
Engineering Reliable
Service Oriented
Architecture:
Managing Complexity and
Service Level Agreements

Nikola Milanovic
Model Labs - Berlin, Germany

Senior Editorial Director: Kristin Klinger
Director of Book Publications: Julia Mosemann
Editorial Director: Lindsay Johnston
Acquisitions Editor: Erika Carter
Development Editor: Joel Gamon
Production Coordinator: Jamie Snavely
Typesetters: Keith Glazewski & Natalie Pronio
Cover Design: Nick Newcomer

Published in the United States of America by
Information Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue
Hershey PA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com

Copyright © 2011 by IGI Global. All rights reserved. No part of this publication may be reproduced, stored or distributed in
any form or by any means, electronic or mechanical, including photocopying, without written permission from the publisher.
Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or com-
panies does not indicate a claim of ownership by IGI Global of the trademark or registered trademark.

Library of Congress Cataloging-in-Publication Data

Engineering reliable service oriented architecture : managing complexity and
service level agreements / Nikola Milanovic, editor.
 p. cm.
 Includes bibliographical references and index.
 Summary: "This book presents a guide to engineering reliable SOA systems and
enhances current understanding of service reliability"--Provided by publisher.
 ISBN 978-1-60960-493-6 (hardcover) -- ISBN 9781609604943(ebook) 1.
Service-oriented architecture (Computer science) 2. Computer networks--
Reliability. I. Milanovic, Nikola.
 TK5105.5828.E54 2011
 004.6--dc22
 2010033596

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views expressed in this book are those of the
authors, but not necessarily of the publisher.

84

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 5

Wanja Hofer
Friedrich–Alexander University Erlangen–Nuremberg, Germany

Julio Sincero
Friedrich–Alexander University Erlangen–Nuremberg, Germany

Wolfgang Schröder-Preikschat
Friedrich–Alexander University Erlangen–Nuremberg, Germany

Daniel Lohmann
Friedrich–Alexander University Erlangen–Nuremberg, Germany

Configuration of Non-
Functional Properties in

Embedded Operating Systems:
The CiAO Approach

ABSTRACT

In embedded operating systems (OSes), non-functional properties like reliability, performance, or memory
footprint are of special importance. State-of-the-art OS product lines focus on the configurability of
functional characteristics of the system. This chapter proposes an approach that aims at also making
non-functional properties indirectly configurable and maintainable by the system configurator. In order to
reach this goal, the CiAO OS product line used here has configurable architectural properties, which have
no functional influence on the target system, but instead bear an impact on its non-functional properties.
Additionally, the chapter develops a feedback approach that gains information about the non-functional
properties of an already configured system to assist further configuration decisions, and presents and
details the CiAO approach and evaluates it using two case studies from the CiAO operating system.

DOI: 10.4018/978-1-60960-493-6.ch005

85

Configuration of Non-Functional Properties in Embedded Operating Systems

MoTivATion

In the domain of system software, non-functional
properties (NFPs) are of fundamental importance
to the end user. This is because system software
never has a purpose and business value of its
own, but it is rather a means to aid the applica-
tion making use of it in fulfilling its (business-
value-bringing) purpose. Hence, performance, for
example, is an important non-functional criterion
to select a suitable operating system (OS) to
deploy an application on. In the sub domain of
embedded operating systems, NFPs can even be
mission-critical since some embedded systems
applications depend on the fault tolerance or a
given upper bound on the latency of the underlying
embedded OS. Since the desired NFPs of a piece
of system software are different from application
scenario to application scenario (and sometimes
reflect a trade-off decision), it is the task of the
OS engineer to keep the NFPs configurable.

In our experience, though, the consideration of
NFPs in system software causes problems because
NFPs can never be made directly configurable.
That is because most NFPs are emergent in their
nature; that is, they have no direct representation
in the system’s implementation entities. Instead,
they result from the orchestration of the properties
available in the selected configuration. Hence,
NFPs can only be made configurable via indirect
configuration of other properties.

However, the set of functional properties to be
selected is fixed, dependent on the application.
Other properties, which we call architectural
properties (APs), are transparent to the application,
though, but they still have an enormous effect on
the NFPs of the resulting end system. Examples
of such APs of OSes include the chosen method
of interrupt synchronization in the kernel, the
available protection facilities (including memory
protection, for instance), or the type of interac-
tion between kernel modules. The latter has been
under heavy discussion for decades now, arguing
in favor of procedural interaction in monolithic

systems versus message passing techniques in
microkernels (Lauer and Needham, 1979, Liedtke,
1995). The early decision to adopt one of those
alternatives has a significant impact on the NFPs
of performance, latency, and memory footprint,
among others.

The CiAO family of embedded OSes devel-
oped by our research group was designed with
architectural configurability in mind; that is,
even fundamental architectural properties are
kept configurable in CiAO’s design. Hence, the
decision in favor of one or the other shape of an
AP is postponed until the configuration stage and
therefore left to the system configurator. He can
then choose the one configuration option that has
the best desired impact on the NFPs of the target
system, effectively tailoring the OS (and its archi-
tecture) to the needs of the application scenario.

However, if the variability in a software
product line exceeds a certain threshold (e.g., by
offering architectural variability like in CiAO),
the number of transparent configuration options
left open to the configurator quickly becomes
overwhelming. We therefore also propose a new
kind of development process with a feedback ap-
proach, which gathers additional knowledge by
analyzing product variants regarding their NFPs.
It is thereby possible to assist the configurator in
making his configuration decisions when aiming
at optimizing a specific NFP.

The domain of embedded system software is
one that has been concerned with non-functional
properties for a long time being. Embedded sys-
tems engineers have gathered a lot of knowledge
on how to deal with those properties, knowledge
that the domain of service-oriented architecture
can benefit from.

Structure of the Rest of the Chapter

The remainder of this chapter is structured in
a top-down manner. First we give background
information and definitions necessary for the
understanding of the text. Then, an overview

86

Configuration of Non-Functional Properties in Embedded Operating Systems

of our CiAO approach and, after that, its details
are presented. The following section details the
evaluation studies regarding the influence of APs
on NFPs. We then present work that is related to
our approach, and the chapter is concluded in the
last section.

BACkgRound

our understanding of non-
Functional Properties

To define what exactly non-functional properties
(NFPs) are is a delicate task. There is no standard
definition in the software engineering community
available, and different groups inside the com-
munity have contradicting definitions. Moreover,
even the nomenclature used is not uniform; for
example, in different contexts the same kinds of
software properties are termed NFPs, quality at-
tributes (Bass, 2006), or soft goals (Cysneiros and
do Prado Leite, 2004), among others. Amongst
a myriad of examples of such properties, they
include security, reliability, safety, performance,
maintainability, usability, and code size, to just
name a few.

Moreover, many of these terms are broad and
generic; different stakeholders may have a vary-
ing understanding (and, therefore, expectations)
of such properties. We believe that when dealing
with such properties, it is necessary to define
what is considered to be an NFP in that specific
context. For this reason, we narrow NFPs down
with the following definition.

