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MoTivATion

In the domain of system software, non-functional 
properties (NFPs) are of fundamental importance 
to the end user. This is because system software 
never has a purpose and business value of its 
own, but it is rather a means to aid the applica-
tion making use of it in fulfilling its (business-
value-bringing) purpose. Hence, performance, for 
example, is an important non-functional criterion 
to select a suitable operating system (OS) to 
deploy an application on. In the sub domain of 
embedded operating systems, NFPs can even be 
mission-critical since some embedded systems 
applications depend on the fault tolerance or a 
given upper bound on the latency of the underlying 
embedded OS. Since the desired NFPs of a piece 
of system software are different from application 
scenario to application scenario (and sometimes 
reflect a trade-off decision), it is the task of the 
OS engineer to keep the NFPs configurable.

In our experience, though, the consideration of 
NFPs in system software causes problems because 
NFPs can never be made directly configurable. 
That is because most NFPs are emergent in their 
nature; that is, they have no direct representation 
in the system’s implementation entities. Instead, 
they result from the orchestration of the properties 
available in the selected configuration. Hence, 
NFPs can only be made configurable via indirect 
configuration of other properties.

However, the set of functional properties to be 
selected is fixed, dependent on the application. 
Other properties, which we call architectural 
properties (APs), are transparent to the application, 
though, but they still have an enormous effect on 
the NFPs of the resulting end system. Examples 
of such APs of OSes include the chosen method 
of interrupt synchronization in the kernel, the 
available protection facilities (including memory 
protection, for instance), or the type of interac-
tion between kernel modules. The latter has been 
under heavy discussion for decades now, arguing 
in favor of procedural interaction in monolithic 

systems versus message passing techniques in 
microkernels (Lauer and Needham, 1979, Liedtke, 
1995). The early decision to adopt one of those 
alternatives has a significant impact on the NFPs 
of performance, latency, and memory footprint, 
among others.

The CiAO family of embedded OSes devel-
oped by our research group was designed with 
architectural configurability in mind; that is, 
even fundamental architectural properties are 
kept configurable in CiAO’s design. Hence, the 
decision in favor of one or the other shape of an 
AP is postponed until the configuration stage and 
therefore left to the system configurator. He can 
then choose the one configuration option that has 
the best desired impact on the NFPs of the target 
system, effectively tailoring the OS (and its archi-
tecture) to the needs of the application scenario.

However, if the variability in a software 
product line exceeds a certain threshold (e.g., by 
offering architectural variability like in CiAO), 
the number of transparent configuration options 
left open to the configurator quickly becomes 
overwhelming. We therefore also propose a new 
kind of development process with a feedback ap-
proach, which gathers additional knowledge by 
analyzing product variants regarding their NFPs. 
It is thereby possible to assist the configurator in 
making his configuration decisions when aiming 
at optimizing a specific NFP.

The domain of embedded system software is 
one that has been concerned with non-functional 
properties for a long time being. Embedded sys-
tems engineers have gathered a lot of knowledge 
on how to deal with those properties, knowledge 
that the domain of service-oriented architecture 
can benefit from.

Structure of the Rest of the Chapter

The remainder of this chapter is structured in 
a top-down manner. First we give background 
information and definitions necessary for the 
understanding of the text. Then, an overview 
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of our CiAO approach and, after that, its details 
are presented. The following section details the 
evaluation studies regarding the influence of APs 
on NFPs. We then present work that is related to 
our approach, and the chapter is concluded in the 
last section.

BACkgRound

our understanding of non-
Functional Properties

To define what exactly non-functional properties 
(NFPs) are is a delicate task. There is no standard 
definition in the software engineering community 
available, and different groups inside the com-
munity have contradicting definitions. Moreover, 
even the nomenclature used is not uniform; for 
example, in different contexts the same kinds of 
software properties are termed NFPs, quality at-
tributes (Bass, 2006), or soft goals (Cysneiros and 
do Prado Leite, 2004), among others. Amongst 
a myriad of examples of such properties, they 
include security, reliability, safety, performance, 
maintainability, usability, and code size, to just 
name a few.

Moreover, many of these terms are broad and 
generic; different stakeholders may have a vary-
ing understanding (and, therefore, expectations) 
of such properties. We believe that when dealing 
with such properties, it is necessary to define 
what is considered to be an NFP in that specific 
context. For this reason, we narrow NFPs down 
with the following definition.

Non-functional properties of a software sys-
tem are those properties that do not describe the 
principal task or functionality of the software, 
but can be observed by end users in its run-time 
behavior (Lohmann et al., 2005).

This definition gives good insights into the 
type of properties that we see as NFPs. It is very 
well applicable to our domain of families of op-
erating systems; however, it can also be applied 

to a number of other domains, especially those of 
infrastructure software (e.g., middleware, database 
systems, etc.).

The goal of our work is to show how we ad-
dress the configuration of properties that fall under 
these definitions. Approaching such properties 
is a challenging task mainly due to two reasons. 
On one hand, a primary goal is to improve the 
understanding of NFPs already at the stage of 
software configuration. In a perfect scenario, this 
would be to provide the system configurator with 
means to express the non-functional requirements 
on the product. On the other hand, after having 
developed several families of operating systems, 
we have learned that many NFPs are emergent. 
That means that they are the result of the interaction 
of many components, which effectively hinders 
the possibility of direct configuration of such 
properties. Therefore, our techniques presented in 
this chapter aim at closing this gap. The complex 
interactions that will influence the system’s NFPs 
cannot be appropriately predicted at design stage, 
which makes attempts of preparing configuration 
mechanisms during design not very reliable. As 
a result, we have decided to extend our approach 
to tackle NFPs not only during the design stage, 
but also in other development stages, and even 
post implementation. The idea is to learn from 
configured and running systems, and to gather 
information how the system’s components are 
interacting, and how this interaction influences the 
investigated NFPs. Subsequently, this information 
should be used to improve the configuration of 
future systems.

