
A Case Study of AOP and OOP applied to digital hardware design

Tiago R. Mück∗ Michael Gernoth† Wolfgang Schröder-Preikschat† Antônio A. Fröhlich∗

∗Software/Hardware Integration Lab †Department of Computer Science 4
Federal University of Santa Catarina Friedrich-Alexander University Erlangen-Nuremberg

Florianópolis, Brazil Erlangen, Germany
{tiago,guto}@lisha.ufsc.br {gernoth,wosch}@cs.fau.de

Abstract—In this paper we explore a SystemC-based hard-
ware design method which uses aspect-oriented programming
concepts. We have designed a synthesizable resource scheduler
at register transfer level by using only features available in the
SystemC synthesizable subset. The results show that aspect-
oriented programming applied to digital hardware design
provides a better separation of concerns at the cost of a
negligible overhead.

Keywords-Aspect-oriented programing, digital hardware de-
sign, reconfigurable hardware

I. INTRODUCTION

The complexity of embedded system design is increasing
much faster than the design and verification capability of
developers. This has led to the introduction of solutions and
methodologies that had been successfully deployed in the
scope of large-scale software systems. For example, object-
oriented programming (OOP), which is supported in the
hardware domain by languages like SystemC.

In this paper we explore the use of Aspect-oriented
programming (AOP) techniques for hardware design. We
redesigned the hardware implementation of an operating
system task scheduler [1] by leveraging on SystemC features
in order to enable the use of OOP and AOP concepts.
AOP was applied by using a domain engineering strategy
that yields components in which the dependencies from the
execution scenario are encapsulated as aspects. In order
to obtain an efficient and synthesizable component, our
scheduler was designed at the register transfer level (RTL)
by using standard C++ metaprogramming features within the
SystemC synthesizable subset [2].

The remaining of this paper is organized as follows: sec-
tion II introduces AOP concepts and gives a contextualiza-
tion of its use on the hardware domain; section III presents a
discussion about related work; section IV presents our design
artifacts; sections V and VI describe the implementation of
our scheduler and show our experimental results; section VII
closes the paper with our conclusions.

II. ASPECT-ORIENTED PROGRAMMING

In the software domain, the use of machine code had
evolved naturally to procedural languages and then to OOP.

An enormous productivity improvement resulted from the
increased level of abstraction. However, OOP still have some
limitations in the way it allows a complex problem to be bro-
ken up into reusable abstractions. Even though most classes
in an object-oriented model will perform a single function,
they often share common, secondary requirements with other
classes. The implementation of these crosscutting concerns
is scattered among the multiple abstractions, thus breaking
the encapsulation principle. AOP is an elaboration over OOP
to deal with the crosscutting concerns. AOP proposes the
encapsulation of these concerns in special classes called
aspects. An aspect can alter the behavior of the base code by
applying advices (small pieces of code defining additional
behavior) in specific points of a program called pointcuts.
Some extensions to OOP languages have been proposed to
support these new concepts. For example, AspectJ [3] and
AspectC++ [4] extend Java and C++ with full support for
AOP features. They provide both new language constructs
and an aspect weaver, a tool responsible for applying the
advices to the base code before it is processed by the
traditional compiling chain.

Recently, there has been a growing interest in high-level
methodologies for hardware design as well. An example
of a hardware description language (HDL) which supports
OOP is SystemC; a C++ based modeling platform and
language supporting design abstractions at the register trans-
fer, behavioral, and system levels [5]. However, analogous
to software, in hardware some system-wide cross-cutting
concerns cannot be elegantly encapsulated. For example,
in complex circuits, interconnection of several entities is
realized by introducing buses. A bus physically interacts
with other components (e.g. CPU, DMA, ...), but it is
difficult to use a module or a class to encapsulate the
bus because its interface and arbitration method has to be
implemented in every attached component. Other examples
of crosscutting concerns in hardware designs can be also
found in parts of a system related to its overall functionality
or the implementation of non-functional properties (e.g.
clock handling and hardware debugging through JTAG scan
chains). Even with the introduction of OOP in hardware, this
scattered code is hard to maintain and bugs may be easily

