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ABSTRACT
Deriving a product from a software product line may require
various build tasks, such as model transformations, source
code generation, preprocessing, compiling, as well as linking
and packaging the compiled sources. Usually implemented
using simple scripting languages, such as Apache ant or GNU
make, build systems tend to become monolithic entities,
which are intricate to adapt and maintain.

This makes developing the build system for a multi–
product-line, which is composed of several sub–product-lines
and maybe other configurable components, particularly chal-
lenging. Several, previously independent build systems—
possibly implemented using different build tools (ant, make,
etc.)—need to be integrated. In this paper, we approach
this by using models to describe the involved build tasks
(including their input and output parameters) as well as
their composition. An interpreter evaluates the models and
executes the tasks in the composed order with the configured
parameters to produce the final product.

Our approach enables the interaction of build systems
implemented with different tools with only little development
effort, whereas the build order and parameter flow is made
explicit in the models. We have started to apply our tooling
to model the build system of two multi–product-lines, where
it reveals sufficient expressiveness and clarifies the build
system interaction.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Software Architectures—
Reusable Software
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1. INTRODUCTION
Building a product in software product line engineering

consists of mapping a product configuration to software and
possibly further product-related artifacts. The build system
of a product line, which implements this mapping, needs
to perform various distinct tasks. In case the configuration
is based on models, multiple model transformations and
code generation from the models might be executed first.
Then, aspect weavers or preprocessors may be applied to the
sources. Afterwards, the source code needs to be compiled,
and be linked or packaged, before it can be deployed on the
destination system. Usually, build systems are also used to
generate various other artifacts, such as API documentation,
product specifications, or the user manual.

Build systems are commonly implemented using build
scripting languages and corresponding tools, where Apache
ant1 and GNU make2 are the most popular representatives.
These scripting languages are very powerful: they already
provide convenience functions for the most common tasks
(e.g., compiling, file copying) and allow integration of arbi-
trary other tools via extension mechanisms. However, their
flexibility comes at a price—in many cases, the build systems
designed with such languages are monolithic entities that are
very difficult to reuse and compose. Their build tasks often
have intricate dependencies among each other, and the avail-
able build variability is often hidden in some undocumented
variables. This makes it easy to write a piece of code where
a single build task cannot be understood unless the build
system as a whole is considered.

Composition of build systems is needed when a multi–
product-line needs to be assembled. We consider a product
line to be a multi–product-line when it is built up out of
several other sub–product-lines or further configurable com-
mercial or open-source components. Each of these constituent
elements, which we call product line components (PLiCs),
brings its own means of configuration and its dedicated build
system to create its part of the overall product based on
configuration input. In previous work [4], we have developed
an approach to check the consistency of the configuration of
a multi–product-line, even if it is spread over various con-
figuration files of heterogeneous types (e.g., feature models,
header files, domain-specific configuration languages). In
this paper, we present an approach for creating an integrated
build system out of the build systems of the single PLiCs.

1Apache Ant: http://ant.apache.org/.
2Gnu make: http://www.gnu.org/software/make.

http://ant.apache.org/
http://www.gnu.org/software/make


To avoid the effort of implementing a new, compound
build system completely from scratch, we intend to reuse
the already available build systems of the PLiCs as far as
possible, even in case they employ different build languages
and tools (e.g., make, ant). We intend to keep refactoring
minimal, so that the build system of a single PLiC still works
stand-alone. Second, based on the experience with our case
studies, we assume that the individual build systems need
means for interacting with each other. Output from the build
task of one PLiC will serve as input for the other, and vice
versa. This means that we need a way to specify the build
order as well as the parameter flow in a way abstracting from
the concrete build tools used.

To parameterize and compose build systems independent
of the applied build scripting tool, we propose to represent
their coarse-grained structure using models. This way, the
single build tasks, their input and output parameters, and
the build tasks composition, gain an explicit representation.

We developed an extensible tool infrastructure to model,
compose, and execute build tasks for currently three differ-
ent build script languages (Apache ant, GNU make, MWE
workflow language3.) We have started to apply it to model
the compound build systems of two larger-scale product lines
(I4Copter, SafeHome). Up to now, our modeling approach
exhibits sufficient expressiveness and helps us to understand
and visualize the compound build systems by making the
previously implicit sequence of build tasks and their depen-
dencies explicit. The required development effort in order
to achieve the composition so far has been little. It consists
in modeling and possibly small build system refactorings,
which still enable each single build system to work without
our tooling applied. Once the build system of each single
PLiC has a model representation, compound build systems
can be created with only little modeling effort.