The Classical and the SPL Software 
development Processes

In order to be able to address NFPs in a thorough 
and holistic way, we have developed an own soft-
ware development process, the CiAO development 
process, which is detailed in the main section of 
this chapter. It is based on the classical software 
development process and the process proposed for 
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software product lines, both of which are briefly 
introduced here.

Figure 1 shows the main stages of the traditional 
software development process. The customer ex-
presses his requirements on the desired product in 
an appropriate way; those requirements are then 
analyzed by the software engineer, enabling him to 
develop a software architecture. This design is then 
implemented using the languages and platforms 
that are appropriate for the target environment. If 
another customer asks for a similar, but different 
product, these stages are basically repeated, and 
the new product is developed from scratch.

This problem is tackled by the canonical soft-
ware product-line (SPL) development process 
(see Figure 2). Here, not a single product is con-
sidered, but a whole family of products targeting 
a specific domain.

In the domain engineering process (upper half 
in Figure 2), the product line itself is developed, 
while in application engineering, a specific prod-
uct is built from the outcome of the domain en-
gineering without much effort. First, domain 
experts having comprehensive domain knowledge 
scope the domain and specify the desired vari-
ability and configuration options (domain analy-

sis). This variability is often expressed in a feature 
model containing a feature diagram representing 
the configuration space. After this, a reference 
architecture is built during the domain design step, 
followed by the domain implementation. The 
assets that constitute the product-line implemen-
tation are stored and described by a family 
model.

In application engineering (lower half in Figure 
2), the customer’s demands on the product are first 
investigated in a requirements analysis step, which 
results in a feature selection in the feature model 
previously developed in the domain engineering 
process. This feature selection can then be used 
to automatically derive a final product variant 
using the family model and the product-line as-
sets. Hence, those assets are then re-usable across 
multiple products in the product line, enabling an 
advance in important factors like time to market 
and product quality, for instance.

The CiAo APPRoACh

CiAO (CiAO is Aspect-Oriented) is a family of 
OSes targeting the embedded systems domain, 

Figure 1. The classical software development process

Figure 2. The software development process as proposed by the software product-line community. 
(adapted from (Czarnecki and Eisenecker, 2000))
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especially those systems deployed on microcon-
trollers in the automotive industry. The main goal 
of the project is to show that even fundamental 
architectural properties of an OS can be kept 
configurable, thereby effectively enabling the in-
direct configuration of non-functional properties. 
This goal is reached by using techniques from the 
field of software product-line engineering in the 
analysis stage, and by developing aspect-aware 
design patterns in order to be able to deploy 
aspect-oriented artifacts in the implementation. 
This way, CiAO reaches a very good separation 
of concerns while providing very fine-grained 
and deep configuration possibilities at the same 
time. By selecting a specific combination of ar-
chitectural property configurations, it is possible 
to get an architecture that is optimized according 
to the non-functional requirements of a particu-
lar scenario. However, since those NFPs do not 
emerge until the production configuration stage, 
a specialized development process is needed to 
treat NFPs as “first-class citizens” in all develop-
ment stages.

overview of the CiAo Software 
development Process

We have adapted the canonical software product-
line development process (see also the previous 

section) to better address non-functional proper-
ties. The resulting CiAO software development 
process is depicted in Figure 3.

We enriched the steps in the layers of domain 
engineering and application engineering, which 
are described in the following two sub sections. 
Furthermore, we introduced additional steps in a 
feedback loop that has access to a database of 
non-functional properties of the product line. 
These additions are described in the remaining 
sub sections.

CiAo domain engineering

Domain engineering in the CiAO development 
process is similar to the steps proposed in soft-
ware product-line engineering. However, those 
steps now encompass the consideration of non-
functional properties from the very beginning. 
This is done by extending the domain knowledge 
by features that are transparent to the application 
developer—because it is mostly those features 
that have a significant indirect impact on the 
perceived non-functional properties of the target 
system. Thus, additional configuration options are 
considered in the domain analysis and offered in 
the feature diagram that would not be examined 
in the classical approach.

Figure 3. The CiAO software development process
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In the CiAO family of operating systems, most 
of those additional options refer to the configu-
rability of CiAO’s architecture. By keeping those 
architectural properties configurable in the domain 
design, the system configurator can still decide 
in favor of one flavor or the other, depending on 
the desired focus on the system’s non-functional 
properties. Two of those properties—interrupt syn-
chronization and memory protection—and their 
configurable influence on some non-functional 
properties is presented in the next section.

Another focus of the CiAO research project is 
to show that architectural configurability can still 
be maintainable in the implementation. In order 
to reach this goal and because many architectural 
properties are highly cross-cutting in the design 
and implementation, CiAO is implemented using 
aspect-oriented programming (AOP) techniques. 
In particular, the implementation language and 
aspect weaver AspectC++ (Spinczyk and Lohm-
ann, 2007) is used, which is a superset of the C++ 
programming language. With this programming 
paradigm, we showed that is possible to have 
maintainable, concern-separated system software 
code that has configurable architectural properties 
in its domain implementation (Lohmann et al., 
2007b, Lohmann et al., 2007a).

