsystems 601 4 1 5∑

85291 460 1316 1776
fix proposed 150 (1) 214 (22) 364 (23)
confirmed defect 38 (1) 116 (20) 154 (21)
confirmed rule-violation 88 (0) 21 (2) 109 (2)
pending 24 (0) 77 (0) 101 (0)

We have found 1776 configurability issues

Submitted 123 patches for 364 defects

20 are confirmed new bugs (affecting binary code)

Cleaned up 5129 lines of cruft code

R. Tartler Feature Consistency in Compile-Time–Configurable System Software (September 7, 2011)
9 – 16

Further Application: Configuration Coverage

Current ongoing work, accepted at PLOS’11

Configuration Coverage is defined as:

fraction of selected configuration-conditional blocks
divided by the number of available configuration-conditional blocks.

How to catch bugs that apply only on specific kernel configurations?

⇒ Test them on as many configurations as possible

Static analyzers (sparse, smatch, ...) scan a particular kernel
configuration

⇒ How to effeciently exand their coverage?

R. Tartler Feature Consistency in Compile-Time–Configurable System Software (September 7, 2011)
10 – 16

Historical analysis of allyes coverage

v2.6.22
v2.6.24

v2.6.26
v2.6.28

v2.6.30
v2.6.32

v2.6.34
v2.6.36

v2.6.38
v3.0-rc2

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

allyesconfig blocks (n)
total blocks (n)
files (n)
coverage allyesconfig (%)

R. Tartler Feature Consistency in Compile-Time–Configurable System Software (September 7, 2011)
11 – 16

Concrete Example

#ifdef CONFIG_DISCONTIGMEM Block 1

static inline int pfn_to_nid(unsigned long pfn)

{

#ifdef CONFIG_NUMA Block 2

return ((int) physnode_map [(pfn) / PAGES_PER_ELEMENT]);

#else Block 3

return 0;

#endif

}

#endif Block 1

Possible Configurations:

Neither, DISCONTIGMEM, DISCONTIGMEM ∧ NUMA

Additionally testing the configuration NUMA does not increase the
Configuration Coverage.

R. Tartler Feature Consistency in Compile-Time–Configurable System Software (September 7, 2011)
12 – 16

Realization

KConfig
Files

config HOTPLUG_CPU
 bool "Support for ..."
 depends on SMP && ...

undertaker

Dead Block
Detection

KConfig
Parser

#ifdef CONFIG_HOTPLUG_CPU
...
#endif

Linux
source file

Calculate
Partial
Configs

Expand
Partial
Configs

Build
and

Testing

R. Tartler Feature Consistency in Compile-Time–Configurable System Software (September 7, 2011)
13 – 16

Implementation Challenges

Proper extraction of Configurations constraints

Kconfig (implemented in undertaker)
Kbuild constraints (largely unhandled)

Expansion of Partial Configurations

Näıve approach has some surprising effects (i.e., fails sometimes)
Kconfig-sat seems promising, but unfortunately discontinued

R. Tartler Feature Consistency in Compile-Time–Configurable System Software (September 7, 2011)
14 – 16

Evaluation

Analyzed files 10,365
Files with variability 3,163
Rate of files with variability 30.52%
Sum of all (partial) configurations 4,435

Sum of configuration controlled conditional blocks 16,444
Sum of blocks selected by allyesconfig 11,511
Sum of all blocks selected by undertaker-coverage 13,844
Coverage allyesconfig (non-dead-corrected) 70.00%
Coverage undertaker (non-dead-corrected) 84.19%

Dead blocks 1,778
Selectable blocks (excluding dead blocks) 14,666
Selected by allyesconfig 11,511
Covered by undertaker 13,844
allyesconfig coverage 78.49%
undertaker coverage 94.40%
undertaker coverage / allyesconfig coverage 1.20

R. Tartler Feature Consistency in Compile-Time–Configurable System Software (September 7, 2011)
15 – 16

Evaluation

Analyzed files 10,365
Files with variability 3,163
Rate of files with variability 30.52%
Sum of all (partial) configurations 4,435
Sum of configuration controlled conditional blocks 16,444
Sum of blocks selected by allyesconfig 11,511
Sum of all blocks selected by undertaker-coverage 13,844
Coverage allyesconfig (non-dead-corrected) 70.00%
Coverage undertaker (non-dead-corrected) 84.19%

Dead blocks 1,778
Selectable blocks (excluding dead blocks) 14,666
Selected by allyesconfig 11,511
Covered by undertaker 13,844
allyesconfig coverage 78.49%
undertaker coverage 94.40%
undertaker coverage / allyesconfig coverage 1.20