2011 Brazilian Symposium on Computing System Engineering

978-0-7695-4641-4/11 $26.00 © 2011 IEEE

DOI 10.1109/SBESC.2011.23

66

2011 Brazilian Symposium on Computing System Engineering

978-0-7695-4641-4/11 $26.00 © 2011 IEEE

DOI 10.1109/SBESC.2011.23

66

2011 Brazilian Symposium on Computing System Engineering

978-0-7695-4641-4/11 $26.00 © 2011 IEEE

DOI 10.1109/SBESC.2011.23

66

2011 Brazilian Symposium on Computing System Engineering

978-0-7695-4641-4/11 $26.00 © 2011 IEEE

DOI 10.1109/SBESC.2011.23

66

introduced. The introduction of AOP to hardware design is
expected to provide the easy encapsulation of cross-cutting
concerns and an increase in the overall design quality.

III. RELATED WORK

Several works have already proposed the use of AOP con-
cepts for hardware design. In [6] the authors discussed the
nature of crosscutting concerns in VHDL-based hardware
designs. They have proposed a hypothetical AOP extension
for VHDL in which the execution of a process and the
setting of a signal are used as pointcuts. However, the work
lacks a concrete implementation and an evaluation of the
impact of AOP in the design. In [7] the authors discussed
how the separation of concerns may relate to different
levels of algorithmic abstraction. They have mentioned the
development of ADH, a new HDL based on AOP, but further
details about ADH are not mentioned. In [8] the use of
AOP concepts to sequential logic design was proposed.
Nevertheless, they focused on very simple and low level
examples like flip-flops and logic gates on which only the
clock can be feasibly handled as a crosscutting concern.

There are also several works which proposed the use
of AOP concepts mostly for hardware verification. In [9],
AOP was used to enable assertion-based verification in high-
level hardware design, in which assertions are based on
pointcuts instead of specifiers to signal changes. They have
designed and implemented two assertion languages with
pointcut-based assertions, ASystemC and ASpecC, which
work alongside SystemC and SpecC, respectively. ASys-
temC uses pointcut of AspectC++, and its implementation
translates assertions into aspects of AspectC++. [10] also
proposed the use of SystemC and AspectC++ to implement
assertion checkers. The authors focused on the verification
of transaction-level models (TLM) in which transaction state
updates are used as pointcuts. They provide a framework in
which the user verification classes extend the base aspect
classes that implement the pointcuts and verification.

Other proposal that focus only on hardware verification
can be seen in [11], in which the authors developed the
Liberty Structural Specification Language (LSS). In LSS
each module can declare that its instances emit certain events
at runtime. These events behave like pointcuts of AOP. Each
time a certain state is reached or a value is computed,
the instance will emit the corresponding event and user-
defined aspects will perform statistics calculation and re-
porting. [12] also proposed AOP-based instrumentation, but
focusing high-level power estimation. They have developed
a methodology based on SystemC in which AspectC++ is
used to define special power-aware aspects. These aspects
are used as configuration files to link power aware libraries
with SystemC models.

Other works provide AOP features not only for verifica-
tion, but also for the actual design of hardware. [13] present
and assess possible applications of AOP in the context

of integrated system design by using SystemC with As-
pectC++. Differently from the works discussed previously,
they showed how AOP can be used to encapsulate some
functional characteristics of hardware components. They
modeled as aspects the replacement policy of a cache, the
data type of an FFT, and the communication protocol be-
tween modules. However, only simulation results are shown
and they do not compare the implementation of aspect-based
components against components with all the functionalities
hard-coded. In a similar work, [14] implemented a SystemC
model for a 128-bit floating-point adder and described the
implementation of the same model using AOP techniques.
But, synthesis results are not provided and the two models
are compared only in terms of functionality to show that the
AOP design works like the original SystemC-only design.

Other works in this area follow different approaches. The
e programming language [15] was designed for modeling
and verification of electronic systems and some of its mech-
anisms can be used to support AOP features. Apart from its
OOP features, e has some constructs to define the execution
order of overloaded methods in inherited classes, which can
be used to define pointcuts and implement aspects. Indeed,
this can be used to implement the behavior of hardware
components, but e is more focused in high-level specification
and there is not any tool support for synthesis.