A small excerpt of the CiAO feature diagram, 
which resulted from the domain analysis step, is 
shown in Figure 4. It is referenced throughout the 
rest of the chapter to give examples of some of 
the steps performed in the development process.

CiAo Application engineering

Application engineering in the CiAO development 
cycle also differs from the one in SPL engineer-
ing. The system configurator, who translates the 
customer requests into selections in the feature 
model provided by the domain analysis step, will 
not be able to make all configuration decisions. 
That is because CiAO aims at providing options 
that are transparent to the application, like those 
configuration options pertaining to the system 
architecture. Hence, the output of the require-
ments analysis step can only be a preselection 
of features, and it is only a sample variant that is 
configured and generated first.

After that, our feedback approach comes into 
play. The generated sample variant is analyzed for 
its NFPs and checked against the NFP database, 
which results in an altered feature selection and 
therefore product variant. This iteration is repeated 
until the final product conforms to the desired 
non-functional requirements, or until the best 

Figure 4. An excerpt of the CiAO feature diagram. Features that are functionally transparent to the 
application are depicted in gray color.
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solution is reached within given time constraints. 
The exact procedure of the CiAO configuration 
process, the feedback approach, and its application 
is discussed in the following sections.

The CiAo Configuration Process

As CiAO is a software product line, a member of 
this family of systems (i.e., a concrete solution) 
is derived according to a given specification (i.e., 
the feature selection) that conforms to the formal 
feature model. This transformation process is 
driven by a family model, which plays a central 
role. It is responsible for mapping the selected 
features to concrete implementations units. That 
is, according to the set of selected features, the 
corresponding components (e.g., classes, aspects, 
etc.) are customized (e.g., by conditional com-
pilation, preprocessing, etc.) and then copied to 
another source-code tree, where it can be compiled 
to generate the required family member.

Feature models mostly correspond to a set of 
functional features (disclosed during domain en-
gineering) that can be turned on and off, whereas 
the set of valid configurations is determined by 
the feature tree hierarchy and its extra interdepen-
dencies. However, it is often the case that several 
features define the same interface for a specific 
service, but derive different implementations for 
the service provided by the interface. This means 
that, from the user’s perspective, the difference 
between the several features implementing the 
same service can only be distinguished by its 
effect on the system’s NFPs. In traditional ap-
proaches, during the software configuration the 
system configurator either has to have strong 
knowledge about the internals of the system, or 
he has to have assistance from the developers in 
order to decide among features that implement the 
same interface. The root of the problem here is the 
missing information about the effect of otherwise 
identical features on the system NFPs.

In order to address this issue, we augment the 
feature model with non-functional information, 

which can be obtained from two different sources. 
First, from the system designers, who made the 
architectural decisions and are aware of the pos-
sible impact of features on NFPs. (Architectural 
decisions are often a trade-off between two or 
more NFPs). Second, from tests performed on 
generated family members. Even though the 
information provided by the system designers 
may be, to some extent, helpful, we believe that 
performing tests is the appropriate approach. 
Information from tests is not only able to assist 
the configuration process, but also assures that 
the implementation conforms to the expected 
behavior that motivated the design decisions. In 
short, it is real data, and it helps software evalu-
ation and evolution, as it is able to reveal flaws 
in the design and the implementation.

The FeedBACk APPRoACh

As we have detailed in the previous sections, many 
NFPs cannot be appropriately predicted at design 
time and, hence, not be directly configured at 
configuration time. Therefore, we believe that in 
order to get useful information about the system’s 
NFPs, the use of tests on generated products is a 
promising alternative. The real behavior of many 
types of NFPs can not be detected until after the 
family member is configured and generated. That 
is, information regarding the interaction among 
the components that comprise the entire system 
can only be observed after the system is prepared 
to be deployed. For example, insights about the 
RAM footprint or code size can be gained from 
static tests performed after generation. Addition-
ally, information about latency or performance 
can be captured by performing dynamic tests on 
the running system variants.

The feedback approach extends the traditional 
SPL development techniques in order to provide 
information regarding NFPs during product 
configuration. We introduced new structures and 
mechanisms so that the SPL infrastructure can 
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be used to generate products that will be tested 
against the NFP that is to be investigated. This 
information is saved, organized, and re-inserted 
in the SPL process (see also Figure 3). It also 
enables the user to benefit from it in the configu-
ration of further products. This feedback process 
is organized in three layers:

1.  The SPL Repository comprises the software 
components that can be assembled together 
to generate products (see Figure 3, Domain 
Assets). Additionally, components that 
are used merely to capture non-functional 
information from generated products (like 
performance measurement aspects that in-
strument the product) are also available. We 
have shown that aspects are very adequate 
for this task (Gilani et al., 2007).

2.  The User Configuration is responsible 
for providing the mechanisms for product 
configuration. Besides the traditional con-
figuration process (selecting features from 
a feature model), we provide the user with 
non-functional information (see Figure 3, 
Product Configuration). As NFPs are very 
specific to each product, or even to each 
feature, this information can be displayed 
in different graphical ways, for example, 
sliders, graphs, charts, etc. Moreover, during 
configuration the user can select the afore-
mentioned components that are responsible 
for measuring some of the NFPs of the 
product.

3.  The Concrete Solution Domain encompasses 
the generated product, the compiling envi-
ronment, and the run-time environment used 
to generate and test the product (see Figure 
3, Product Variant).