Non-functional properties of a software sys-
tem are those properties that do not describe the
principal task or functionality of the software,
but can be observed by end users in its run-time
behavior (Lohmann et al., 2005).

This definition gives good insights into the
type of properties that we see as NFPs. It is very
well applicable to our domain of families of op-
erating systems; however, it can also be applied

to a number of other domains, especially those of
infrastructure software (e.g., middleware, database
systems, etc.).

The goal of our work is to show how we ad-
dress the configuration of properties that fall under
these definitions. Approaching such properties
is a challenging task mainly due to two reasons.
On one hand, a primary goal is to improve the
understanding of NFPs already at the stage of
software configuration. In a perfect scenario, this
would be to provide the system configurator with
means to express the non-functional requirements
on the product. On the other hand, after having
developed several families of operating systems,
we have learned that many NFPs are emergent.
That means that they are the result of the interaction
of many components, which effectively hinders
the possibility of direct configuration of such
properties. Therefore, our techniques presented in
this chapter aim at closing this gap. The complex
interactions that will influence the system’s NFPs
cannot be appropriately predicted at design stage,
which makes attempts of preparing configuration
mechanisms during design not very reliable. As
a result, we have decided to extend our approach
to tackle NFPs not only during the design stage,
but also in other development stages, and even
post implementation. The idea is to learn from
configured and running systems, and to gather
information how the system’s components are
interacting, and how this interaction influences the
investigated NFPs. Subsequently, this information
should be used to improve the configuration of
future systems.

The Classical and the SPL Software
development Processes

In order to be able to address NFPs in a thorough
and holistic way, we have developed an own soft-
ware development process, the CiAO development
process, which is detailed in the main section of
this chapter. It is based on the classical software
development process and the process proposed for

87

Configuration of Non-Functional Properties in Embedded Operating Systems

software product lines, both of which are briefly
introduced here.

Figure 1 shows the main stages of the traditional
software development process. The customer ex-
presses his requirements on the desired product in
an appropriate way; those requirements are then
analyzed by the software engineer, enabling him to
develop a software architecture. This design is then
implemented using the languages and platforms
that are appropriate for the target environment. If
another customer asks for a similar, but different
product, these stages are basically repeated, and
the new product is developed from scratch.

This problem is tackled by the canonical soft-
ware product-line (SPL) development process
(see Figure 2). Here, not a single product is con-
sidered, but a whole family of products targeting
a specific domain.

In the domain engineering process (upper half
in Figure 2), the product line itself is developed,
while in application engineering, a specific prod-
uct is built from the outcome of the domain en-
gineering without much effort. First, domain
experts having comprehensive domain knowledge
scope the domain and specify the desired vari-
ability and configuration options (domain analy-

sis). This variability is often expressed in a feature
model containing a feature diagram representing
the configuration space. After this, a reference
architecture is built during the domain design step,
followed by the domain implementation. The
assets that constitute the product-line implemen-
tation are stored and described by a family
model.

In application engineering (lower half in Figure
2), the customer’s demands on the product are first
investigated in a requirements analysis step, which
results in a feature selection in the feature model
previously developed in the domain engineering
process. This feature selection can then be used
to automatically derive a final product variant
using the family model and the product-line as-
sets. Hence, those assets are then re-usable across
multiple products in the product line, enabling an
advance in important factors like time to market
and product quality, for instance.

The CiAo APPRoACh

CiAO (CiAO is Aspect-Oriented) is a family of
OSes targeting the embedded systems domain,

Figure 1. The classical software development process

Figure 2. The software development process as proposed by the software product-line community.
(adapted from (Czarnecki and Eisenecker, 2000))

88

Configuration of Non-Functional Properties in Embedded Operating Systems

especially those systems deployed on microcon-
trollers in the automotive industry. The main goal
of the project is to show that even fundamental
architectural properties of an OS can be kept
configurable, thereby effectively enabling the in-
direct configuration of non-functional properties.
This goal is reached by using techniques from the
field of software product-line engineering in the
analysis stage, and by developing aspect-aware
design patterns in order to be able to deploy
aspect-oriented artifacts in the implementation.
This way, CiAO reaches a very good separation
of concerns while providing very fine-grained
and deep configuration possibilities at the same
time. By selecting a specific combination of ar-
chitectural property configurations, it is possible
to get an architecture that is optimized according
to the non-functional requirements of a particu-
lar scenario. However, since those NFPs do not
emerge until the production configuration stage,
a specialized development process is needed to
treat NFPs as “first-class citizens” in all develop-
ment stages.

overview of the CiAo Software
development Process

We have adapted the canonical software product-
line development process (see also the previous

section) to better address non-functional proper-
ties. The resulting CiAO software development
process is depicted in Figure 3.

We enriched the steps in the layers of domain
engineering and application engineering, which
are described in the following two sub sections.
Furthermore, we introduced additional steps in a
feedback loop that has access to a database of
non-functional properties of the product line.
These additions are described in the remaining
sub sections.

CiAo domain engineering

Domain engineering in the CiAO development
process is similar to the steps proposed in soft-
ware product-line engineering. However, those
steps now encompass the consideration of non-
functional properties from the very beginning.
This is done by extending the domain knowledge
by features that are transparent to the application
developer—because it is mostly those features
that have a significant indirect impact on the
perceived non-functional properties of the target
system. Thus, additional configuration options are
considered in the domain analysis and offered in
the feature diagram that would not be examined
in the classical approach.

Figure 3. The CiAO software development process

89

Configuration of Non-Functional Properties in Embedded Operating Systems

In the CiAO family of operating systems, most
of those additional options refer to the configu-
rability of CiAO’s architecture. By keeping those
architectural properties configurable in the domain
design, the system configurator can still decide
in favor of one flavor or the other, depending on
the desired focus on the system’s non-functional
properties. Two of those properties—interrupt syn-
chronization and memory protection—and their
configurable influence on some non-functional
properties is presented in the next section.

Another focus of the CiAO research project is
to show that architectural configurability can still
be maintainable in the implementation. In order
to reach this goal and because many architectural
properties are highly cross-cutting in the design
and implementation, CiAO is implemented using
aspect-oriented programming (AOP) techniques.
In particular, the implementation language and
aspect weaver AspectC++ (Spinczyk and Lohm-
ann, 2007) is used, which is a superset of the C++
programming language. With this programming
paradigm, we showed that is possible to have
maintainable, concern-separated system software
code that has configurable architectural properties
in its domain implementation (Lohmann et al.,
2007b, Lohmann et al., 2007a).

A small excerpt of the CiAO feature diagram,
which resulted from the domain analysis step, is
shown in Figure 4. It is referenced throughout the
rest of the chapter to give examples of some of
the steps performed in the development process.