In the following, we will first argue that parameterizing and
composing build systems is crucial when a multi–product-
line needs to be assembled, and that composing them using
the common build script languages is a tedious and often
intricate task (Section 2). Then, we present our approach
for product line build system modeling (Section 3). We
report on the ongoing appliance of the developed tooling
to the SafeHome and I4Copter product lines in Section 4
and discuss the required effort and anticipated benefit of our
approach in Section 5. Finally, we address related work and
conclude the paper (Sections 6 and 7).

2. INTEGRATION OF BUILD SYSTEMS
In this section, we analyze the need of build system inte-

gration and report on the state of the art and its defects.

2.1 The Need of Build System Integration
We have studied the build systems of two multi–product-

lines: I4Copter [4] and SafeHome [3]. It turned out that
they basically use two variability mechanisms: (build-task-)
internal variability, via parameterization of the input vari-
ables of a build task, and external variability, via composing
(i.e., “wiring up”) basic build tasks to a more complex one.
In the following, we will introduce our two case study prod-
uct lines and provide examples where parameterization and
composition are used for build system integration.

3Eclipse EMF Modeling Workflow Engine: http://www.
eclipse.org/modeling/emft/?project=mwe.

2.1.1 I4Copter: Parameterization Example
The I4Copter [8] quadrotor helicopter has been designed

to resemble embedded real-time systems arising in real-world
product line scenarios. Its software is implemented as a prod-
uct line comprising three sub–product-lines: one for applica-
tion logic, which also models the interface to the hardware
(CopterSwHw), the department-internal, aspect-oriented op-
erating system product line CiAO [6], and, alternatively, the
commercial operating system product line PXROS.

To build an I4Copter product, GNU make needs to be
called recursively both for CiAO and the CopterSwHw (Fig-
ure 1). However, their parameter settings depend on each
other. For example, CiAO’s parameter EXTRA_AH_DIRS
is used by the CopterSwHw to feed in extra aspect files
(implemented in AspectC++4) to be woven into the CiAO
operating system. The CopterSwHw, in turn, requires the
OS_LIB parameter in order to link to it after compilation.

I4Copter

CopterSwHwCiAO

Build System

Make Build System

Source Files

Source Files

Source Code

Make Build System
Task: compile
   param: EXTRA_AH_DIRS

Source Code

Compound Build System

/ciao/bin/ciaolib.o /copterswhw/aspects/

Task: compile

Task: build
   param: OS_LIBEXTRA_AH_DIRS=

/copterswhw/aspectsOS_LIB=/ciao/bin/ciaolib.o

(1) make
compile

(2) make
compile

Figure 1: The parameters of CiAO and Copter-
SwHw depend on each other when compiling an
I4Copter product.

2.1.2 SafeHome: Composition Example
Our second example is based on the demonstrator product

line SmartHome [9], which has been developed for construc-
tion experts such as architects. It has been implemented
using the Eclipse-based model-driven framework openArchi-
tectureWare. SmartHome facilitates modeling of buildings
and their electrical interior devices and generates the software
from the model for automatically controlling these devices.

Originally developed for standard homes, we extended the
product line to serve the market for commercial buildings
as well. The business model is to offer a standard version
of the product line as well as an extended version, which
includes advanced safety features, so-called SafeHome. We
implemented this extension as a separate sub–product-line,
called SafetyPLiC, which can be included into the build
process if the customer is willing to pay for it.5

Figure 2 shows the interaction of build tasks necessary
to create a SafeHome product. The SafetyPLiC requires
adding further build tasks (model transformations and code
generators) at different stages of SmartHome’s model-driven
product generation, which is based on multiple transforma-
tions (house2comp, comp2osgi, osgi2code). As SmartHome
and the SafetyPLiC stem from different contexts, they use
different build tools (MWE vs. ant). Even if we ignore the
parameter flow—which is also necessary in this example, but
excluded for brevity—the mere composition order of build

4AspectC++ site: http://www.aspectc.org/.
5See [3] for details of the SafetyPLiC implementation.

http://www. eclipse.org/modeling/emft/?project=mwe
http://www. eclipse.org/modeling/emft/?project=mwe
http://www.aspectc.org/
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Source Code
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Task: osgi2code
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Figure 2: Generating the SafeHome software re-
quires executing the build tasks of SmartHome and
SafetyPLiC in a particular order.

tasks is already crucial. If executed in a different order, the
build will fail or defective software will be generated.