The mechanisms described so far are appro-
priate for generating and testing single family 
members. That is, after the configuration pro-
cess, the system configurator is able to confirm 

if the generated product meets his expectations 
regarding NFPs. Nevertheless, this is not enough 
if we want to use this information to guide the 
configuration process, because we would need 
information about the entire family, and not only 
about single configurations.

To solve this problem, the naive approach 
would be to generate all possible family members; 
this is not a feasible solution, though. Normally, 
system families have several hundreds of features, 
and they can generate several thousands of dif-
ferent family members. Therefore, an exhaustive 
study of all members is not computationally pos-
sible. However, important for our approach is 
how groups of features interact with each other to 
influence NFPs; in many cases, several features 
will not have any interaction at all. This means 
that many tests on different configurations will 
produce the same measurement results for a spe-
cific NFP that is investigated. In order to avoid 
redundant tests, and consequently to reduce the 
test space, a metric regarding feature interac-
tion is to be defined so that only tests that reveal 
important information regarding how the feature 
interaction will influence the required NFP are 
performed. For examples of uses of these metrics, 
see the following section about the CiAO studies.

Ultimately, the organization of the SPL in 
this fashion aims at improving the configuration 
experience in the following ways:

1.  Providing exact non-functional information 
about products that have been previously 
configured;

2.  Using heuristics and regression techniques 
to provide approximated information about 
products that have only been partially 
configured;

3.  If several software components implement 
the same functional behavior, the user 
should be able to select the most appropri-
ate one depending on their non-functional 
characteristics;
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ReSTRiCTing The FeATuRe 
ModeL FoR TeSTing

An important characteristic of families of systems 
is that the code base does not only represent one 
system, but all valid family members. However, to 
perform tests on this code, specific members must 
first be configured and then generated. Moreover, 
aiming at understanding how features interact in 
different configurations requires whole sets of 
family members to be generated and tested. The 
strategy of testing the set of all family members 
is not practicable.

Therefore, our approach provides means for 
the application engineer to specify sets of products 
to be tested. The objective of specifying tests is 
to avoid generating members where interactions 
will not influence the desired NFPs. Of course, 
for some NFPs this definition may not be trivial. 
However, for others it may be pretty straightfor-
ward. For example, consider the scenario where 
the NFP represents the time required for the 
computation of a specific math algorithm. This 
algorithm may be configured in different ways by 
means of several features, and the math algorithm 
itself is a feature of a complex system comprised 
of other algorithms that can be configured inde-
pendently. If those other algorithms do not share 
code with the investigated math algorithm, testing 
each of the algorithms separately (and not all of 
the combinations) would reduce the testing space, 
and the performance measurement results of each 
algorithm that is tested individually would not 
be altered.

In order to accomplish such kinds of restrictions 
on feature models, we came up with the idea of 
partial configurations. In traditional feature mod-
els, a feature selection is simply a list of features 
that are required to be present in the member to be 
generated. (The generation can only be performed 
when the selection is valid, though.) We have 
extended this concept, now enabling the user to 
set the features that must be present (selected fea-
tures), the set of features that must not be present 

(blocked features), and other features that may be 
let open (open features). A list of such selections 
of features specifies a partial configuration. We 
developed a tool that is able to generate all valid 
configurations that conform to the specification 
of a partial configuration. Our tool transforms 
the feature model into a binary decision diagram 
(BDD) and by using the BuDDy library (BuDDy 
Developers, 2009) we are able to generate the 
set of valid configurations that conforms to the 
restrictions described by the partial configuration.

Using this tool, the engineer is able to set the 
features he wants to be present in all tests (of the 
test set) by defining them as selected. The ones 
that are known not to have an influence on the 
NFP to be tested are set to blocked. The features 
that actually represent the variability among the 
members of the test set are marked as open.

Applying the Feedback Approach

In order to explain how partial configurations can 
be used to generate a reduced set of tests and still 
produce meaningful results, we will illustrate an 
example using the feature model depicted in Fig-
ure 4. This feature model is only a small excerpt 
of the complete CiAO feature model, which has 
around 150 different features to be configured 
and represents about 10,000 different valid con-
figurations. However, even this reduced subset 
of features (14 features) is able to represent 256 
valid configurations. This fact shows that one 
should be very careful when defining the set of 
configurations to be tested; even a small num-
ber of features may represent a high number of 
configurations—and, consequently, can require 
a prohibitive testing time.

Nevertheless, one should also keep in mind 
that the testing process aims at capturing feature 
interactions that will influence a specific NFP. 
Interestingly, for many NFPs it is possible (with 
internal implementation knowledge) to determine 
the set of features that will influence the required 
NFP. For example, in the case of performance, or 
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also latency, one could measure the time required 
for a certain computation by starting a timer at a 
specific point in the code, and stopping it at the 
point where the computation is finished. If this 
scenario represents our NFP performance, it is 
possible to determine which features insert code 
between these points (the metric that specifies 
feature interaction), or the ones that have their 
code called from within the code block having 
its performance measured. That is, when testing 
a specific NFP, it is often possible to describe 
the set of features that influence the desired NFP 
by using the concept of partial configurations. 
Moreover, in our experiments we have identi-
fied that normally the critical parts of the code, 
where, for example, latency is important, will not 
be composed of too many features, and therefore 
a testing process can be performed in a feasible 
amount of time. Likewise, when a feature specifies 
an interface and its sub features represents different 
implementations, testing can also be optimized in 
this manner, and only the variability represented 
by this sub tree must be tested.