IV. DESIGNING A HARDWARE USING AOP

Similarly to previous works, we also based our approach
on methodologies which have been used in the software
domain. The Application-driven Embedded System Design
(ADESD) [16] methodology elaborates on commonality and
variability analysis—the well-known domain decomposition
strategy behind OOP—to add the concept of aspect identi-
fication and separation at early stages of design. It defines
a domain engineering strategy focused on the production of
families of scenario-independent components. Dependencies
observed during domain engineering are captured as separate
aspect, thus enabling components to be reused on a variety
of execution scenarios with the application of proper aspects.
This aspect weaving is performed by constructs called
Scenario adapters[17].

The design artifacts proposed in ADESD were imple-
mented and validated on the Embedded Parallel Operating
System (EPOS) [16]. EPOS aims to automate the devel-
opment of dedicated computing systems, and features a
set of tools to select, adapt, and plug components into an
application-specific framework, thus enabling the automatic
generation of an application-oriented system instance. EPOS
is implemented in C++ and leverages on generic program-
ming [18] techniques such as static metaprogramming in
order to achieve high reusability with low overhead.

The next sections describe some of these design artifacts
and how we have applied them in the implementation of our
hardware scheduler.

67676767

A. Scenario adapters

Scenario adapters were developed around the idea of
components getting in and out of an execution scenario,
allowing actions to be executed at these points, therefore, a
scenario must define at least two different operations: enter
and leave. These actions must take place respectively before
and after each of the component’s operation in order to
setup the conditions required by the scenario. For example,
in a compressed scenario, enter would be responsible to
decompress the component’s input data, while leave would
compress its outputs.

In the software domain, components are objects which
communicate using method invocation (considering an OOP-
based approach) and the execution of all operations are
naturally sequential, so the scenario adapters were originally
developed to provide means to just efficiently wrap the
method calls to an object with enter and leave operations.
However, in the hardware domain, components have input
and output signals instead of a method or function interface,
and all operations are intrinsically parallel. These different
characteristics required some modifications on the original
scenario adapter. The new scenario adapter is shown in figure
1.

Figure 1. UML class diagram showing the general structure and behavior
of a scenario adapter.

SystemC defines hardware components by the specializa-
tion of the sc_module class. Components communicate using
special objects called channels. SystemC channels can be
used to encapsulate complex communication protocols at
register transfer or higher levels of abstraction. However,
these complex channels lie outside the SystemC synthesiz-
able subset, so we use only sc_in and sc_out, which define
simple input and output ports for components. Methods
which implement the component’s behavior must be defined
as SystemC processes. In our examples we use SystemC
clocked threads (SC_CTHREAD), in which all operations
are synchronous to a clock signal. The implementation of

the Component::controller method in figure 1 shows the
common behavior of a SC_CTHREAD. SystemC wait()
statements must be used to synchronize the operations with
the clock, in other words, all operations defined between two
wait() statements occur in the same clock cycle.

Using these constructs, we define each aspect as a single
and independent hardware component (Aspect class). Enter
and leave operations are defined using a simple handshaking
protocol (op_rdy_out and op_req_in signals) to trigger its
execution. The remaining input/output ports define which
operation are being triggered (this is specific of each aspect).
With this kind of handshaking communication protocol we
can produce more reusable components, since the number of
clock cycles it requires for each operation is hidden by the
protocol, thus making it easier to synchronize component
execution with the rest of the design.

The Scenario class incorporates, via aggregation, all of
the aspects which define its characteristics. It defines enter
and leave methods to encapsulate the implementation of the
handshaking protocol which trigger the aspects. Figure 1
shows how the scenario’s enter operation is implemented.
All aspects are triggered at the same time and executes in
parallel, however, if required by the scenario, this can be
modified in order to execute each aspect sequentially at the
cost of additional clock cycles.

The adaptation of the component to the scenario is per-
formed by the Scenario Adapter class via inheritance. This
adaptation is possible through the separation of the compo-
nent’s input/output protocol from the implementation of its
behavior. A SystemC process (controller method) handles
the input/output protocol (behavior method) and calls the
requested operations, which are each implemented in its
own methods. These methods are overridden in the Scenario
Adapter class. Notice that, although scattered through a
class hierarchy and different methods, all operations (from
the handling of the component’s input/output protocol, to
the triggering of the aspects) executes inside the controller
SC_CTHREAD process. For the proposed scheme to work,
wait() statements are also used to schedule the operations
among the clock cycles, instead of defining explicit state
machines. If the latter is used, it would not be possible to
elegantly implement the structure described in figure 1, since
a state machine would require manual intervention to add the
operation defined by the scenario.