2.2 Build System Integration State of the Art
In case the PLiCs (sub–product-lines or sub-components)

of a multi–product-line use different build tools or follow
different build patterns (e.g., recursive vs. non-recursive
make [7]), the full integration of build systems can be quite
an effort, as it often basically means implementing a new
compound build system from scratch. Moreover, if the PLiCs
are open-source components, or stem from external vendors,
a redesign of their build systems would impede updating the
component or be impermissible due to licensing reasons.

A common solution, which also goes in line with our in-
dustrial experience, is to integrate the build systems in a
minimal invasive way. On the level of the multi–product-line,
a high-level script (e.g., a simple Makefile, or a shell script)
is developed. It invokes the build tasks of sub–product lines
by calling the respective build tools (e.g., make, ant) in the
correct order with correct parameters in order to build a
compound product.

However, to be able to apply this solution, one must already
have rightly understood how the subordinated build systems
need to be handled. This is not at all a trivial task. As of our
knowledge, there is no build language that allows declaring
which parameters a build task requires or can optionally
deal with. Commonly, all variables in build files (make, ant,
oAW, but also CMake, automake, and Maven) have a global
scope. Intricate dependencies among build tasks, in the case
of Makefiles even with wildcards and implicit build tasks6

make it hard to understand which build tasks are actually
invoked and which variability parameters are available.

As an example for the trickiness of build system parameters,
we present the implementation of CiAO’s extension point
for adding further aspect files into the build process (the
parameter EXTRA_AH_DIRS, as introduced in Section 2.1).
The CopterSwHw product line uses it to add aspect files for
custom startup, shutdown, and error hooks.

Listing 1 illustrates the usage of the parameter
EXTRA_AH_DIRS in the CiAO build system (3000 LOC, 18
files). It can be set from the command line, for example,
when executing make, to hold a whitespace-separated list
of directory paths. For each path, the variable AGXXFLAGS,

6See the GNU make manual for a catalogue of implicit build
rules: http://www.gnu.org/software/make/manual/
make.html#Catalogue-of-Rules.

which contains the aspect compiler flags, is appended with a
further option to consider the directory. The flag will then be
used each time a file is compiled via the XX compiler variable.

Such extension points are quite common in build systems
to parameterize and extend them via setting some “magic”
variables. However, as the parameters are commonly just
as hidden in the code as in the above example, detailed
knowledge on the build system is necessary to leverage them.

. . .
AGXXFLAGS += $ ( fo r each p di r ,

$ (EXTRA AH DIRS) ,
−p $ ( p d i r ) )

. . .
XX ?= $ (AGXXPATH)/ ag++ $ (AGXXFLAGS) . . .
. . .

$ (OUT DIR)/%.o : $ (SRC DIR)/%. cpp . . .
$ ($XX) ) −c $< −o $@−

. . .

Listing 1: The parameters for adapting the build
process are well hidden in the implementation of
CiAO’s make files.

Textual documentation of build files can alleviate this
problem. However, sole text cannot provide any further
benefits to the involved engineers, for example, for checking
(e.g., for parameter existence, or for mandatory parameter
settings), visualization, or transparent bridging across build
tools. Therefore, according to our experience, build systems
tend to be poorly documented—if they are at all. As a
result, each time a product line shall to be integrated into a
multi–product-line, tedious analysis of its build system may
become necessary to parameterize it appropriately.

Summing up, integrating build systems by writing high-
level build scripts is a tedious undertaking. It requires analyz-
ing the possibly intricate implementations of build systems
implemented in different build tools to find out about their
variability parameters. This analysis is required each time
a certain PLiC needs to be integrated into a new multi–
product-line. Moreover, the developed high-level script itself
will usually become difficult to understand and inflexible
to reuse in other contexts, as each adaptation of the script
requires studying the original build system a further time.

3. MODELING BUILD SYSTEMS
In order to reduce the effort for compound build system

development, we propose to describe the existing build sys-
tems (their crucial build tasks and parameters) using models.
As an initial benefit, a model serves as concise and clear
documentation of the build system. Much more, each build
system model comprises sufficient information so that the
creation of a compound build system becomes possible solely
by creating a further model—the involved engineers do not
need to dig into the build system source code a further time.