The feature model depicted in Figure 4 can 
generate 256 different configurations; in this case, 
testing all possible configurations may be feasible. 
However, for some NFPs it would simply be a 
waste of time, since for many of those tests the 
output would be exactly the same and would not 
contribute to the understanding of how features 
interact to influence a specific NFP. For example, 
if one is interested in the performance of the dif-
ferent configurations of the protection mechanism, 
a test set can be defined by a partial configuration 
where the set of features to represent the minimal 
infrastructure are set as selected, the features under 
protection are marked as open (establishing the 
variability of the test set), and the rest is marked 
as blocked. By doing so, we can reduce the test set 
to 8 different combinations. These are basically 
all possible combinations of the features used for 
the configuration of the protection mechanism, 
namely memory protection, timing protection, 
and service protection.

In the evaluation of this work (see the follow-
ing section), we deal with the NFPs of latency 
and performance; both of them are measurable 
NFPs. If one is interested in using the Feedback 
Approach for NFPs like reliability or security, a 
way to quantify these properties must be found. 
For example, for security one could take a set of 
different testing attacks and assign the number of 
failed and succeeded tests to the variant of inter-
est. Regarding reliability, stress testing could be 
employed, and the time required for the crash (or 
success after a timeout) can be assigned to the 
variants under test.

CiAo STudieS: The eFFeCT oF 
ConFiguRABLe APs on nFPs

As outlined in the approach description, CiAO 
aims at making the system’s NFPs configurable 
by indirectly keeping fundamental architectural 
properties configurable. In the domain of embed-
ded operating systems, this includes the following 
concerns, amongst others.

• Interrupt synchronization: If control 
flows can be executed asynchronously and 
they can access critical kernel state, the 
consistency of that state has to be ensured 
by some synchronization mechanism. 
There are several ways to ensure synchro-
nization, all of them bearing distinct ad-
vantages and disadvantages.

• Component isolation: In simple embed-
ded systems, application components can 
influence each other; for instance, by ac-
cessing each other’s memory areas. To in-
crease robustness, isolation means can be 
deployed, including constructive isolation 
by using type-safe programming languages 
or memory protection using hardware sup-
port like memory protection units (MPUs). 
Other isolation techniques refer to tempo-
ral isolation so that applications in real-
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time systems will not miss their deadlines 
because of other (potentially misbehaving) 
applications.

• Kernel interaction: The way components 
inside the kernel interact with each other 
has a significant impact on the perceived 
robustness and performance. Historically, 
suggested approaches range from mono-
lith-like systems to microkernel systems 
(Liedtke, 1995).

Interestingly, the focus on configurability of 
those architectural concerns is increasing in the 
recent time. Proof for that is the specification of 
AUTOSAR OS (AUTOSAR, 2006a, AUTOSAR, 
2006b), which aims to standardize the system 
software present on automotive microcontrollers. 
This specification includes several so-called scal-
ability classes, which provide distinct isolation 
properties like memory protection and timing 
protection. Hence, those architectural properties 
are already prescribed to be implemented in a 
configurable way in this standard.

We have implemented two configurable 
architectural properties in CiAO—interrupt syn-
chronization and memory protection—, which 
are presented in the following, together with 
an evaluation of their impact on different non-
functional properties.

CASe STudy 1: inTeRRuPT 
SynChRonizATion

Short domain Analysis

Our first case study is based on the configurable 
architectural property of interrupt synchroniza-
tion; that is, on how to keep the kernel state 
synchronous when possibly being accessed 
from within asynchronous events (e.g., interrupt 
handlers). After having analyzed the domain of 
operating systems, we found that there are three 

basic models to achieve interrupt synchroniza-
tion, all of which are implemented (and therefore 
configurable) in CiAO.

1.  Hard synchronization: This model lowers 
every critical section accessing kernel state to 
interrupt level, implemented by enabling and 
disabling interrupts or by setting the interrupt 
level accordingly. Hard synchronization has 
a very low performance overhead, but risks 
higher event-handling latency, depending 
on the length of the critical sections. This 
model is widely deployed in relatively simple 
embedded operating systems.

2.  Two-phase synchronization: This model 
divides each interrupt handler into two dif-
ferent parts, named prologue and epilogue in 
CiAO. Prologues can be executed in a timely 
fashion with low latency, but they are not 
allowed to access critical kernel state. This 
is done in the corresponding epilogue, which 
can be delayed by the kernel when accessing 
critical state. Epilogues have priority over 
user threads, however, and user threads are 
only executed when no epilogues are pend-
ing. Two-phase synchronization is used in 
many desktop operating systems like Linux 
or Windows, but also in embedded OSes 
like OSEK OS (OSEK/VDX Group, 2005) 
or AUTOSAR OS (AUTOSAR, 2006b).

3.  Continuation synchronization: This model 
enhances epilogues to full continuations (the 
thread abstractions in CiAO) with a context 
of their own. This way, user threads can be 
activated while interrupt handlers are wait-
ing for a shared resource. This facilitates 
fine-grained locking of kernel components 
(having a positive impact on the perceived 
latency), but bears the highest performance 
and memory overhead of the three models. 
The Solaris OS uses a similar model to syn-
chronize its kernel (Kleiman and Eykholt, 
1995).
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CiAo design

We designed a generic driver model that leaves the 
driver developer unaware of the finally deployed 
interrupt synchronization method, which is not de-
termined until the system configuration time. This 
way, the driver obeys common handler interfaces, 
and is adapted by aspects to fit the configured 
synchronization model. This configurability is 
designed and implemented with full separation 
of concerns, enabled by considering aspects as 
a design means from the beginning of the CiAO 
engineering process (aspect awareness). The de-
sign achieves a complete separation of concerns, 
separating the three dimensions of what, where, 
and how to apply interrupt synchronization.