CiAo Application engineering

Application engineering in the CiAO development
cycle also differs from the one in SPL engineer-
ing. The system configurator, who translates the
customer requests into selections in the feature
model provided by the domain analysis step, will
not be able to make all configuration decisions.
That is because CiAO aims at providing options
that are transparent to the application, like those
configuration options pertaining to the system
architecture. Hence, the output of the require-
ments analysis step can only be a preselection
of features, and it is only a sample variant that is
configured and generated first.

After that, our feedback approach comes into
play. The generated sample variant is analyzed for
its NFPs and checked against the NFP database,
which results in an altered feature selection and
therefore product variant. This iteration is repeated
until the final product conforms to the desired
non-functional requirements, or until the best

Figure 4. An excerpt of the CiAO feature diagram. Features that are functionally transparent to the
application are depicted in gray color.

90

Configuration of Non-Functional Properties in Embedded Operating Systems

solution is reached within given time constraints.
The exact procedure of the CiAO configuration
process, the feedback approach, and its application
is discussed in the following sections.

The CiAo Configuration Process

As CiAO is a software product line, a member of
this family of systems (i.e., a concrete solution)
is derived according to a given specification (i.e.,
the feature selection) that conforms to the formal
feature model. This transformation process is
driven by a family model, which plays a central
role. It is responsible for mapping the selected
features to concrete implementations units. That
is, according to the set of selected features, the
corresponding components (e.g., classes, aspects,
etc.) are customized (e.g., by conditional com-
pilation, preprocessing, etc.) and then copied to
another source-code tree, where it can be compiled
to generate the required family member.

Feature models mostly correspond to a set of
functional features (disclosed during domain en-
gineering) that can be turned on and off, whereas
the set of valid configurations is determined by
the feature tree hierarchy and its extra interdepen-
dencies. However, it is often the case that several
features define the same interface for a specific
service, but derive different implementations for
the service provided by the interface. This means
that, from the user’s perspective, the difference
between the several features implementing the
same service can only be distinguished by its
effect on the system’s NFPs. In traditional ap-
proaches, during the software configuration the
system configurator either has to have strong
knowledge about the internals of the system, or
he has to have assistance from the developers in
order to decide among features that implement the
same interface. The root of the problem here is the
missing information about the effect of otherwise
identical features on the system NFPs.

In order to address this issue, we augment the
feature model with non-functional information,

which can be obtained from two different sources.
First, from the system designers, who made the
architectural decisions and are aware of the pos-
sible impact of features on NFPs. (Architectural
decisions are often a trade-off between two or
more NFPs). Second, from tests performed on
generated family members. Even though the
information provided by the system designers
may be, to some extent, helpful, we believe that
performing tests is the appropriate approach.
Information from tests is not only able to assist
the configuration process, but also assures that
the implementation conforms to the expected
behavior that motivated the design decisions. In
short, it is real data, and it helps software evalu-
ation and evolution, as it is able to reveal flaws
in the design and the implementation.

The FeedBACk APPRoACh

As we have detailed in the previous sections, many
NFPs cannot be appropriately predicted at design
time and, hence, not be directly configured at
configuration time. Therefore, we believe that in
order to get useful information about the system’s
NFPs, the use of tests on generated products is a
promising alternative. The real behavior of many
types of NFPs can not be detected until after the
family member is configured and generated. That
is, information regarding the interaction among
the components that comprise the entire system
can only be observed after the system is prepared
to be deployed. For example, insights about the
RAM footprint or code size can be gained from
static tests performed after generation. Addition-
ally, information about latency or performance
can be captured by performing dynamic tests on
the running system variants.

The feedback approach extends the traditional
SPL development techniques in order to provide
information regarding NFPs during product
configuration. We introduced new structures and
mechanisms so that the SPL infrastructure can

91

Configuration of Non-Functional Properties in Embedded Operating Systems

be used to generate products that will be tested
against the NFP that is to be investigated. This
information is saved, organized, and re-inserted
in the SPL process (see also Figure 3). It also
enables the user to benefit from it in the configu-
ration of further products. This feedback process
is organized in three layers:

1. The SPL Repository comprises the software
components that can be assembled together
to generate products (see Figure 3, Domain
Assets). Additionally, components that
are used merely to capture non-functional
information from generated products (like
performance measurement aspects that in-
strument the product) are also available. We
have shown that aspects are very adequate
for this task (Gilani et al., 2007).

2. The User Configuration is responsible
for providing the mechanisms for product
configuration. Besides the traditional con-
figuration process (selecting features from
a feature model), we provide the user with
non-functional information (see Figure 3,
Product Configuration). As NFPs are very
specific to each product, or even to each
feature, this information can be displayed
in different graphical ways, for example,
sliders, graphs, charts, etc. Moreover, during
configuration the user can select the afore-
mentioned components that are responsible
for measuring some of the NFPs of the
product.

3. The Concrete Solution Domain encompasses
the generated product, the compiling envi-
ronment, and the run-time environment used
to generate and test the product (see Figure
3, Product Variant).

The mechanisms described so far are appro-
priate for generating and testing single family
members. That is, after the configuration pro-
cess, the system configurator is able to confirm

if the generated product meets his expectations
regarding NFPs. Nevertheless, this is not enough
if we want to use this information to guide the
configuration process, because we would need
information about the entire family, and not only
about single configurations.

To solve this problem, the naive approach
would be to generate all possible family members;
this is not a feasible solution, though. Normally,
system families have several hundreds of features,
and they can generate several thousands of dif-
ferent family members. Therefore, an exhaustive
study of all members is not computationally pos-
sible. However, important for our approach is
how groups of features interact with each other to
influence NFPs; in many cases, several features
will not have any interaction at all. This means
that many tests on different configurations will
produce the same measurement results for a spe-
cific NFP that is investigated. In order to avoid
redundant tests, and consequently to reduce the
test space, a metric regarding feature interac-
tion is to be defined so that only tests that reveal
important information regarding how the feature
interaction will influence the required NFP are
performed. For examples of uses of these metrics,
see the following section about the CiAO studies.

Ultimately, the organization of the SPL in
this fashion aims at improving the configuration
experience in the following ways:

1. Providing exact non-functional information
about products that have been previously
configured;

2. Using heuristics and regression techniques
to provide approximated information about
products that have only been partially
configured;

3. If several software components implement
the same functional behavior, the user
should be able to select the most appropri-
ate one depending on their non-functional
characteristics;

92

Configuration of Non-Functional Properties in Embedded Operating Systems

ReSTRiCTing The FeATuRe
ModeL FoR TeSTing

An important characteristic of families of systems
is that the code base does not only represent one
system, but all valid family members. However, to
perform tests on this code, specific members must
first be configured and then generated. Moreover,
aiming at understanding how features interact in
different configurations requires whole sets of
family members to be generated and tested. The
strategy of testing the set of all family members
is not practicable.

