
Facing the Linux 8000 Feature Nightmare

Julio Sincero (PhD student), Reinhard Tartler (PhD student), Christoph Egger (student),
Wolfgang Schröder-Preikschat, Daniel Lohmann

{js,rt,siccegge,wosch,dl}@cs.fau.de
Friedrich-Alexander University Erlangen-Nuremberg

I. INTRODUCTION

System software, especially operating systems, tends to
be highly configurable. The relatively small eCos operating
system for embedded applications [1] already offers more
than 750 features; current versions of Linux provide even
more than 8000 configuration options – which technically
are implemented and enforced in the code by means of
preprocessor macros.

To assist the user on his path through this variability, both
systems additionally employ a dedicated variability model,
together with some interactive configuration tool (such as
qconf for Linux), which not only organizes, lists, and explains
these options, but also enforces a myriad of inter-feature
constraints and sanity checks to guarantee the outcome of a
sound configuration.

These two views onto the same system (variability model
vs. variability implementation) are a nightmare with respect to
maintenance and evolution. Without sophisticated tool support,
they quickly lead to “dead” code and “zombie” features
because of inconsistencies. Our initial analysis of just the ref-
erential integrity between both worlds in Linux has uncovered
around 400 bugs – and we thereby have just touched the tip
of the iceberg!

A. Variability in Linux

The Linux kernel employs its variation points at three
different levels:

Model Level: The Kconfig tool set was especially writ-
ten to support the modeling of features (also called config
options) and interdependencies of the Linux kernel. In the
version 2.6.30, a total of 534 Kconfig files are employed,
consisting of 88, 112 lines of code that describe 8063 features
and their dependencies. The user configures a Linux kernel
by selecting features from this model. During the selection
process, the Kconfig configuration utility implicitly enforces
all dependencies and constraints, so that the outcome is
always the description of a valid configuration. Technically,
this description is given as a C-style header file that defines a
CONFIG_xxx preprocessor macro for every selected feature.

Generation Level: Coarse-grained variability is implemen-
ted on the generation level. The compilation process in Linux
is controlled by a set of custom scripts called Kbuild that
interpret a subset of the CONFIG_xxx flags (generated with
the Kconfig tool set) and drive the compilation process by
selecting which compilation units should be compiled into the
kernel, compiled as a loadable module, or not compiled at all.

Implementation Level: Fine-grained variability is imple-
mented by conditional compilation using the C preprocessor.
The source code is annotated with preprocessor directives
(like #ifdef CONFIG_xxx), which are evaluated in the
compilation process. The force inclusion mechanism (option
-include) of the gcc compiler guarantees that every source
file is compiled with the set of flags defined during configu-
ration.

As of this writing, the Linux kernel has around 3 million
lines of code, 20 thousand lines of code are changed per day,
and there are around one thousand developers involved in each
release, the daily changes include refactoring/addition/removal
of features at model level and at source code level.

B. Problem Statement

This high volume of code changes makes keeping the con-
sistency of the variability in the three levels very challenging.

We have identified problems that both users and developers
may face during configuration or development. For example:
(1) during configuration, the selection of a config option may
be impossible, or may result in no effect in the generated
kernel image. (2) for testing, the developer may not be able to
find a valid configuration that enables the specific conditional
block she wants to test.

Consider the patch below, which fixes a typo in a Linux
configuration flag regarding the hot CPU plugging feature.
diff --git a/kernel/smp.c b/kernel/smp.c
index ad63d85..94188b8 100644
--- a/kernel/smp.c
+++ b/kernel/smp.c

-#ifdef CONFIG_CPU_HOTPLUG
+#ifdef CONFIG_HOTPLUG_CPU

The consequence of this typo (which remained undetected
for six months) was that when the user selected this feature
during configuration, the generated kernel image did not con-
tain the required code – CPU plugging had not been working
under some circumstances. Imagine the sysadmin who has to
figure out the source of this bug on his 7/24 system.

II. THE LIFE APPROACH

Our approach aims at closing the gap between the different
views and related that control, define, or use config options.
We have devised four consistency conditions in order to
automatically detect configuration problems on the code base
of the Linux kernel:

• Referential conditions:
1) Every reference to a config option in the source code

must be defined in the Kconfig model.
2) Every config option defined in the Kconfig model

must be referenced in the source base.
• Semantic conditions:

3) Every single config option in the source code must
be selectable in the configuration process provided
by the Kconfig tools.