R. Tartler Feature Consistency in Compile-Time–Configurable System Software (September 7, 2011)
15 – 16

Evaluation

Analyzed files 10,365
Files with variability 3,163
Rate of files with variability 30.52%
Sum of all (partial) configurations 4,435
Sum of configuration controlled conditional blocks 16,444
Sum of blocks selected by allyesconfig 11,511
Sum of all blocks selected by undertaker-coverage 13,844
Coverage allyesconfig (non-dead-corrected) 70.00%
Coverage undertaker (non-dead-corrected) 84.19%
Dead blocks 1,778
Selectable blocks (excluding dead blocks) 14,666
Selected by allyesconfig 11,511
Covered by undertaker 13,844
allyesconfig coverage 78.49%
undertaker coverage 94.40%
undertaker coverage / allyesconfig coverage 1.20

R. Tartler Feature Consistency in Compile-Time–Configurable System Software (September 7, 2011)
15 – 16

Evaluation

Analyzed files 10,365
Files with variability 3,163
Rate of files with variability 30.52%
Sum of all (partial) configurations 4,435
Sum of configuration controlled conditional blocks 16,444
Sum of blocks selected by allyesconfig 11,511
Sum of all blocks selected by undertaker-coverage 13,844
Coverage allyesconfig (non-dead-corrected) 70.00%
Coverage undertaker (non-dead-corrected) 84.19%
Dead blocks 1,778
Selectable blocks (excluding dead blocks) 14,666
Selected by allyesconfig 11,511
Covered by undertaker 13,844
allyesconfig coverage 78.49%
undertaker coverage 94.40%
undertaker coverage / allyesconfig coverage 1.20

R. Tartler Feature Consistency in Compile-Time–Configurable System Software (September 7, 2011)
15 – 16

Evaluation

Analyzed files 10,365
Files with variability 3,163
Rate of files with variability 30.52%
Sum of all (partial) configurations 4,435
Sum of configuration controlled conditional blocks 16,444
Sum of blocks selected by allyesconfig 11,511
Sum of all blocks selected by undertaker-coverage 13,844
Coverage allyesconfig (non-dead-corrected) 70.00%
Coverage undertaker (non-dead-corrected) 84.19%
Dead blocks 1,778
Selectable blocks (excluding dead blocks) 14,666
Selected by allyesconfig 11,511
Covered by undertaker 13,844
allyesconfig coverage 78.49%
undertaker coverage 94.40%
undertaker coverage / allyesconfig coverage 1.20

With 30 percent more compiler calls
(static analysis runs)

We get 15 percent more Configuration Coverage

R. Tartler Feature Consistency in Compile-Time–Configurable System Software (September 7, 2011)
15 – 16

Conclusions

Configurability has to be seen as a significant cause of
software defects in its own respect

Configuration and implementation need to be kept consistent

Configuration Coverage increases the effectiveness of existing tools.

Vision:

Explorative tool for visualizing and checking Variability
in Kconfig and realization

Linux Feature Explorer (LIFE)

http://vamos.informatik.uni-erlangen.de/trac/undertaker

R. Tartler Feature Consistency in Compile-Time–Configurable System Software (September 7, 2011)
16 – 16

http://vamos.informatik.uni-erlangen.de/trac/undertaker

Conclusions

Configurability has to be seen as a significant cause of
software defects in its own respect

Configuration and implementation need to be kept consistent

Configuration Coverage increases the effectiveness of existing tools.

Vision:

Explorative tool for visualizing and checking Variability
in Kconfig and realization

Linux Feature Explorer (LIFE)

http://vamos.informatik.uni-erlangen.de/trac/undertaker

R. Tartler Feature Consistency in Compile-Time–Configurable System Software (September 7, 2011)
16 – 16

http://vamos.informatik.uni-erlangen.de/trac/undertaker

Conclusions

Configurability has to be seen as a significant cause of
software defects in its own respect

Configuration and implementation need to be kept consistent

Configuration Coverage increases the effectiveness of existing tools.

Vision:

Explorative tool for visualizing and checking Variability
in Kconfig and realization

Linux Feature Explorer (LIFE)

http://vamos.informatik.uni-erlangen.de/trac/undertaker

R. Tartler Feature Consistency in Compile-Time–Configurable System Software (September 7, 2011)
16 – 16

http://vamos.informatik.uni-erlangen.de/trac/undertaker