For details concerning the aspect-aware design 
of configurable interrupt synchronization in CiAO 
and how the driver and OS components are inte-
grated, please refer to (Lohmann et al., 2007b).

influence on non-
Functional Properties

After having implemented the architectural 
property of interrupt synchronization to be con-
figurable in CiAO, we investigated the impact of 
this variability dimension on the non-functional 
property of latency. Here, latency is understood 
as the elapsed time between the beginning of the 
hardware interrupt handler and interrupt termina-
tion (iret instruction). We also measured the time 
from the beginning of the handler until the first 
prologue instruction, and until the first epilogue 
instruction, respectively. The results are depicted 
in Table 1. We have tested only the features that 
can have its implementation code accessed (func-
tion call, data structure changes, etc.) from the 
block of code defined by the boundaries of our 
time measurement routines; in this case, those 
features are the different interrupt synchroniza-
tion variants. This is the metric that represents the 
feature interaction for this NFP in order reduce 

the size of the test space (see also the previous 
section about the feedback approach).

One can clearly see that the chosen IRQ syn-
chronization method has a significant impact on 
the latency of interrupt handlers in the system. 
This refers both to the time until completion and 
to the time until the first part (prologue) and the 
second part (epilogue) of the interrupt handler are 
executed. However, by choosing the continuation 
synchronization model, for example, it is possible 
to reach more fine-grained synchronization do-
mains inside the kernel, leading to less contention 
and, therefore, to better performance in certain 
situations. Likewise, choosing two-phase syn-
chronization over hard synchronization leads to 
lower interrupt locking times, which makes it less 
likely to lose interrupt signals, depending on the 
microcontroller architecture.

Hence, the architectural property of IRQ 
synchronization is transparent to the application 
developer functionally, but it has a significant 
impact on the emerging non-functional properties 
of the resulting system, latency being among them.

Case Study 2: Memory Protection

Short Domain Analysis

The second study we performed is concerned 
with an architectural property that is prescribed 

Table 1. Measurements of the non-functional prop-
erty of latency for several configurable interrupt 
synchronization methods in CiAO. Measurements 
were performed on a TriCore TC1796b running 
at 50 MHz with a hardware trace analyzer (Laut-
erbach). The results were measured (and turned 
out to be stable) over 10 iterations. 

ns tprologue tepilogue tiret

Hard Sync. 160 160 320

Two-Phase Sync. 160 800 1200

Continuation Sync. 320 1200 2160
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by the AUTOSAR embedded software standard: 
memory protection. This means of spatial isola-
tion between applications is supposed to increase 
robustness by limiting the memory access of ap-
plication components to legal ranges, disallowing 
access to the memory areas of other applications 
or the underlying system software. Depending on 
the chosen AUTOSAR scalability class, memory 
protection is to be provided by the operating 
system or not.

On the hardware side, memory protection is 
enforced by an MPU (memory protection unit), 
which bears reprogrammable range registers 
specifying the access rights to distinct memory 
areas. An MPU is a simplified variant of a full-
featured memory management unit (MMU) known 
from PC systems, which can additionally perform 
paging. The MPU is only reprogrammable in the 
supervisor mode of the CPU so that only the OS 
and not the applications are able to alter memory 
protection properties.

During the domain analysis step, we found the 
following protection models to be suitable to be 
designed and implemented in CiAO.

1.  No protection: This trivial variant does not 
feature any protection mechanism at all. 
However, there is no performance overhead 
either.

2.  Kernel protection: This version separates 
the kernel from all applications by providing 
two separate protection domains.

3.  Application protection: This model addi-
tionally separates the applications from each 
other, comprising n protection domains for 
n deployed applications, plus one domain 
for the kernel. This means that invocations 
of functions that are exported by another 
application involve some overhead for ad-
justing the access privileges.

4.  Task protection: This most fine-grained 
model even protects task-local data like 
the task stack from the modification by 

other tasks or interrupt handlers in the same 
application.

CiAO Design

As with the configurable property of interrupt 
synchronization, the application developer is 
oblivious of the finally deployed memory pro-
tection method (if any) as chosen by the system 
configurator. Depending on the applied protection 
model, different points in the control flow in the 
CiAO system must be affected by an appropriate 
reprogramming of the MPU. Since CiAO’s de-
sign is aspect-aware, those points are exposed as 
join points in the AOP sense, being advisable by 
configurably deployed aspects. This way, generic 
pointcuts representing the critical points like inter-
application function calls, application—kernel 
transitions, interrupt handler invocations, or task 
dispatches can be supplied. An example control 
flow in a CiAO system is depicted in Figure 5.

The aspects implementing the protection 
method to be enforced are then implemented by 
advising the exposed join points in the form of 
the supplied pointcut expressions. The kernel 
protection aspect, for instance, reprograms the 
MPU to allow access to kernel state whenever 
entering the kernel and disallowing it upon exit 
from the kernel, including the first-time dispatch 
of tasks. Application protection, however, addi-
tionally needs to reprogram the MPU upon inter-
application calls and upon inter-application task 
dispatches.

The CiAO reference hardware platform—the 
Infineon TriCore TC1796b—allowed us to provide 
an additional configuration variant called the semi-
trusted mode. This variant exploits the peculiarity 
that on the TriCore platform memory protection 
is not implicitly disabled in supervisor mode. 
This allows applications to be run in supervisor 
mode with memory protection enforced without 
the need for kernel traps. An offline analysis can 
ensure that the applications do not reprogram the 
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MPU in their code, thereby ensuring the safety 
of the system.