4) Every #if branch that contains config options must
be enabled by at least one valid configuration de-
rived from the Kconfig tools.

Configuration problems either pollute the code base (in
case of dead code blocks) or lead to actual bugs (the wrong
selection of a conditional code block). Our approach is to
use static analysis tools on the different variability models.
Because our preliminary estimations show that currently these
consistencies are largely unregarded, we believe that by con-
sequently checking conditions the quality of the code base of
the Linux kernel can be vastly improved.

We envision tool support to support Linux engineers to
completely understand the impact of each feature on the
code base. For example, answering questions like ”What are
the consequences of deleting FEATURE X from the Kconfig
model?” implies determining which compilation units would
be disregarded and locating methods, functions, fields in
structs, and so on that would be affected by a refactoring. Our
infrastructure is designed to deal with such issues as part of
the LINUX FEATURE EXPLORER– LIFE framework. We are
optimistic that our approach avoids the current tedious, and –
as our preliminary results show – error-prone process.

III. THE LIFE TOOL CHAIN

While the explorative functionality is still future work, we
focus at this point on the detection of configuration problems.
The LIFE tool chain aims at extracting the configuration-
related information from the Linux kernel to a common
(model) representation, so that the consistency among the
involved parts can be evaluated in an automated fashion. This
is done by translating these two kinds of variability models –
the configuration model from Kconfig and the implementation
model as implemented by CPP statements in the source –
to propositional-logic statements. With these models, we use
well studied theories like Binary Decision Diagrams (BDDs)
and Boolean Satisfiability Problems (SAT) to reason about the
satisfiability of our consistency conditions. Currently, our LIFE
tool chain is comprised of the following tools:

source2rsf is our scanning tool that extracts all information
about conditional compilation. The tool is built upon the
preprocessor of the sparse static analysis tool, which was
originally developed for the Linux’s code base.

undertaker is the tool responsible for analyzing the gen-
erated rsf files, which implements our algorithm [2] for
calculating the variability induced model by CPP directives.

KconfigExtractor is based on the parser of the Kconfig
language and generates the boolean formula that represents
the Kconfig model.

IV. PRELIMINARY RESULTS

By applying our UNDERTAKER tool to the Linux kernel,
we invested around three weeks searching for configuration
inconsistencies. Our reports about dead conditional blocks
were well received by the Linux developers. In a nutshell,
none of our findings turned out as false positives. So far,
we have 14 patches accepted that are waiting for the 2.6.34
merge window; five have been accepted by Andrew Morton’s
-mm development tree. Four patches have been confirmed but
fixed independently. Three patches have been acknowledged
but are currently being discussed. Nine further patches have
been submitted but await response. Interestingly, for four
patches our findings have been confirmed, but the patches
were rejected. For these cases it turned out that the actual
development does happen in a separate development tree and
it has been argued that keeping these dead blocks serve as
“documentation” to help future merging.

The results are very encouraging. On the one hand they
indicate that tool support is definitely needed to avoid these
obvious inconsistencies. On the other hand, development styles
like out-of-tree development make automatic reporting of
these issues difficult. We therefore envision a semiautomatic
approach in which the developer is assisted with sound infor-
mation about the kinds of variability in the source artifacts he
is working on.

V. CONCLUSION AND FUTURE WORK

The management of configuration-related information is
crucial for system software. We have identified problems
that may occur due to the lack of integration between the
tools that maintain the configuration of the Linux kernel. Our
approach makes use of well-studied formalisms in order to
verify consistency between the several forms of variability of
the Linux kernel. Our tool chain is integrated into the Linux
build system in order to make it easy to use for (kernel)
developers. Our preliminary results indicate that there are
several very obvious inconsistencies in the code base that need
to be fixed. The feedback from the Linux community has been
very positive so far; also, our results seem to be accurate, as we
have not yet received feedback for any false positive. We are
currently investigating our results for the inconsistencies that
are caused by semantic inconsistencies between Kconfig and
CPP statements. Looking forward, we consider implementing
our formalism using SAT solvers instead of BDDs to compare
which realization techniques achieves the best performance.
Moreover, we will carry out a detailed study of the four of
consistency conditions violations found in the Linux kernel.

REFERENCES

[1] A. Massa, Embedded Software Development with eCos. New Riders,
2002.