The modeled compositions with bound variables serve as
input for an interpreter, which then executes the appro-
priately parameterized sequence of build tasks. Doing so,
models become first-class artifacts that make the real struc-
ture and interaction of complex build systems explicit. In
this section, we present our general approach and the build
system modeling language.

http://www.gnu.org/software/make/manual/make.html#Catalogue-of-Rules
http://www.gnu.org/software/make/manual/make.html#Catalogue-of-Rules
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Figure 3: Product line engineer and build engineer using the PLiC framework for product building.

3.1 General Approach
As mentioned, we split up a multi–product-line into so-

called product line components (PLiCs) [4], which may be
sub–product-lines or other configurable components and
which each has its own build system. The intended use
of our framework for build system integration involves three
roles: product line engineer, composition engineer, and build
engineer (cf. also Figure 3).

The product line engineer is a specialist for a particular
PLiC and specifies its build system in a so-called PLiCFa-
cade model (Figure 3, step 1). It comprises all information
required by others to build products. The model defines the
externally available build tasks, their type (e.g., ant, make)
and other attributes (discussed in detail in Section 3.2).

The composition engineer (step 2) then creates a further
PLiCFacade model to build a composed build system. It
is defined solely by wiring up build tasks of other PLiCFa-
cade models. Due to concise and technology independent
description on model level, composing becomes easier and
more explicit than by composition via ad-hoc scripts.

On product level, the build engineer optionally may create
a PLiCInstance model that references the respective PLiCFa-
cade model and may bind those variables that have not yet
been bound in domain engineering (step 3). For building, the
build engineer requests the PLiC framework to execute one
of the modeled build tasks (step 4). The interpreter forwards
the actual execution to dedicated plug-ins, such that addi-
tional build languages can be integrated easily. Currently,
we provide builder plug-ins for ant, make, and MWE.

3.2 The Build System Modeling Language
Concrete build systems and their compositions are de-

scribed in PLiCFacade models, final parameter bindings and,
optionally, additional product-specific build tasks in PLiCIn-
stance models. Both models base on the same metamodel
(cf. Figure 4). Although not strictly required, the following
description of model elements is aligned to their most likely
use in steps 1 to 4 in Figure 3.

Step 1: The product line engineer declares the set of exter-
nally available build tasks (BuildTask), within the PLiCFa-
cade model of a product line. A concrete build task element
(ConcreteBT ) maps to an actual build task in a PLiC’s build
system. Essential characteristics are: the build task type
(e.g., ant, make), the build file URI, its target name (e.g.,
preprocess, compile, . . . ), and the input and output parame-
ters (Variable). As common for build tooling, all parameters
are of type string. Parameters can be optional, multi-valued
(e.g., using comma or whitespace as string separator) and

may have further textual documentation attached. Only
those build tasks and parameters that shall be externally
available need to be modeled, what helps to keep the models
concise.

Step 2: Composition engineers use sequence build tasks
(SequenceBT ) and reference build tasks to compose the build
tasks of several other PLiCs (defined in other PLiCFacade
models). A sequential build task wires up other build tasks,
whereas a build task reference denotes an invocation of
another, already defined build tasks. A simple reference
(SimpleReference), invokes exactly one build task. For con-
venience, we also devised a more complex mechanism for
invoking other build tasks. A WeaveReference element re-
ceives a list of build tasks names (weaveOrder) and a list
of sequence build tasks (tasksToWeave) as input. When a
WeaveReference is executed, the interpreter iterates over the
build tasks names in the weaveOrder list. Each of the sequen-
tial build tasks in the (tasksToWeave) list is queried whether
a child build tasks with a corresponding name exists. If this
is the case, this child build task is executed. In the following
Section 4, we will demonstrate the use of this mechanism via
an example from our SafeHome case study.

The input parameters declared by concrete build tasks
are bound using VariableBinder elements. They can be
applied directly to a concrete build task, or to sequences
and references that ultimately lead to one. This enables all
involved stakeholders to bind variables: product line engineer,
composition engineer, and build engineer.

Step 3: In the PLiCInstance model, the build engineer can
bind those variables that have not yet been bound previously
in PLiCFacade models. Even further build tasks may be
added (e.g., for compiling additional, product-specific code).