B. ADESD and classic AOP

Several previous works have already discussed aspect-
oriented hardware design using SystemC and proposed
solutions based on classic AOP concepts using the well
known AspectC++ language. Indeed, AspectC++ provides
more powerful mechanisms for aspect implementation then
ADESD, especially when it comes to the definition of the
pointcut, however, this additional mechanisms are usually ei-
ther unnecessary or can be efficiently replaced. For example,

68686868

the aspects implemented in Déharbe and Medeiros [13] (sec-
tion III) could be more elegantly implemented using other
standard C++ features like inheritance and templates param-
eters. In the scope of ADESD, we can say that scenario
adapters can be used to implement homogeneous crosscut-
ting [19] (the process of adding the same behavior for all
classes). Heterogeneous crosscutting [19](when concern is
specific to a certain component or family of components) can
be easily implemented with standard OOP (e.g. inheritance).
Additionally the implementation of ADESD’s mechanisms
can be realized using only standard SystemC features.
Previous works focus on tools and languages which were
deployed only for software development (e.g. AspectC++),
which limits its use for the generation of synthesizable
hardware.

V. SCHEDULER IMPLEMENTATION

Our case study is based on a previous implementation
of the EPOS scheduler described by [1], which described
a task scheduling suitable for hardware and software im-
plementation. However, the original VHDL implementation
was not susceptible to the same mechanisms that render its
software counterpart flexible and reusable. The new System-
based hardware scheduler is described below.

Figure 2 shows a simplified view of the task schedul-
ing model. In this design, the task is represented by the
class Thread and defines the execution flow of the task,
implementing the traditional functionality (e.g. suspend and
resume operations). The classes Scheduler and Schedul-
ingCriteria define the structure that realizes the task schedul-
ing. Traditional design and implementations of scheduling
algorithms are usually done by a hierarchy of specialized
classes of an abstract scheduler class, which can be further
specialized to bring new scheduling policies to the system.
In order to reduce the complexity of maintenance of the code
(generally present in such hierarchy of specialized classes),
as well as to promote its reuse, the design detaches the
scheduling policy (criteria) from its mechanisms (lists imple-
mentations) and also detaches the scheduling criteria from
the thread it represents. This is achieved by the isolation of
the element’s comparison algorithm of the scheduler in the
criteria.

A. Hardware implementation

The separation of the mechanism from the scheduling
policy was fundamental for the construction of the scheduler
in hardware. The hardware scheduler component implements
only the mechanisms that realize the ordering of the tasks,
based on the selected policy. In this sense, the same hardware
component can realize distinct policies.

The implementation of the scheduler in hardware follows
a well-defined structure. It has an internal memory that
implements an ordered list. One process (Controller) is
responsible for interpreting all the data received by the

Figure 2. Simplified UML view of the task scheduling model

interface of the component in hardware and then to activate
the process responsible for implementing the functional-
ity requested by the user (through the command interface
register). This implementation, as the software counterpart,
realizes the insertion of its elements already in order, that
is, the queue is always maintained ordered, following the
information that the SchedulingCriteria provides.

B. Aspects implementation

We have implemented aspects for debugging. Unlike
previous works [11], [12], which focused on simulation-
time tracing and logging, we have implemented aspects for
on-chip debugging. Figure 3 shows the debugged family
of hardware aspects. The class DebuggedCommon defines
common ports for all aspects. Besides the ports used for
clock and reset, it defines outputs for a JTAG debug proto-
col (trigger_out and data_out) and for the enter/leave pro-
tocol (op_rdy_out and op_req_in). The input values for the
ports defined by the subclasses determine which operation
will be triggered.

The aspects implemented define the following debugging
functionalities: Watched causes the state of a component to
be dumped every time it is modified; Traced causes every
operation execution to be signalized; and Profiled counts
the number of clock cycles used by the component for each
operation.