Therefore, our approach provides means for
the application engineer to specify sets of products
to be tested. The objective of specifying tests is
to avoid generating members where interactions
will not influence the desired NFPs. Of course,
for some NFPs this definition may not be trivial.
However, for others it may be pretty straightfor-
ward. For example, consider the scenario where
the NFP represents the time required for the
computation of a specific math algorithm. This
algorithm may be configured in different ways by
means of several features, and the math algorithm
itself is a feature of a complex system comprised
of other algorithms that can be configured inde-
pendently. If those other algorithms do not share
code with the investigated math algorithm, testing
each of the algorithms separately (and not all of
the combinations) would reduce the testing space,
and the performance measurement results of each
algorithm that is tested individually would not
be altered.

In order to accomplish such kinds of restrictions
on feature models, we came up with the idea of
partial configurations. In traditional feature mod-
els, a feature selection is simply a list of features
that are required to be present in the member to be
generated. (The generation can only be performed
when the selection is valid, though.) We have
extended this concept, now enabling the user to
set the features that must be present (selected fea-
tures), the set of features that must not be present

(blocked features), and other features that may be
let open (open features). A list of such selections
of features specifies a partial configuration. We
developed a tool that is able to generate all valid
configurations that conform to the specification
of a partial configuration. Our tool transforms
the feature model into a binary decision diagram
(BDD) and by using the BuDDy library (BuDDy
Developers, 2009) we are able to generate the
set of valid configurations that conforms to the
restrictions described by the partial configuration.

Using this tool, the engineer is able to set the
features he wants to be present in all tests (of the
test set) by defining them as selected. The ones
that are known not to have an influence on the
NFP to be tested are set to blocked. The features
that actually represent the variability among the
members of the test set are marked as open.

Applying the Feedback Approach

In order to explain how partial configurations can
be used to generate a reduced set of tests and still
produce meaningful results, we will illustrate an
example using the feature model depicted in Fig-
ure 4. This feature model is only a small excerpt
of the complete CiAO feature model, which has
around 150 different features to be configured
and represents about 10,000 different valid con-
figurations. However, even this reduced subset
of features (14 features) is able to represent 256
valid configurations. This fact shows that one
should be very careful when defining the set of
configurations to be tested; even a small num-
ber of features may represent a high number of
configurations—and, consequently, can require
a prohibitive testing time.

Nevertheless, one should also keep in mind
that the testing process aims at capturing feature
interactions that will influence a specific NFP.
Interestingly, for many NFPs it is possible (with
internal implementation knowledge) to determine
the set of features that will influence the required
NFP. For example, in the case of performance, or

93

Configuration of Non-Functional Properties in Embedded Operating Systems

also latency, one could measure the time required
for a certain computation by starting a timer at a
specific point in the code, and stopping it at the
point where the computation is finished. If this
scenario represents our NFP performance, it is
possible to determine which features insert code
between these points (the metric that specifies
feature interaction), or the ones that have their
code called from within the code block having
its performance measured. That is, when testing
a specific NFP, it is often possible to describe
the set of features that influence the desired NFP
by using the concept of partial configurations.
Moreover, in our experiments we have identi-
fied that normally the critical parts of the code,
where, for example, latency is important, will not
be composed of too many features, and therefore
a testing process can be performed in a feasible
amount of time. Likewise, when a feature specifies
an interface and its sub features represents different
implementations, testing can also be optimized in
this manner, and only the variability represented
by this sub tree must be tested.

The feature model depicted in Figure 4 can
generate 256 different configurations; in this case,
testing all possible configurations may be feasible.
However, for some NFPs it would simply be a
waste of time, since for many of those tests the
output would be exactly the same and would not
contribute to the understanding of how features
interact to influence a specific NFP. For example,
if one is interested in the performance of the dif-
ferent configurations of the protection mechanism,
a test set can be defined by a partial configuration
where the set of features to represent the minimal
infrastructure are set as selected, the features under
protection are marked as open (establishing the
variability of the test set), and the rest is marked
as blocked. By doing so, we can reduce the test set
to 8 different combinations. These are basically
all possible combinations of the features used for
the configuration of the protection mechanism,
namely memory protection, timing protection,
and service protection.

In the evaluation of this work (see the follow-
ing section), we deal with the NFPs of latency
and performance; both of them are measurable
NFPs. If one is interested in using the Feedback
Approach for NFPs like reliability or security, a
way to quantify these properties must be found.
For example, for security one could take a set of
different testing attacks and assign the number of
failed and succeeded tests to the variant of inter-
est. Regarding reliability, stress testing could be
employed, and the time required for the crash (or
success after a timeout) can be assigned to the
variants under test.

CiAo STudieS: The eFFeCT oF
ConFiguRABLe APs on nFPs

As outlined in the approach description, CiAO
aims at making the system’s NFPs configurable
by indirectly keeping fundamental architectural
properties configurable. In the domain of embed-
ded operating systems, this includes the following
concerns, amongst others.

• Interrupt synchronization: If control
flows can be executed asynchronously and
they can access critical kernel state, the
consistency of that state has to be ensured
by some synchronization mechanism.
There are several ways to ensure synchro-
nization, all of them bearing distinct ad-
vantages and disadvantages.

• Component isolation: In simple embed-
ded systems, application components can
influence each other; for instance, by ac-
cessing each other’s memory areas. To in-
crease robustness, isolation means can be
deployed, including constructive isolation
by using type-safe programming languages
or memory protection using hardware sup-
port like memory protection units (MPUs).
Other isolation techniques refer to tempo-
ral isolation so that applications in real-

94

Configuration of Non-Functional Properties in Embedded Operating Systems

time systems will not miss their deadlines
because of other (potentially misbehaving)
applications.

• Kernel interaction: The way components
inside the kernel interact with each other
has a significant impact on the perceived
robustness and performance. Historically,
suggested approaches range from mono-
lith-like systems to microkernel systems
(Liedtke, 1995).

Interestingly, the focus on configurability of
those architectural concerns is increasing in the
recent time. Proof for that is the specification of
AUTOSAR OS (AUTOSAR, 2006a, AUTOSAR,
2006b), which aims to standardize the system
software present on automotive microcontrollers.
This specification includes several so-called scal-
ability classes, which provide distinct isolation
properties like memory protection and timing
protection. Hence, those architectural properties
are already prescribed to be implemented in a
configurable way in this standard.

We have implemented two configurable
architectural properties in CiAO—interrupt syn-
chronization and memory protection—, which
are presented in the following, together with
an evaluation of their impact on different non-
functional properties.

CASe STudy 1: inTeRRuPT
SynChRonizATion

Short domain Analysis

Our first case study is based on the configurable
architectural property of interrupt synchroniza-
tion; that is, on how to keep the kernel state
synchronous when possibly being accessed
from within asynchronous events (e.g., interrupt
handlers). After having analyzed the domain of
operating systems, we found that there are three

basic models to achieve interrupt synchroniza-
tion, all of which are implemented (and therefore
configurable) in CiAO.