For a more detailed explanation of CiAO’s 
memory protection design and the way applica-
tions interface with the OS components, and for 
implementation details of the generic pointcuts 
and the configurable aspects in AspectC++, please 
refer to (Lohmann et al., 2007a).

Influence on Non-Functional Properties

We evaluated the influence of the different memory 
protection models on the number of clock cycles 
needed for the execution of several characteristic 
functions; that is, the non-functional property of 

performance. All of those investigated functions 
either cross an inter-application boundary or the 
one between the kernel and an application (see 
Figure 5). The results are listed in Table 2 and 
shortly discussed here. The metric used to define 
feature interaction, and the corresponding test 
space, is analogous to the one presented in the 
previous section; that is, we tested the features 
that have its code accessed from the blocks of 
code that were measured. These features were the 
different kinds of memory protection in this case. 

• Since GetTaskID() is a non-modifying ker-
nel function, the memory protection do-
main is not switched in any of the protec-

Table 2. Measurements of the non-functional property of performance of selected representative function 
calls for several configurable memory protection variants in CiAO. 

ns GetTaskID() ActivateTask() dispatch() Service()

No Protection 3 24 88 0

Semi-Trusted Mode 3 43 148 89

Full Protection 3 86 148 174

Figure 5. Control flows and memory protection domains in an example CiAO system
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tion models. Hence, the clock cycles 
remain constant.

• The ActivateTask() system call, however, 
modifies kernel structures. No memory 
protection does not involve any overhead, 
whereas the semi-trusted variant needs 
43–24=19 extra clock cycles to reprogram 
the MPU to allow write access to kernel 
space and disallow it after the call. A full 
trap with switch to supervisor mode and 
back to user mode costs 86–24=62 addi-
tional cycles.

• The kernel-internal dispatch() function 
switches the protection domain from one 
application to another in both protected 
modes, leading to a cost of 148–88=60 cy-
cles. Since this function is invoked inside 
the kernel, there is no difference between 
the semi-trusted and the standard protected 
mode.

• An inter-application call like Service() 
does not cost anything without protection; 
the call can even be inlined. In the semi-
trusted mode and the application protection 
configuration, the MPU is reprogrammed 
to the new application domain and back af-
ter the call, which is worth 89 cycles. The 
version that requires a full trap costs 174 
cycles in total.

The architectural property of memory pro-
tection has a big influence on the performance 
of a system, as can be seen in the configurable 
implementation of the property in CiAO. The 
decision in favor of one of the protection methods 
and variants to be deployed is effectively a trade-
off between the two non-functional properties of 
safety and performance.

ReLATed WoRk

As this work aims at tackling non-functional 
properties in all stages of development, there is 

a broad range of related work, which is discussed 
in the following.

non-Functional Properties and 
Software Product Lines

Siegmund et al. propose the use of a semi-
automated derivation (SAD) to assist develop-
ers in selecting product features in SPLs with a 
large number of features (Siegmund et al., 2008, 
Rosenmüller et al., 2008). The basic idea is to hide 
variation points that are irrelevant due to non-
functional requirements that should be met. They 
claim that traditional approaches do not consider 
non-functional properties or alternatives for a fea-
ture implementation. To solve this problem, they 
present an integrated software product line model 
(ISPLM), which integrates code units and their 
non-functional properties into the feature model.

(Benavides et al., 2005) propose an extension 
to feature models (as proposed by Czarnecki and 
Eisenecker, 2000) to accommodate information 
about extra-functional features (NFPs, in our 
view). In this approach, attributes like price or 
development time can be assigned to features. The 
features and their attributes are transformed to a 
constraint satisfaction problem (CSP) so that an 
automated reasoning can be applied to it. Hence, 
optimal products can be generated according to a 
determined criterion (an extra-functional feature).

These methods take advantage of information 
about NFPs to improve product configuration. 
However, we think that both are more related to 
the field of variability management (Loesch and 
Ploedereder, 2007, Schirmeier and Spinczyk, 
2007). They ease the configuration process in 
large SPLs but do not offer the ability to explicitly 
configure NFPs or to inform the user about the 
real influence of a feature on the required NFP.

(Etxeberria and Sagardui, 2008) present an 
approach for the quality evaluation of software 
product lines. In this approach, an extended feature 
model is used to identify the variability that has 
an impact on quality in order to reduce evaluation 
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efforts. This technique is comparable to our idea 
of partial configuration. However, in contrast to 
our work, they state that the design stage is a good 
point to assure that the quality attributes are met.

TooL SuPPoRT

pure::variants (Beuche, 2003) is a tool that sup-
ports variant management of SPLs. It is indepen-
dent of programming languages and it enables 
the definition of the problem domain by means 
of feature models, and the solution domain by 
family models. It also automates the process of 
product generation. Regarding the configuration 
of NFPs, the current version is able to assign bugs 
(from a bug-tracking system) to specific features. 
Therefore, during product configuration, the ap-
plication engineer is informed about the known 
bugs that will be present in the final product.

Gears (Krueger, 2007b) is a tool and framework 
that enables the development and evolution of 
SPLs; it applies the three-tiered SPL methodology 
(Krueger, 2007a). In Gears, SPLs are comprised 
of three elements, software assets (source code, 
documentation, etc.), product feature profiles (to 
model each product in the portfolio), and the Gears 
configurator, which automatically assembles 
products based on their specifications.

