Configurability Bugs in Linux
The 10000 Feature Challenge

Reinhard Tartler, Julio Sincero, Wolfgang Schréder-Preikschat, Daniel Lohmann
Friedrich—Alexander University Erlangen—Nuremberg
{tartler,sincero,wosch,lohmann}@cs.fau.de

Reinhard and Julio are PhD students.

If accepted, we will demo our tool in action, finding real defects and bugs in an up-to-date Linux snapshot.

1. INTRODUCTION AND MOTIVATION

Most system software can be configured at compile
time to tailor it with respect to a broad range of
supported hardware architectures and application do-
mains; the Linux kernel, for example, provides more
than 10000 configurable features, growing rapidly.
From the maintenance point of view, compile-time
configurability imposes big challenges. The selectable
features (and their constraints!), which are presented
to the user and the configurability that is actually
implemented in the code, have to be kept in sync,
which, if performed manually, is a tedious and error-
prone task. In the case of Linux, this has led to
numerous defects in the source code, many of which
are actual bugs. In our work, we target at:

1. checking for configurability-related implementation
defects under the consideration of symbolic and
logic integrity.

2. calling for attention on the maintenance problems
caused by the increasing configurability of system
software.

3. providing a practical and scalable tool chain that
has detected 1615 configurability-related bugs and
inconsistencies from the latest version of Linux;
meanwhile 205 of our bug fixes have already been
confirmed by Linux kernel developers.

2. ANALYZING
CONFIGURATION CONSISTENCY

Linux maintains its configuration options in a dedi-
cated tool and language called Kconfig, in which the
user can graphically customize the kernel. In this tool,
kernel developers declare constraints and dependen-
cies to ensure a consistent configuration. However, as
our results show, this consistency does not necessarily
apply to the implementation of conditionally-compiled
code fragments using the C Preprocessor (CPP). We
translate both Kconfig and CPP into propositional for-
mulas so that we can use a SAT solver to automatically
find configuration defects in Linux. Our tooling, the
undertaker, thereby finds three types of defects:

Code-Code defects are blocks that cannot be se-
lected or unselected because of a contradiction in their
presence condition, such as in the following example:

#ifdef CONFIG_MMU

. // some pages of source code
#ifndef CONFIG_MMU

. // this block is dead

Subsystem | #ifdefs | Code-Code | Missing | Kconfig
arch/ 31792 18 917 18
drivers/ 30966 37 2450 10
fs/ 2938 4 52 0
sound/ 3042 2 102 0
other subsystems 11857 5 222 3

Table 1: configuration defects per subsystem
for Linux version 2.6.33.

Kconfig defects are blocks for which there is no valid
Kconfig selection that causes the block to be selected
or unselected during compilation.

Missing defects are defects that result from identi-

fiers that cannot be referenced from the source code to

Kconfig or vice versa, such as in the following patch:
diff --git a/kernel/smp.c b/kernel/smp.c

--- a/kernel/smp.c
+++ b/kernel/smp.c

-#ifdef CONFIG_CPU_HOTPLUG

+#ifdef CONFIG_HOTPLUG_CPU
In our evaluation experiment, we had two undergradu-
ate students analyze the defect reports produced by
our tooling and have them propose patches to kernel
maintainers. A total of 132 patches have been sub-
mitted, from which 71 patches have been thankfully
accepted by the Linux kernel maintainers so far.

3. CONCLUSIONS AND FUTHER
RESEARCH QUESTIONS

With our tooling, we are now in a position to answer:
How accurate is our approach and how relevant are our
submissions? What impact do configuration defects
have on the Linux kernel development? And has the
distributed nature of the Linux kernel development a
positive or negative impact on configuration defects?
From the feedback that we got from kernel developers,
our experiment to produce and submit patches has
proven to be very effective. From here, we look for a
workflow that mitigates configuration defects. We be-
lieve that if our tooling gets integrated into the Linux
build scripts and is used by developers during devel-
opment and integration of changes, such configuration
induced bugs can be detected and, at best, avoided in
very early stages of kernel development.

Our work is not limited to the Linux kernel, but can
also be applied to other operating systems, like eCos,
from which configuration constraints can be extracted
into propositional formulas.