1. Hard synchronization: This model lowers
every critical section accessing kernel state to
interrupt level, implemented by enabling and
disabling interrupts or by setting the interrupt
level accordingly. Hard synchronization has
a very low performance overhead, but risks
higher event-handling latency, depending
on the length of the critical sections. This
model is widely deployed in relatively simple
embedded operating systems.

2. Two-phase synchronization: This model
divides each interrupt handler into two dif-
ferent parts, named prologue and epilogue in
CiAO. Prologues can be executed in a timely
fashion with low latency, but they are not
allowed to access critical kernel state. This
is done in the corresponding epilogue, which
can be delayed by the kernel when accessing
critical state. Epilogues have priority over
user threads, however, and user threads are
only executed when no epilogues are pend-
ing. Two-phase synchronization is used in
many desktop operating systems like Linux
or Windows, but also in embedded OSes
like OSEK OS (OSEK/VDX Group, 2005)
or AUTOSAR OS (AUTOSAR, 2006b).

3. Continuation synchronization: This model
enhances epilogues to full continuations (the
thread abstractions in CiAO) with a context
of their own. This way, user threads can be
activated while interrupt handlers are wait-
ing for a shared resource. This facilitates
fine-grained locking of kernel components
(having a positive impact on the perceived
latency), but bears the highest performance
and memory overhead of the three models.
The Solaris OS uses a similar model to syn-
chronize its kernel (Kleiman and Eykholt,
1995).

95

Configuration of Non-Functional Properties in Embedded Operating Systems

CiAo design

We designed a generic driver model that leaves the
driver developer unaware of the finally deployed
interrupt synchronization method, which is not de-
termined until the system configuration time. This
way, the driver obeys common handler interfaces,
and is adapted by aspects to fit the configured
synchronization model. This configurability is
designed and implemented with full separation
of concerns, enabled by considering aspects as
a design means from the beginning of the CiAO
engineering process (aspect awareness). The de-
sign achieves a complete separation of concerns,
separating the three dimensions of what, where,
and how to apply interrupt synchronization.

For details concerning the aspect-aware design
of configurable interrupt synchronization in CiAO
and how the driver and OS components are inte-
grated, please refer to (Lohmann et al., 2007b).

influence on non-
Functional Properties

After having implemented the architectural
property of interrupt synchronization to be con-
figurable in CiAO, we investigated the impact of
this variability dimension on the non-functional
property of latency. Here, latency is understood
as the elapsed time between the beginning of the
hardware interrupt handler and interrupt termina-
tion (iret instruction). We also measured the time
from the beginning of the handler until the first
prologue instruction, and until the first epilogue
instruction, respectively. The results are depicted
in Table 1. We have tested only the features that
can have its implementation code accessed (func-
tion call, data structure changes, etc.) from the
block of code defined by the boundaries of our
time measurement routines; in this case, those
features are the different interrupt synchroniza-
tion variants. This is the metric that represents the
feature interaction for this NFP in order reduce

the size of the test space (see also the previous
section about the feedback approach).

One can clearly see that the chosen IRQ syn-
chronization method has a significant impact on
the latency of interrupt handlers in the system.
This refers both to the time until completion and
to the time until the first part (prologue) and the
second part (epilogue) of the interrupt handler are
executed. However, by choosing the continuation
synchronization model, for example, it is possible
to reach more fine-grained synchronization do-
mains inside the kernel, leading to less contention
and, therefore, to better performance in certain
situations. Likewise, choosing two-phase syn-
chronization over hard synchronization leads to
lower interrupt locking times, which makes it less
likely to lose interrupt signals, depending on the
microcontroller architecture.

Hence, the architectural property of IRQ
synchronization is transparent to the application
developer functionally, but it has a significant
impact on the emerging non-functional properties
of the resulting system, latency being among them.

Case Study 2: Memory Protection

Short Domain Analysis

The second study we performed is concerned
with an architectural property that is prescribed

Table 1. Measurements of the non-functional prop-
erty of latency for several configurable interrupt
synchronization methods in CiAO. Measurements
were performed on a TriCore TC1796b running
at 50 MHz with a hardware trace analyzer (Laut-
erbach). The results were measured (and turned
out to be stable) over 10 iterations.

ns tprologue tepilogue tiret

Hard Sync. 160 160 320

Two-Phase Sync. 160 800 1200

Continuation Sync. 320 1200 2160

96

Configuration of Non-Functional Properties in Embedded Operating Systems

by the AUTOSAR embedded software standard:
memory protection. This means of spatial isola-
tion between applications is supposed to increase
robustness by limiting the memory access of ap-
plication components to legal ranges, disallowing
access to the memory areas of other applications
or the underlying system software. Depending on
the chosen AUTOSAR scalability class, memory
protection is to be provided by the operating
system or not.

On the hardware side, memory protection is
enforced by an MPU (memory protection unit),
which bears reprogrammable range registers
specifying the access rights to distinct memory
areas. An MPU is a simplified variant of a full-
featured memory management unit (MMU) known
from PC systems, which can additionally perform
paging. The MPU is only reprogrammable in the
supervisor mode of the CPU so that only the OS
and not the applications are able to alter memory
protection properties.

During the domain analysis step, we found the
following protection models to be suitable to be
designed and implemented in CiAO.

1. No protection: This trivial variant does not
feature any protection mechanism at all.
However, there is no performance overhead
either.

2. Kernel protection: This version separates
the kernel from all applications by providing
two separate protection domains.

3. Application protection: This model addi-
tionally separates the applications from each
other, comprising n protection domains for
n deployed applications, plus one domain
for the kernel. This means that invocations
of functions that are exported by another
application involve some overhead for ad-
justing the access privileges.

4. Task protection: This most fine-grained
model even protects task-local data like
the task stack from the modification by

other tasks or interrupt handlers in the same
application.

CiAO Design

As with the configurable property of interrupt
synchronization, the application developer is
oblivious of the finally deployed memory pro-
tection method (if any) as chosen by the system
configurator. Depending on the applied protection
model, different points in the control flow in the
CiAO system must be affected by an appropriate
reprogramming of the MPU. Since CiAO’s de-
sign is aspect-aware, those points are exposed as
join points in the AOP sense, being advisable by
configurably deployed aspects. This way, generic
pointcuts representing the critical points like inter-
application function calls, application—kernel
transitions, interrupt handler invocations, or task
dispatches can be supplied. An example control
flow in a CiAO system is depicted in Figure 5.

The aspects implementing the protection
method to be enforced are then implemented by
advising the exposed join points in the form of
the supplied pointcut expressions. The kernel
protection aspect, for instance, reprograms the
MPU to allow access to kernel state whenever
entering the kernel and disallowing it upon exit
from the kernel, including the first-time dispatch
of tasks. Application protection, however, addi-
tionally needs to reprogram the MPU upon inter-
application calls and upon inter-application task
dispatches.