C. Scenario adapter implementation

Figure 4 shows how we applied the aspects to the sched-
uler using a scenario adapter (for simplicity, some details,
such as methods, ports, and hierarchies, are omitted). The
implementation follows the guidelines depicted in figure 1.
The class Scheduler defines the scheduler component. The
controller SystemC process is responsible for reading the
component inputs and calling the method which implements
the corresponding operation. The class AdaptedScheduler
implements the scenario adapter. It inherits from the Sched-
uler and Debugged classes, and redefines the operation
methods by adding calls to the enter and leave methods of
Debugged. The Debugged class defines the scenario and its

69696969

Table I
HARDWARE RESOURCES USED AFTER PLACING AND ROUTING AGILITY’S NETLISTS.

Normal Debugged Debugged
Parameter scheduler scheduler scheduler Profiled Traced Watched

hand coded scenario adapter
4-input LUTs 2942 3042 3097 30 40 11
Flip Flops 663 754 842 28 41 12
Occupied Slices 1563 1668 1685 21 22 8
Longest path delay (ns) 23.28 22.58 23.28 4.79 6.00 4.70

Figure 3. The debugged family of hardware aspects

Figure 4. Scheduler modified by the scenario adapter

methods implement the handshaking protocol that triggers
the aspects components.

VI. RESULTS

We synthesized the SystemC designs described previ-
ously using Celoxica’s Agility 1.3. They were synthesized
to VHDL and EDIF formats targeting a Xilinx Spartan3
XC3S2000 FPGA. The final place-and-route was performed
using Xilinx ISE 12.3. All the synthesis processes were
executed with all the optimization enabled. Table I shows
the results. Normal scheduler is the scheduler component
without any modification, Debugged scheduler—scenario
adapter is the scheduler modified with the scenario adapter
while Debugged scheduler—hand coded is the scheduler
with the aspects functionalities hand coded. Table I also
shows the debugged family synthesized in isolation.

The results show that the use of scenario adapters yields
a very low overhead in terms of both resource consumption
and performance. For the scenario-adapted scheduler, the
number of occupied slices is about 1% higher than the hand-
coded scheduler. This overhead comes basically from the
additional signal and registers required by the handshaking
protocol that is used to trigger the aspects, which is not
required when everything is coded within a single SystemC
process. The difference in performance (given by the longest
path delay) is about 3%. Curiously, in the final place-and-
routed designs, the hand-coded scheduler has the smaller
longest path delay. This may be the result of some opti-
mization algorithm applied in the place-and-route backend.

VII. CONCLUSION

In this paper we have shown how a domain engineering
strategy and AOP techniques can be applied to design and
implement a flexible task scheduler in hardware. The sched-
uler’s dependencies from a debugging execution scenario
were encapsulated in aspects and further applied to the
core component through the use of a scenario adapter, thus
providing a better separation of concerns. The results showed
that our design artifacts can be synthesized and introduce a
negligible overhead in the generated components.

ACKNOWLEDGMENTS

This work was partially supported by the Coordination
for Improvement of Higher Level Personnel (CAPES) grant,

70707070

projects RH-TVD 006/2008 and 240/2008, and by the Ger-
man Research Council (DFG) under grant no. SCHR 603/7-
1.

REFERENCES

[1] H. Marcondes, R. Cancian, M. Stemmer, and A. A. Fröhlich,
“On the Design of Flexible Real-Time Schedulers for Em-
bedded Systems,” in Proceedings of the 2009 International
Conference on Computational Science and Engineering -
Volume 02, ser. CSE ’09. Washington, DC, USA: IEEE
Computer Society, 2009, pp. 382–387.

[2] OSCI. (2010) Systemc synthesizable subset draft 1.3.
[Online]. Available: http://www.systemc.org/

[3] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and
W. G. Griswold, “An Overview of AspectJ,” in Proceedings of
the 15th European Conference on Object-Oriented Program-
ming, ser. ECOOP ’01. London, UK, UK: Springer-Verlag,
2001, pp. 327–353.

[4] O. Spinczyk, A. Gal, and W. Schröder-Preikschat, “As-
pectC++: an aspect-oriented extension to the C++ program-
ming language,” in Proceedings of the Fortieth International
Conference on Tools Pacific: Objects for internet, mobile
and embedded applications, ser. CRPIT ’02. Darlinghurst,
Australia, Australia: Australian Computer Society, Inc., 2002,
pp. 53–60.