Step 4: Finally, the build engineer can invoke the in-
terpreter for a modeled build task. In case of a sequential
build task (SequenceBT ), its children are executed. For
a SimpleReference, the referenced build task is executed.
A WeaveReference mixes build task execution as described
previously. For a ConcreteBTs model element, the model in-
terpreter passes the build file and target to execute, together
with the parameters, to the appropriate builder plug-in. The
builder plug-in then executes the build task setting the pa-
rameter values to the specified values and returns the output
parameters if available.7

7The implemented builder plug-ins for ant, make, and MWE
all support output parameters. Therefore, we read out the
values of those Makefile variables (or ant/MWE properties)
that are defined in the model as output parameters, immedi-
ately after the build task has been executed.



PLiCFacade BuildTask
+name : String
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Variable
+name : String
+doc : String
+isOptional : bool
+isMultivalue : bool

VariableBinder

WeaveReference
+tasksToWeave : List<SequenceBT>
+weaveOrder : List<String>

SimpleReference
+ref : BuildTask
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Figure 4: PLiCFacades model build systems in domain engineering, PLiCInstances in application engineering.

4. REVISITING THE EXAMPLES
In this section we revisit the two example product lines

from Section 2.1. We first model the build systems of basic
PLiCs in PLiCFacade models (step 1). These models serve
as an executable description of all externally available build
tasks and parameters. Doing so, the models comprise all
information required to integrate several build systems, such
that larger-scale build systems can be created solely by using
modeling (step 2). Finally, PLiCInstance modeling and build
system execution (steps 3 and 4) are addressed as well.

4.1 Parameterization: I4Copter
In Section 2 we introduced the extension point

EXTRA_AH_DIRS of the CiAO sub–product-line, as well as
its implementation. It allows for adding further aspect files
into CiAO’s build process. Whereas its extensibility was pre-
viously hidden in the Makefiles, we are now able to expose it
via corresponding models.

Both CiAO and the CopterSwHw sub–product-line now
provide a PLiCFacade model (cf. Figure 5). The models
describe their concrete build tasks (ciaocompile, copterswh-
wcompile) with their respective type, build file, and target.
Furthermore, they declare their respective input parame-
ters extraAspectDirs and osLib. The I4Copter PLiCFacade,
which is the model of the multi–product-line composing the
other two product lines, uses simple build task references to
model the composition. VariableBinder elements are used
to bind the parameters to the concrete values (“/copterswh-
w/aspects/” and “/ciao/bin/ciaolib.o”).

In application engineering, the build engineer creates the
i4product PLiCInstance and uses variable binding to add a
further product-specific aspect directory into the build pro-
cess, as the extraAspectDirs variable is multi valued. Figure 6
shows the graphical user interface generated for the build
task i4coptercompile, where the build engineer can again edit
the parameters and execute the build.

4.2 Composition: SafeHome
As mentioned in Section 2.1, the model-driven product

generation process of the SmartHome product line needs
to be extended with safety-related model transformations
and code generators (SafetyPLiC). We model SmartHome
and the SafetyPLiC in dedicated PLiCFacade models (see
Figure 7). The SafeHome PLiCFacade, finally, composes
them.

PLiCFacade
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+file : URI
+type : String
+target : String

Reference

VariableBinder
+variable : Variable
+value : String
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+name : String
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children

inputParameters
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 (only for PLiCFacade models)

PLiCBuild

ciao : PLiCFacade

file : URI = /ciao/os/Makefile
type : String = "make"
target : String = "compile"

ciaocompile : ConcreteBT

copterswhw : PLiCFacade

file : URI = /copterswhw/src/Makefile
type : String = "make"
target : String = "build"

copterswhwcompile : ConcreteBT

name : String = "EXTRA_AH_DIRS"
doc : String = "WS-separated list of ..."
isOptional : bool = true
isMultivalue : bool = true

extraAspectDirs : Variable

i4copter : PLiCFacade

i4coptercompile : SequenceBT

ref : BuildTask = ciaocompile
ciaoref : SimpleReference

ref : BuildTask = copterswhwcompile
copterswhwref : SimpleReference

variable : Variable = extraAspectDirs
value : String = "/copterswhw/aspects/"

aspectDirBinder : VariableBinder

name : String = "OS_LIB"
doc : String = "Path to  OS lib ..."
isOptional : bool = false
isMultivalue : bool = false

osLib : Variable

variable : Variable = osLib
value : String = "/ciao/bin/ciaolib.o"

osLibBinder : VariableBinder

i4product : PLiCInstance

ref : BuildTask = i4coptercompile
i4productcompile : SimpleReference

variable : Variable = extraAspectDirs
value : String = "/i4product/aspects/"

aspectDirBinder : VariableBinder

Figure 5: I4Copter uses SimpleReference and Vari-
ableBinder elements to compose the build tasks of
the CiAO and the CopterSwHw PLiC.