The CiAO reference hardware platform—the
Infineon TriCore TC1796b—allowed us to provide
an additional configuration variant called the semi-
trusted mode. This variant exploits the peculiarity
that on the TriCore platform memory protection
is not implicitly disabled in supervisor mode.
This allows applications to be run in supervisor
mode with memory protection enforced without
the need for kernel traps. An offline analysis can
ensure that the applications do not reprogram the

97

Configuration of Non-Functional Properties in Embedded Operating Systems

MPU in their code, thereby ensuring the safety
of the system.

For a more detailed explanation of CiAO’s
memory protection design and the way applica-
tions interface with the OS components, and for
implementation details of the generic pointcuts
and the configurable aspects in AspectC++, please
refer to (Lohmann et al., 2007a).

Influence on Non-Functional Properties

We evaluated the influence of the different memory
protection models on the number of clock cycles
needed for the execution of several characteristic
functions; that is, the non-functional property of

performance. All of those investigated functions
either cross an inter-application boundary or the
one between the kernel and an application (see
Figure 5). The results are listed in Table 2 and
shortly discussed here. The metric used to define
feature interaction, and the corresponding test
space, is analogous to the one presented in the
previous section; that is, we tested the features
that have its code accessed from the blocks of
code that were measured. These features were the
different kinds of memory protection in this case.

• Since GetTaskID() is a non-modifying ker-
nel function, the memory protection do-
main is not switched in any of the protec-

Table 2. Measurements of the non-functional property of performance of selected representative function
calls for several configurable memory protection variants in CiAO.

ns GetTaskID() ActivateTask() dispatch() Service()

No Protection 3 24 88 0

Semi-Trusted Mode 3 43 148 89

Full Protection 3 86 148 174

Figure 5. Control flows and memory protection domains in an example CiAO system

98

Configuration of Non-Functional Properties in Embedded Operating Systems

tion models. Hence, the clock cycles
remain constant.

• The ActivateTask() system call, however,
modifies kernel structures. No memory
protection does not involve any overhead,
whereas the semi-trusted variant needs
43–24=19 extra clock cycles to reprogram
the MPU to allow write access to kernel
space and disallow it after the call. A full
trap with switch to supervisor mode and
back to user mode costs 86–24=62 addi-
tional cycles.

• The kernel-internal dispatch() function
switches the protection domain from one
application to another in both protected
modes, leading to a cost of 148–88=60 cy-
cles. Since this function is invoked inside
the kernel, there is no difference between
the semi-trusted and the standard protected
mode.

• An inter-application call like Service()
does not cost anything without protection;
the call can even be inlined. In the semi-
trusted mode and the application protection
configuration, the MPU is reprogrammed
to the new application domain and back af-
ter the call, which is worth 89 cycles. The
version that requires a full trap costs 174
cycles in total.

The architectural property of memory pro-
tection has a big influence on the performance
of a system, as can be seen in the configurable
implementation of the property in CiAO. The
decision in favor of one of the protection methods
and variants to be deployed is effectively a trade-
off between the two non-functional properties of
safety and performance.

ReLATed WoRk

As this work aims at tackling non-functional
properties in all stages of development, there is

a broad range of related work, which is discussed
in the following.

non-Functional Properties and
Software Product Lines

Siegmund et al. propose the use of a semi-
automated derivation (SAD) to assist develop-
ers in selecting product features in SPLs with a
large number of features (Siegmund et al., 2008,
Rosenmüller et al., 2008). The basic idea is to hide
variation points that are irrelevant due to non-
functional requirements that should be met. They
claim that traditional approaches do not consider
non-functional properties or alternatives for a fea-
ture implementation. To solve this problem, they
present an integrated software product line model
(ISPLM), which integrates code units and their
non-functional properties into the feature model.

(Benavides et al., 2005) propose an extension
to feature models (as proposed by Czarnecki and
Eisenecker, 2000) to accommodate information
about extra-functional features (NFPs, in our
view). In this approach, attributes like price or
development time can be assigned to features. The
features and their attributes are transformed to a
constraint satisfaction problem (CSP) so that an
automated reasoning can be applied to it. Hence,
optimal products can be generated according to a
determined criterion (an extra-functional feature).

These methods take advantage of information
about NFPs to improve product configuration.
However, we think that both are more related to
the field of variability management (Loesch and
Ploedereder, 2007, Schirmeier and Spinczyk,
2007). They ease the configuration process in
large SPLs but do not offer the ability to explicitly
configure NFPs or to inform the user about the
real influence of a feature on the required NFP.

(Etxeberria and Sagardui, 2008) present an
approach for the quality evaluation of software
product lines. In this approach, an extended feature
model is used to identify the variability that has
an impact on quality in order to reduce evaluation

99

Configuration of Non-Functional Properties in Embedded Operating Systems

efforts. This technique is comparable to our idea
of partial configuration. However, in contrast to
our work, they state that the design stage is a good
point to assure that the quality attributes are met.

TooL SuPPoRT

pure::variants (Beuche, 2003) is a tool that sup-
ports variant management of SPLs. It is indepen-
dent of programming languages and it enables
the definition of the problem domain by means
of feature models, and the solution domain by
family models. It also automates the process of
product generation. Regarding the configuration
of NFPs, the current version is able to assign bugs
(from a bug-tracking system) to specific features.
Therefore, during product configuration, the ap-
plication engineer is informed about the known
bugs that will be present in the final product.

Gears (Krueger, 2007b) is a tool and framework
that enables the development and evolution of
SPLs; it applies the three-tiered SPL methodology
(Krueger, 2007a). In Gears, SPLs are comprised
of three elements, software assets (source code,
documentation, etc.), product feature profiles (to
model each product in the portfolio), and the Gears
configurator, which automatically assembles
products based on their specifications.

FeaturePlugin (Antkiewicz and Czarnecki,
2004) is an open-source Eclipse plugin for design-
ing and configuring feature models. It supports the
concepts of staged configuration (Czarnecki et al.,
2005b) and feature cardinalities (Czarnecki et al.,
2005a). The tool focuses on providing advanced
techniques of feature modeling and not on sup-
porting the whole process of SPL development.

FAMA (FeAture Model Analyser) (Benavides
et al., 2007) is an extensible framework for the
automated analysis of feature models. It is able to
denote feature models in several logic representa-
tions; therefore, different solvers can be used in the
analysis process. Currently, it supports CSP, SAT
(boolean satisfiability problem), and BDD (binary

decision diagrams), but it is flexible enough to
have other solvers added to it. Cardinality-based
feature models are allowed and the following
operations are supported: finding out if a feature
model is valid (there exists a valid selection that
satisfies all constraints), finding the total number
of valid products, listing all valid configurations,
and calculating the commonality of features (the
number of valid products they appear in).

There are commercial, free, and open-source
alternatives for the design of feature models.
However, only pure::variants is able to provide
non-functional information during product con-
figuration; at the moment only at a very basic
level, though.

ReASoning in FeATuRe ModeLS

Important to our work is also the process of
reasoning in feature models. A seminal work by
Benavides et al., (2006) presents the mapping
from feature model components (e.g., optional
features, mandatory features, and group features)
to diverse logical representations, namely SAT,
BDD, and CSP. Transforming feature models in
these representations enables the use of off-the-
shelf solvers that can perform several analyses
that are relevant for feature models (e.g., validity,
number of solutions, etc.).