[5] P. R. Panda, “SystemC: a modeling platform supporting
multiple design abstractions,” in Proceedings of the 14th
international symposium on Systems synthesis, ser. ISSS ’01.
New York, NY, USA: ACM, 2001, pp. 75–80.

[6] M. Engel and O. Spinczyk, “Aspects in hardware: what do
they look like?” in Proceedings of the 2008 AOSD workshop
on Aspects, components, and patterns for infrastructure soft-
ware, ser. ACP4IS ’08. New York, NY, USA: ACM, 2008,
pp. 5:1–5:6.

[7] A. Bainbridge-Smith and S.-H. Park, “ADH: an as-
pect described hardware programming language,” in Field-
Programmable Technology, 2005. Proceedings. 2005 IEEE
International Conference on, 2005, pp. 283 – 284.

[8] P. Burapathana, P. Pitsatorn, and B. Sowanwanichkul, “An
Applying Aspect-Oriented Concept to Sequential Logic De-
sign,” in Proceedings of the International Conference on
Information Technology: Coding and Computing (ITCC’05)
- Volume II - Volume 02, ser. ITCC ’05. Washington, DC,
USA: IEEE Computer Society, 2005, pp. 819–820.

[9] Y. Endoh, T. Imai, M. Iwamasa, and Y. Kataoka, “A pointcut-
based assertion for high-level hardware design,” in Proceed-
ings of the 2008 AOSD workshop on Aspects, components,
and patterns for infrastructure software, ser. ACP4IS ’08.
New York, NY, USA: ACM, 2008, pp. 4:1–4:6.

[10] M. Kallel, Y. Lahbib, R. Tourki, and A. Baganne, “Verifi-
cation of systemc transaction level models using an aspect-
oriented and generic approach,” in Design and Technology
of Integrated Systems in Nanoscale Era (DTIS), 2010 5th
International Conference on, 2010, pp. 1 –6.

[11] M. Vachharajani, N. Vachharajani, and D. I. August, “The lib-
erty structural specification language: a high-level modeling
language for component reuse,” in Proceedings of the ACM
SIGPLAN 2004 conference on Programming language design
and implementation, ser. PLDI ’04. New York, NY, USA:
ACM, 2004, pp. 195–206.

[12] F. Liu, Q. Tan, X. Song, and N. Abbasi, “AOP-based high-
level power estimation in SystemC,” in Proceedings of the
20th symposium on Great lakes symposium on VLSI, ser.
GLSVLSI ’10. New York, NY, USA: ACM, 2010, pp. 353–
356.

[13] D. Déharbe and S. Medeiros, “Aspect-oriented design in
systemC: implementation and applications,” in Proceedings of
the 19th annual symposium on Integrated circuits and systems
design, ser. SBCCI ’06. New York, NY, USA: ACM, 2006,
pp. 119–124.

[14] F. Liu, O. A. Mohamed, X. Song, and Q. Tan, “A case study
on system-level modeling by aspect-oriented programming,”
in Proceedings of the 2009 10th International Symposium on
Quality of Electronic Design. Washington, DC, USA: IEEE
Computer Society, 2009, pp. 345–349.

[15] M. Vax, “Conservative aspect-orientated programming with
the e language,” in Proceedings of the 6th international con-
ference on Aspect-oriented software development, ser. AOSD
’07. New York, NY, USA: ACM, 2007, pp. 149–160.

[16] A. A. Fröhlich, Application-Oriented Operating Systems,
ser. GMD Research Series. Sankt Augustin: GMD -
Forschungszentrum Informationstechnik, Aug. 2001, no. 17.

[17] A. A. Fröhlich and W. Schröder-Preikschat, “Scenario
Adapters: Efficiently Adapting Components,” in Proceedings
of the 4th World Multiconference on Systemics, Cybernetics
and Informatics, Orlando, USA, 2000.

[18] K. Czarnecki and U. W. Eisenecker, Generative program-
ming: methods, tools, and applications. New York, NY,
USA: ACM Press/Addison-Wesley Publishing Co., 2000.

[19] Y. Jun, L. Tun, and T. Qingping, “The application of Aspec-
tual Feature Module in the development and verification of
SystemC models,” in Specification Design Languages, 2009.
FDL 2009. Forum on, 2009, pp. 1 –6.

71717171