The SmartHome PLiCFacade model in Figure 7 describes
the basic workflow for model-driven generation, which is
based on the MWE build system. The house model is first
transformed to a generic component model (house2comp),
then to an OSGi-specific component model (comp2osgi), from
which, finally, code is generated (osgi2code). For brevity,
the input and output variables of tasks are omitted in the
figure. The SafetyPLiC PLiCFacade model provides an ad-
ditional model transformation (comp2comp) and a further
code generator (osgi2code), based on Apache ant. In the
SafeHome PLiCFacade model, the two other models are com-
posed. This is achieved via a WeaveReference element. It
receives the two sequence build tasks of SmartHome and
the SafetyPLiC as an input (tasksToWeave). Based on the
order of task names given in the weaveOrder list, the two



Figure 6: In the generated GUI the build engineer
can review and alter the build parameters and can
trigger product building.
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weaveOrder : List<String> = {"house2comp", "comp2comp", "comp2osgi", "osgi2code"}

safehomegen : WeaveReference

ref : BuildTask = ciaocompile
ciaoref : SimpleReference

ref : BuildTask = copterswhwcompile
ciaoref : SimpleReference

variable : Variable = extraAspectDirs
value : String = "/copterswhw/aspects/"

aspectDirBinder : VariableBinder

file : URI = /sh/comp2osgi.mwe
type : String = "mwe"
target : String = "all"

comp2osgi : ConcreteBT

file : URI = /sh/osgi2code.mwe
type : String = "mwe"
target : String = "all"

osgi2code : ConcreteBT
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osgi2code : ConcreteBT

smarthomegen : SequenceBT safetyplicgen : SequenceBT

+tasksToWeave : List<SequenceBT>
+weaveOrder : List<String>

WeaveReference

List<String>

smarthome : PLiCFacade safetyplic : PLiCFacade

Figure 7: SafeHome uses a WeaveReference element
to compose the build tasks of the SmartHome and
the SafetyPLiC in the correct order.

sequences will be interwoven during interpretation.8

In application engineering, the SafeHome PLiCFacade
model is interpreted. Figure 8 shows this result in an au-
tomatically generated diagram, which serves for better rea-
soning about the interaction of build tasks.9 The diagram
also shows the handling of output parameters. Their val-
ues can be accessed via ${<outputParameterName>} in
order to feed them as input parameters into subsequent
build tasks. String operations, which can be implemented in
plain Java (e.g., String ${Util.rmSuffix(String)}),
are supported as well.

8In case sequences contain equally-named build tasks (e.g.,
osgi2code for SmartHome and the SafetyPLiC) the order of
sequences in the tasksToWeave list decides which is executed
first.
9For generating the diagrams, we use the software Graphviz:
http://www.graphviz.org.

Figure 8: The automatically generated diagrams
help to understand the interaction of build tasks and
their parameter flow.

5. DISCUSSION
We have currently just started to apply our approach

to the two product lines. After interviewing the I4Copter
developers, we expect that around 20 build tasks will need
to be modeled, ranging from static WCET code analysis
over sandbox tests for the different components to flashing
and testing on the physical device. In the SafeHome case
study, we also plan to add very early build tasks of product
derivation, such as generating offer documents and presenting
a simulation of the house to the customer (approx. 25 build
tasks in total). As the evaluation has not been completed
yet, we will subsequently discuss the anticipated benefits
and trade them off for the efforts required to introduce and
maintain our approach. Furthermore, when we describe the
required efforts, we will report on early experiences gathered
and discuss the expressiveness of our modeling approach.

5.1 Anticipated Benefits
The first assumption we wish to prove is that our approach

will ease development of composed build systems, in particu-
lar that build systems can be composed faster and with less
expert knowledge about internal structures. This benefit in
particular pays off when a PLiC is reused multiple times: Its
PLiCFacade model must be created only once; then, com-
position engineers can integrate it into various compound
product line build systems with less effort. Second, we hope
to prove that our approach will speed up product derivation
of multi–product-lines as well. Our composition models al-
low to bind and to adapt the parameters exposed on model
level both in domain (PLiCFacade models for composition)
and in application engineering (PLiCInstance models), for
which we provide a unified interface for parameter editing

http://www.graphviz.org


and execution of compound build tasks independent of the
build tools involved. Further benefits that might be worth
evaluating is whether the quality of build systems, build sys-
tem compositions, and of derived products may be improved
with using our approach for explicit build system modeling.