FeaturePlugin (Antkiewicz and Czarnecki, 
2004) is an open-source Eclipse plugin for design-
ing and configuring feature models. It supports the 
concepts of staged configuration (Czarnecki et al., 
2005b) and feature cardinalities (Czarnecki et al., 
2005a). The tool focuses on providing advanced 
techniques of feature modeling and not on sup-
porting the whole process of SPL development.

FAMA (FeAture Model Analyser) (Benavides 
et al., 2007) is an extensible framework for the 
automated analysis of feature models. It is able to 
denote feature models in several logic representa-
tions; therefore, different solvers can be used in the 
analysis process. Currently, it supports CSP, SAT 
(boolean satisfiability problem), and BDD (binary 

decision diagrams), but it is flexible enough to 
have other solvers added to it. Cardinality-based 
feature models are allowed and the following 
operations are supported: finding out if a feature 
model is valid (there exists a valid selection that 
satisfies all constraints), finding the total number 
of valid products, listing all valid configurations, 
and calculating the commonality of features (the 
number of valid products they appear in).

There are commercial, free, and open-source 
alternatives for the design of feature models. 
However, only pure::variants is able to provide 
non-functional information during product con-
figuration; at the moment only at a very basic 
level, though.

ReASoning in FeATuRe ModeLS

Important to our work is also the process of 
reasoning in feature models. A seminal work by 
Benavides et al., (2006) presents the mapping 
from feature model components (e.g., optional 
features, mandatory features, and group features) 
to diverse logical representations, namely SAT, 
BDD, and CSP. Transforming feature models in 
these representations enables the use of off-the-
shelf solvers that can perform several analyses 
that are relevant for feature models (e.g., validity, 
number of solutions, etc.).

The relation of feature models and grammars 
has also been studied (Batory, 2005). Batory, 
also motivated by the ability to use off-the-shelf 
satisfiability solvers, presented the mapping from 
feature models first to iterative tree grammars, 
and then to propositional formulas. However, his 
main goal was to simplify the laborious task of 
debugging feature models.

Recently, the relation of feature models and 
logic representation has been further explored. 
(Czarnecki and Wasowski, 2007) propose a 
method for the inverse transformation from propo-
sitional formulas to a feature model representation. 
(Janota and Kiniry, 2007) study the representation 
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of feature models in higher-order logic. A formal-
ized meta-model is presented; however, no tool 
support is provided.

Aspect-oriented Programming 
and operating Systems

There is some work describing the synthesis of 
operating system kernels and aspect-oriented 
programming already published; none of the 
projects target the configurability of architectural 
properties and, indirectly, of non-functional prop-
erties, however.

PURE is an operating-system family that 
aims to support even deeply embedded systems 
(Beuche et al., 1999). Its abstractions are designed 
in minimal extensions, providing for fine-grained 
configuration possibilities. However, it was origi-
nally designed in an object-oriented way, oblivious 
to AOP. Only after exploring the ability of AOP to 
modularize the cross-cutting concerns present in a 
PURE system, aspects were considered (Spinczyk 
and Lohmann, 2004), and only implemented for 
selected concerns like interrupt synchronization 
(Mahrenholz et al., 2002). Therefore, PURE 
was not designed to be aspect-aware from the 
beginning as is CiAO, and PURE does not have 
the (indirect) configurability of non-functional 
properties as an explicit goal.

The TOSKANA toolkit (Engel and Freisleben, 
2005, 2006) enables the deployment of aspects 
into an OS kernel. The prototype is demonstrated 
using the NetBSD kernel; in general, the targeted 
OS domain is the PC domain and not embedded 
systems, where the consideration of non-functional 
properties is especially important (see also the 
motivation section). Furthermore, the toolkit in-
struments the kernel in order to be able to weave 
and unweave aspects dynamically at run time. The 
induced run-time and memory overhead is not 
tolerable in embedded computing; in this domain, 
static configuration and tailored implementations 
with distinct non-functional properties are needed.

Several studies were conducted on how to ap-
ply AOP ex post to existing kernels. Particularly, 
Coady et al. showed how to modularize pre-
fetching in the FreeBSD operating system kernel 
(Coady et al., 2001), and sketched the design of an 
aspect-oriented page daemon and quota manager 
(Coady and Kiczales, 2003). However, the aspect 
weaver proposed for this task, AspectC, does not 
have a functioning implementation; the examples 
were hand-woven and therefore do not provide 
a real cost evaluation in terms of non-functional 
properties like performance or latency.

ConCLuSion

Non-functional properties are inherently complex 
to be dealt with, but nevertheless mission-critical 
in many systems. The main challenge in handling 
NFPs is that most of them are untraceable; that 
is, there is no line of code or implementation 
module that an NFP can be solely attributed to. 
Furthermore, NFPs are highly domain-specific 
in their nature.

Therefore, NFPs have traditionally often been 
assessed by the system architects, who have the 
expertise and experience to do that. When using 
a product-line approach, though, the requirements 
on the products are often very different between 
the desired variants, and the system configurator 
does not have that kind of knowledge about the 
product line that is to be configured.

That is why, in our opinion, NFPs have to be 
dealt with in a holistic way, approaching them 
on multiple levels both in domain engineering 
and application engineering, from analysis to 
implementation. Furthermore, the configurator has 
to be assisted in making his decisions regarding 
the NFPs of the final product by semi-automated 
means. The CiAO development process with its 
feedback approach, which was presented in this 
chapter, is a big step into that direction.
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