The relation of feature models and grammars
has also been studied (Batory, 2005). Batory,
also motivated by the ability to use off-the-shelf
satisfiability solvers, presented the mapping from
feature models first to iterative tree grammars,
and then to propositional formulas. However, his
main goal was to simplify the laborious task of
debugging feature models.

Recently, the relation of feature models and
logic representation has been further explored.
(Czarnecki and Wasowski, 2007) propose a
method for the inverse transformation from propo-
sitional formulas to a feature model representation.
(Janota and Kiniry, 2007) study the representation

100

Configuration of Non-Functional Properties in Embedded Operating Systems

of feature models in higher-order logic. A formal-
ized meta-model is presented; however, no tool
support is provided.

Aspect-oriented Programming
and operating Systems

There is some work describing the synthesis of
operating system kernels and aspect-oriented
programming already published; none of the
projects target the configurability of architectural
properties and, indirectly, of non-functional prop-
erties, however.

PURE is an operating-system family that
aims to support even deeply embedded systems
(Beuche et al., 1999). Its abstractions are designed
in minimal extensions, providing for fine-grained
configuration possibilities. However, it was origi-
nally designed in an object-oriented way, oblivious
to AOP. Only after exploring the ability of AOP to
modularize the cross-cutting concerns present in a
PURE system, aspects were considered (Spinczyk
and Lohmann, 2004), and only implemented for
selected concerns like interrupt synchronization
(Mahrenholz et al., 2002). Therefore, PURE
was not designed to be aspect-aware from the
beginning as is CiAO, and PURE does not have
the (indirect) configurability of non-functional
properties as an explicit goal.

The TOSKANA toolkit (Engel and Freisleben,
2005, 2006) enables the deployment of aspects
into an OS kernel. The prototype is demonstrated
using the NetBSD kernel; in general, the targeted
OS domain is the PC domain and not embedded
systems, where the consideration of non-functional
properties is especially important (see also the
motivation section). Furthermore, the toolkit in-
struments the kernel in order to be able to weave
and unweave aspects dynamically at run time. The
induced run-time and memory overhead is not
tolerable in embedded computing; in this domain,
static configuration and tailored implementations
with distinct non-functional properties are needed.

Several studies were conducted on how to ap-
ply AOP ex post to existing kernels. Particularly,
Coady et al. showed how to modularize pre-
fetching in the FreeBSD operating system kernel
(Coady et al., 2001), and sketched the design of an
aspect-oriented page daemon and quota manager
(Coady and Kiczales, 2003). However, the aspect
weaver proposed for this task, AspectC, does not
have a functioning implementation; the examples
were hand-woven and therefore do not provide
a real cost evaluation in terms of non-functional
properties like performance or latency.

ConCLuSion

Non-functional properties are inherently complex
to be dealt with, but nevertheless mission-critical
in many systems. The main challenge in handling
NFPs is that most of them are untraceable; that
is, there is no line of code or implementation
module that an NFP can be solely attributed to.
Furthermore, NFPs are highly domain-specific
in their nature.

Therefore, NFPs have traditionally often been
assessed by the system architects, who have the
expertise and experience to do that. When using
a product-line approach, though, the requirements
on the products are often very different between
the desired variants, and the system configurator
does not have that kind of knowledge about the
product line that is to be configured.

That is why, in our opinion, NFPs have to be
dealt with in a holistic way, approaching them
on multiple levels both in domain engineering
and application engineering, from analysis to
implementation. Furthermore, the configurator has
to be assisted in making his decisions regarding
the NFPs of the final product by semi-automated
means. The CiAO development process with its
feedback approach, which was presented in this
chapter, is a big step into that direction.

101

Configuration of Non-Functional Properties in Embedded Operating Systems

ACknoWLedgMenT

We would like to thank Christoph Elsner for giving
valuable comments on a draft of this text.

This work was partly supported by the German
Research Council (DFG) under grants no. SCHR
603/4 and SCHR 603/7.

ReFeRenCeS

Antkiewicz, M., & Czarnecki, K. (2004). Fea-
turePlugin: Feature modeling plug-in for Eclipse.
In Proceedings of the 2004 OOPSLA workshop
on Eclipse technology eXchange (Eclipse ’04 at
OOPSLA ’04), (pp. 67–72). Vancouver, Canada.

AUTOSAR. (2006a). Requirements on operating
system (version 2.0.1). Technical report. Automo-
tive Open System Architecture GbR.

AUTOSAR. (2006b). Specification of operating
system (version 2.0.1). Technical report. Automo-
tive Open System Architecture GbR.

Bass, L. (2006). Principles for designing software
architecture to achieve quality attribute require-
ments. In SERA ’06: Proceedings of the Fourth
International Conference on Software Engineering
Research, Management and Applications, (p. 2),
Washington, DC, USA. IEEE Computer Society.

Batory, D. S. (2005). Feature models, grammars,
and propositional formulas. In Proceedings of the
9th Software Product Line Conference (SPLC
’05), (pp. 7–20).

Benavides, D., Ruiz-Cortés, A., & Trinidad, P.
(2005). Automated reasoning on feature models.
Proceedings of Advanced Information Systems
Engineering: 17th International Conference,
CAiSE 2005, (LNCS 3520), (491–503).

Benavides, D., Segura, S., Trinidad, P., & Ruiz-
Cortés, A. (2006). A first step towards a framework
for the automated analysis of feature models. In
Managing Variability for Software Product Lines.
Working With Variability Mechanisms.

Benavides, D., Segura, S., Trinidad, P., & Ruiz-
Cortés, A. (2007). FAMA: Tooling a framework
for the automated analysis of feature models. In
Proceeding of the First International Workshop
on Variability Modeling of Software-Intensive
Systems (VAMOS).

Beuche, D. (2003). Variant management with pure
variants. Technical report, pure-systems GmbH.
http://www.pure-systems.com/.

Beuche, D., Guerrouat, A., Papajewski, H.,
Schröder-Preikschat, W., Spinczyk, O., & Spinc-
zyk, U. (1999). On the development of object-
oriented operating systems for deeply embedded
systems-the PURE project. In Object-Oriented
Technology: ECOOP ’99 Workshop Reader,
Lisbon, Portugal. (LNCS 1743), (pp. 27–31).
Springer-Verlag.

BuDDy Developers. (2009). BuDDy project. Re-
trieved from http://sourceforge.net/projects/buddy

Coady, Y., & Kiczales, G. (2003). Back to the
future: A retroactive study of aspect evolution in
operating system code. In M. Akşit (Ed.), Pro-
ceedings of the 2nd International Conference on
Aspect-Oriented Software Development (AOSD
’03), (pp. 50–59). Boston:ACM Press.