5.2 Required Effort and Discussion
The potential benefits of the approach need to be traded

off against the effort required to set up and maintain it. Fully-
fledged introduction of our approach requires (R1) analyzing
the involved build systems and their variability, possibly,
(R2) build system refactorings to expose single build tasks
for external invocation, (R3) modeling the build systems via
PLiCFacade models, and (R4) co-evolution of build system
implementation and models.

Up to now, we could not identify any show stoppers and
the required effort appears manageable. In the following,
we will address the experiences we already have gathered
regarding R1-R4 for our two case studies.

5.2.1 Analyzing Build Systems
Up to now, we can say that the effort for analyzing the

build system (R1), which means mining the actually avail-
able variation points from its implementation, differs widely
among the two studied multi–product-lines. For SmartHome,
the effort was rather small. Its MWE-based code genera-
tor only comprised 700 lines of sequentially executed code.
The CiAO operating system, however, together with the
I4Copter, comprised around 3000 lines of hand-crafted build
code spread over 18 Makefiles with subtle dependencies. It
makes analyzing the actually available variation points an
intricate, time-consuming task. This is, however, not a prin-
ciple drawback of our approach. After having modeled the
build tasks, users of the build system, and also composers
of multi–product-lines, will be able to avoid digging into its
source code for parameterizing a build. Therefore, the one
time effort for the analysis is very likely to pay off over time.

5.2.2 Refactoring
The required effort for refactoring (R2) also differs. The

CiAO and CopterSwHw product line, on the one hand, use
Makefiles and are therefore target-based (generate, compile,
test, clean, etc.). So, there already are separate build tasks
that we can invoke externally and no refactoring is required.
Note that, even if there are dependencies defined in a Makefile
(e.g., “compile” prerequisites “generate”), the preconditioned
target will usually not be executed a further time when
it has been invoked manually before. The optimization
efforts of make are therefore not hampered when a product
line engineer decides to expose both the “generate” and the
“compile” target in a PLiCFacade model.

SmartHome, on the other hand, uses the MWE workflow
language, which does not know the concept of “targets”. All
build commands in a workflow file are simply executed se-
quentially. As the workflow of SmartHome was previously
basically only within a single file, we had to refactor it. We
factored out the different transformations into separate work-
flow files (house2comp.mwe, comp2osgi.mwe, osgi2.code.mwe,
as shown in Figure 7). This way, we were able to weave in
the safety transformations at the appropriate locations. The
required refactoring effort was however manageable: it can
be compared with factoring out code into dedicated methods
in object-oriented programming.

5.2.3 Expressiveness of Our Modeling Approach
Up to now, our build modeling language, as shown in

Figure 4, exhibited sufficient expressiveness (R3). As we
only intend to model the coarse-grained build order and
their parameterization, we have tried to keep the modeling
constructs to a minimum. However, a remarking difference
to common build tools is that our modeling approach only
allows us to specify the build order as an explicit sequence.
Make, ant, and other build tools, in contrast, allow declaring
build prerequisites for each task, from which the build order
is calculated implicitly. In our current case studies, we did
not miss such a mechanism, in particular because it would
scatter information about the build order over various model
elements in possibly several PLiCFacade models and grasping
the build order would become more challenging.

Furthermore, even if we added the capability of dependency
modeling, we could not make use of its premier benefit:
building up a dependency graph and exclude those tasks
from executing that cannot produce a new result. This is
due to the fact that dependencies on model level will not (!)
be complete, as we do not intend to remodel all targets and
all their dependencies (including, e.g., all single C files of
the project). Therefore, we would nevertheless be forced to
execute all involved build tasks.

Finally, we have experienced in both industrial and open-
source build systems that the build prerequisite mechanism
is not used comprehensively, which results in flawed builds.
Over time, the build system prerequisites for some files get
out of sync with the real dependencies in the code. At some
rare occasions, the necessary recompilation then simply does
not take place because it is “optimized away”. As such defects
are quite difficult to discover and debug, our experience
is that build engineers often plainly delete all previously
produced files (e.g., via executing “make clean”) right before
building—just to prevent the (incomplete) optimization from
being performed. While this observation has motivated our
current concept of explicit build sequences, we still plan to
explore whether a more carefully designed build prerequisite
approach can improve compound build system design—while
keeping the associated complexity increase manageable.