[2] J. Sincero, R. Tartler, and D. Lohmann, “An algorithm for quantifying
the program variability induced by conditional compilation.” Friedrich-
Alexander-Universität Erlangen-Nürnberg, Tech. Rep., 2010.

Chair in Distributed Systems
and Operating Systems

Facing the Linux 8000 Feature Nightmare

Julio Sincero, Reinhard Tartler, Christoph Egger, Wolfgang Schröder-Preikschat, Daniel Lohmann

.

.

Operating systems are often highly configurable. Current ver-
sions of Linux provide even more than 8000 configuration op-
tions, which are implemented and enforced in the code by
means of preprocessor annotations.

To assist the user with managing variability, Linux employs
a dedicated variability model along with the interactive
configuration tool Kconfig.

We have identified that currently developers fail to detect
obvious inconsistencies between the code base and the
configuration options. Therefore, we have devised a set of
consistency rules and developed a tool chain that analyzes
the source code and automatically detects any violation of such
rules.

.Introduction
.

The variability described in the Linux Kconfig files is conceptually intercon-
nected with the source code. Both have to be kept consistent. While ana-
lyzing the Linux kernel we have discovered obvious inconsistencies, which
can be classified in two dimensions:

from Kconfig to source code from source code to Kconfig

re
fe

re
nt

ia
l
in

te
gr

it
y

#ifdef CONFIG_MMU

#endif

config MMU

def_bool y

is ref
ere

nce
d

#ifdef CONFIG_MMU

#endif

config MMU

def_bool y

is
ref

ere
nc

ed

se
m

an
ti
c

in
te

gr
it
y

#if EXPR 1

<code >

#elif EXPR 2

<code >

#elif EXPR 3

<code >

#elif EXPR 4

<code >

#else

<code >

#endif

is
selectable

#if EXPR_2

<code>

#elif EXPR_2

<code>

#elif EXPR_3

<code>

#elif EXPR_4

<code>

#else

<code>

#endif

is
selectable

.Sources of the Problem

.

X86

X86 32

X86 32 SMP

X86 64

X86 64 SMP

SMP

HOTPLUG CPU

#ifdef CONFIG X86
Block 1

ifdef CONFIG X86 64 && CONFIG X86 32
Block 2

endif
ifdef CONFIG CPU HOTPLUG

Block 3
endif
#endif

satisfiable(K ∧ C ∧ BlockN)

undertaker
K = (X86 32→ X86 ∧ ¬X86 64)

∧ (X86 64→ X86 ∧ ¬X86 32)
∧ (X86 32 SMP→ X86 32)
∧ (X86 64 SMP→ X86 64)
∧ (SMP→ X86 32 ∨ X86 64)
∧ (HOTPLUG CPU→ SMP)

P
ro

b
le

m
S

p
ac

e
C

on
st

ra
in

ts

C = (Block 1→ X86)
∧ (Block 2→ Block 1 ∧ (X86 64 ∧ X86 32)
∧ (Block 3→ Block 1 ∧ CPU HOTPLUG)

S
olu

tion
S

p
ace

C
on

strain
ts

.LIFE -- The Linux Feature Explorer

.

The LIFE tool chain scans the Linux code base and extracts information
about the definition and use of configuration options. Using propositional
logic, the undertaker transforms this into a common format such that viola-
tions of all four consistency categories can be detected reliably:

family variability

implementation
variability

Kconfig

config MMU

def_bool y

#8000 items!

Implementation

#include <kernel/sched.c>

#ifndef CONFIG_MMU

[...]

ifndef CONFIG_MMU

endif

[...]

ifdef CONFIG_MMU //DEAD

endif

[...]

#endif

#20000 files

extraction

undertaker

extraction

.Linux Feature Extraction and Analysis Framework
.

So far we have detected approximately 90 consistency violations. We have
been reporting them to the Linux community, and the feedback has been
very positive. Many of our findings have turned out to be real defects, and
the proposed fixes have already been merged into the mainline code base:

Linux found confirmed merged rejected

arch/ 3 1 1

drivers/ 40 23 19 2

drivers/net/ 13 4 4

drivers/usb/ 11 10 10

net/ 2 2 2

fs/ 10 5 3 1

sound/ 5 4 1 3

kernel 1 0

crypto/ 1 1 1

.Detected Inconsistencies

	paper.pdf
	life