Coady, Y., Kiczales, G., Feeley, M., & Smolyn,
G. (2001). Using AspectC to improve the modu-
larity of path-specific customization in operating
system code. In Proceedings of the 3rd Joint
European Software Engineering Conference and
ACM Symposium on the Foundations of Software
Engineering (ESEC/FSE ’01).

Cysneiros, L. M., & do Prado Leite, J. C. S. (2004).
Nonfunctional requirements: From elicitation to
conceptual models. IEEE Transactions on Soft-
ware Engineering, 30(5), 328–350. doi:10.1109/
TSE.2004.10

Czarnecki, K., & Eisenecker, U. W. (2000).
Generative programming. Methods, tools and
applications. Addison-Wesley.

102

Configuration of Non-Functional Properties in Embedded Operating Systems

Czarnecki, K., Helsen, S., & Eisenecker, U. W.
(2005a). Formalizing cardinality-based feature
models and their specialization. Software Pro-
cess Improvement and Practice, 10(1), 7–29.
doi:10.1002/spip.213

Czarnecki, K., Helsen, S., & Eisenecker, U. W.
(2005b). Staged configuration through specializa-
tion and multilevel configuration of feature mod-
els. Software Process Improvement and Practice,
10(2), 143–169. doi:10.1002/spip.225

Czarnecki, K., & Wasowski, A. (2007). Feature
diagrams and logics: There and back again. In
Proceedings of the 11th Software Product Line
Conference (SPLC ’07), (pp. 23–34).

Engel, M., & Freisleben, B. (2005). Supporting
autonomic computing functionality via dynamic
operating system kernel aspects. In P. Tarr (Ed.),
Proceedings of the 4th International Conference
on Aspect-Oriented Software Development (AOSD
’05), (pp. 51–62). Chicago: ACM Press.

Engel, M., & Freisleben, B. (2006). TOSKANA:
A toolkit for operating system kernel aspects. In
Rashid, A., & Aksit, M. (Eds.), Transactions on
AOSD II, (LNCS 4242) (pp. 182–226). Springer-
Verlag.

Etxeberria, L., & Sagardui, G. (2008). Variability
driven quality evaluation in software product
lines. Proceedings of the Software Product Line
Conference, 2008. SPLC ’08. 12th International,
(pp 243–252).

Gilani, W., Sincero, J., & Spinczyk, O. (2007).
Aspectizing a Web server for adaptation. In
Proceedings of the Twelfth IEEE Symposium
on Computers and Communications (ISCC’07),
Aveiro, Portugal. IEEE Computer Society Press.

Janota, M., & Kiniry, J. (2007). Reasoning about
feature models in higher-order logic. In Proceed-
ings of the 11th Software Product Line Conference
(SPLC ’07), (pp. 13–22).

Kleiman, S., & Eykholt, J. (1995). Interrupts as
threads. ACM SIGOPS Operating Systems Review,
29(2), 21–26. doi:10.1145/202213.202217

Krueger, C. W. (2007a). The 3-tiered methodol-
ogy: Pragmatic insights from new generation
software product lines. In Proceedings of the 11th
Software Product Line Conference (SPLC ’07),
(pp. 97–106).

Krueger, C. W. (2007b). BigLever software gears
and the 3-tiered SPL methodology. In OOPSLA
’07: Companion to the 22nd ACM SIGPLAN con-
ference on object-oriented programming systems
and applications, (pp. 844–845). New York: ACM.

Lauer, H. C., & Needham, R. M. (1979). On
the duality of operating system structures. ACM
SIGOPS Operating Systems Review, 13(2), 3–19.
doi:10.1145/850657.850658

Liedtke, J. (1995). On μ-kernel construction. In
Proceedings of the 15th ACM Symposium on
Operating Systems Principles (SOSP ’95), ACM
SIGOPS Operating Systems Review. ACM Press.

Loesch, F., & Ploedereder, E. (2007). Optimiza-
tion of variability in software product lines. In
Proceedings of the 11th Software Product Line
Conference (SPLC ’07), (pp. 151–162).

Lohmann, D., Spinczyk, O., & Schröder-
Preikschat, W. (2005). On the configuration of
non-functional properties in operating system
product lines. In Proceedings of the 4th AOSD
Workshop on Aspects, Components, and Patterns
for Infrastructure Software (AOSD-ACP4IS ’05),
(pp 19–25). Chicago, IL, USA. Northeastern
University, Boston (NU-CCIS-05-03).

Lohmann, D., Streicher, J., Hofer, W., Spinc-
zyk, O., & Schröder-Preikschat, W. (2007a).
Configurable memory protection by aspects. In
Proceedings of the 4th Workshop on Programming
Languages and Operating Systems (PLOS ’07),
(pp. 1–5). New York: ACM Press.

103

Configuration of Non-Functional Properties in Embedded Operating Systems

Lohmann, D., Streicher, J., Spinczyk, O., &
Schröder-Preikschat, W. (2007b). Interrupt
synchronization in the CiAO operating system.
In Proceedings of the 6th AOSD Workshop on
Aspects, Components, and Patterns for Infra-
structure Software (AOSD-ACP4IS ’07), New
York: ACM Press.

Mahrenholz, D., Spinczyk, O., Gal, A., &
Schröder-Preikschat, W. (2002). An aspect-orient-
ed implementation of interrupt synchronization in
the PURE operating system family. In Proceedings
of the 5th ECOOP Workshop on Object Orienta-
tion and Operating Systems (ECOOP-OOOS ’02),
(pp. 49–54). Malaga, Spain.

OSEK/VDX Group. (2005). Operating system
specification 2.2.3. OSEK/VDX Group. Retrieved
from http://www.osek-vdx.org/

Rosenmüller, M., Siegmund, N., Schirmeier,
H., Sincero, J., Apel, S., Leich, T., et al. (2008).
FAME-DBMS: Tailor-made data management
solutions for embedded systems. In Proceedings
of the Workshop on Software Engineering for
Tailor-Made Data Management (SETMDM).

Schirmeier, H., & Spinczyk, O. (2007). Tailoring
infrastructure software product lines by static
application analysis. In Proceedings of the 11th
Software Product Line Conference (SPLC ’07),
(pp. 255–260). IEEE Computer Society Press.

Siegmund, N., Kuhlemann, M., Rosenmüller,
M., Kästner, C., & Saake, G. (2008). Integrated
product line model for semi-automated product
derivation using non-functional properties. In
Proceedings of the International Workshop on
Variability Modelling of Software-Intensive Sys-
tems (VAMOS), (pp. 25–23).

Spinczyk, O., & Lohmann, D. (2004). Using AOP
to develop architecture-neutral operating system
components. In Proceedings of the 11th ACM
SIGOPS European Workshop, (pp.188–192). New
York: ACM Press.

Spinczyk, O., & Lohmann, D. (2007). The design
and implementation of AspectC++. Knowledge-
Based Systems. Special Issue on Techniques
to Produce Intelligent Secure Software, 20(7),
636–651.