5.2.4 Co-Evolution
When the build system evolves (R4), the corresponding

PLiCFacade model needs to be adapted accordingly. As
we only expect a subset of all targets and parameters to
be modeled—those that shall be externally available—, we
consider the effort for this to be manageable. At best, the
developer of a PLiC’s build system is also made responsible
for maintaining the corresponding model.

Whereas our approach is on par with the state of the
art (cf. Section 2.2) by providing a documentation of the
build system, it also denotes an executable specification
of its “public interface”. Therefore, certain inconsistencies
(e.g., deprecated parameters), become easier to detect. For
example, renaming a build task or parameter will directly
result in an error when trying to execute the PLiCFacade
model the next time. Automated tools might as well be
considered to help detecting a drift between models and
build system implementation. As these tools would need to
be implemented per build language—and would rather have
limited capabilities, as they could not detect which tasks and
parameters were intentionally left out in the PLiCFacade
model—we do not provide support for this at the moment.



6. RELATED WORK
Related work can be found in the realm of build tools

as well as within research on (product line) build system
development, maintenance, and composition.

Next to make and ant, there are various other build tools
on the market that promise to ease build system development.
Prominent tools we like to consider exemplarily are CMake,
automake, and Maven. Those tools all have in common that
they have a strong declarative part, where it is possible to
specify system prerequisites of the build system, the sets of
files to compile, tests to be run, etc. Their common strength
lies in the operating-system–independent building of prod-
ucts and in defining a standardized way to do common tasks
such as compiling, linking, or packaging. But how do they
deal with the input and output parameters of their build
tasks, and how do they compose complex build tasks? Basi-
cally, automake and Maven fall back to the build languages
we already have discussed: Custom tasks can be specified by
defining make and ant targets respectively. CMake uses its
own build language, which it can map to various other build
languages (e.g., make, Visual Studio, Eclipse). However, it
handles build task parameters and composition very simi-
lar to make and ant, via globally-scoped variables and via
declaring dependencies to other build tasks. Summarizing,
also those build tools would both support and profit from
our build task modeling approach, what encourages us to
develop our approach further.

Our approach achieves composition of build tasks by ex-
plicitly specifying the elements to compose (using Simple-
and WeaveReferences, cf. Figure 4). In [1], Adams presents
MAKAO, an aspect-oriented tool framework for make files.
The author’s primary intention for using aspect-orientation
is to reason about and to refactor Makefiles. In our case,
the most apparent use for aspect orientation would be for
composing build tasks. However, aspects are commonly
oblivious [5], what makes it rather difficult to maintain the
overview which aspects affect which build tasks in which way.
Therefore, as long as we identify no striking need, we well
stick to our referencing mechanisms, in order to make the
interaction and parameter flow of build tasks explicit.

In [2], de Jonge presents build-level components to system-
atically reuse code artifacts together with their build systems.
In the notion of the author, a build-level component consist
of one or more directories containing source files, together
with the logic for building a product from the source files.
This notion is quite similar to what we call product line
components. The author, however, proposes to use one ded-
icated build tool (the “autotools” suite), which provides a
standardized build interface (the targets: all, clean, install,
check, ...) for deriving products. Doing so, the author does
neither provide a concept how to integrate different kinds of
build tools, nor does he address how to flexibly compose and
parameterize elementary build tasks from different build-level
components to more complex ones.

7. SUMMARY & OUTLOOK
In this paper, we have presented an approach and corre-

sponding tooling for build system modeling and composition.
It improves on the state of the art, which basically uses ad-
hoc scripting and informal textual documentation, and which
often may require understanding possibly complex build sys-

tem code for build system composition and execution. We
approach this problem by documenting the elementary build
tasks, their parameters, and their compositions using a model-
based approach. Hereby, the models are formal and complete
enough to support the composition and execution of build
tasks using solely models as well, without the need for digging
into the source code a further time for this purpose.

We have implemented a framework that interprets the
models and executes the composed build tasks, thereby ab-
stracting from the fact that the build tasks are implemented
with different build tools; currently, we support Apache ant,
GNU make, and the MWE workflow engine. We have started
to evaluate our tooling by applying it to two multi–product-
lines. Early results indicate only moderate introduction
effort and sufficient expressiveness of our modeling language,
thereby making build task composition and parameter flow
explicit, which was previously hidden in the implementations
of respective build systems. The full application and evalua-
tion of our approach on our two case study product lines will
provide us with more insights about the conditions under
which our approach may successfully be applied.
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