
Efficient Extraction and Analysis of
Preprocessor-Based Variability ∗

Julio Sincero Reinhard Tartler Daniel Lohmann Wolfgang Schröder-Preikschat
Friedrich-Alexander-University Erlangen-Nuremberg, Department of Computer Science 4

{sincero, tartler, lohmann, wosch}@cs.fau.de

Abstract
The C Preprocessor (CPP) is the tool of choice for the implementa-
tion of variability in many large-scale configurable software projects.
Linux, probably the most-configurable piece of software ever, em-
ploys more than 10,000 preprocessor variables for this purpose.
However, this de-facto variability tends to be “hidden in the code”;
which on the long term leads to variability defects, such as dead code
or inconsistencies with respect to the intended (modeled) variability
of the software. This calls for tool support for the efficient extraction
of (and reasoning over) CPP-based variability.

We suggest a novel approach to extract CPP-based variability.
Our tool transforms CPP-based variability in O(n) complexity into a
propositional formula that “mimics” all valid effects of conditional
compilation and can be analyzed with standard SAT or BDD
packages.

Our evaluation results demonstrate the scalability and practica-
bility of the approach. A dead-block-analysis on the complete Linux
source tree takes less than 30 minutes; we thereby have revealed
60 dead blocks, 2 of which meanwhile have been confirmed as new
(and long-lasting) bugs; the rest is still under investigation.

Categories and Subject Descriptors D.3.4 [PROGRAMMING
LANGUAGES]: Processors—Preprocessors

General Terms Languages, Measurement, Experimentation

Keywords Linux, Conditional Compilation, Variability

1. Introduction
Even though frequently criticized [26], the C Preprocessor (CPP) is
a tool that provides an intuitive mechanism to implement variability
at source code level. Its simplicity and flexibility attracts many
practitioners [16]. Also, projects with strict requirements on the
overhead resulting from the composition process of their variants
(e.g., operating systems), rely on the overhead-free mechanisms
offered by the C preprocessor.

Like many other Software Product Lines (SPLs), the Linux
kernel employs the CPP language to handle variability at source

∗ This work was partly supported by the German Research Council (DFG)
under grant no. SCHR 603/7-1.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
GPCE’10, October 10–13, 2010, Eindhoven, The Netherlands.
Copyright c© 2010 ACM 978-1-4503-0154-1/10/10. . . $10.00

code level [16]. As of this writing, the Linux kernel has around 3
million lines of code, about 20 thousand lines of code are changed
each day, and there are around a thousand developers involved
in each release. The daily changes include refactoring, addition
and removal of features. This high volume of code changes makes
keeping the consistency of the variability over all artifacts very
challenging.

The Linux kernel manages its variability by using an idiomatic
definition of configuration flags (features). Its variability model
(the Kconfig [24] model) defines a set of features and their inter-
dependencies. Later, the configuration process results in a valid
selection of features expressed as CPP flags. These flags are used
in the source code—with the addition of the prefix1 CONFIG—
to realize the model variability at code level. The problem is
that both the CPP and the Kconfig tools share a common set of
configuration flags, but they operate completely independent of each
other: While Kconfig declares dependencies and other constraints
on different configuration flags, CPP controls which conditional
slices of code are selected for compilation. Since both tools induce
different models that influence each other, this scenario easily leads
to inconsistencies if not checked accordingly. Consider the patch
below2, which fixes a typo in a Linux configuration flag regarding
the hot CPU plugging feature.

1 diff --git a/kernel/smp.c b/kernel/smp.c
2 index ad63d85..94188b8 100644
3 --- a/kernel/smp.c
4 +++ b/kernel/smp.c
5

6 -#ifdef CONFIG_CPU_HOTPLUG
7 +#ifdef CONFIG_HOTPLUG_CPU

This patch fixes a typical inconsistency problem between the vari-
ability model and the realization of implementation variability. The
feature specified in the Kconfig model was named HOTPLUG_CPU
and the developer used the flag CPU_HOTPLUG in the code; such a
simple mistake went unnoticed for almost six months in the Linux
kernel mainline tree. This shows that these two views onto the
same system (variability model vs. variability implementation) are
a nightmare with respect to maintenance and evolution. Without
sophisticated tool support, they quickly lead to dead code, that is,
code that cannot be selected by any configuration, and zombie fea-
tures, that is, annotated code that is present in all configurations.
Our initial analysis [27] of just the referential integrity between both

1 By adding this prefix it is clear to the developer which ones are the
configuration-controlled flags (that should not have their values changed
in the code because their values originate from the configuration tool) and
which are not.
2 Git revision control commit identifier: 69dd647f

MEMORY MODEL

FLAT MEMORY

DISCONTIGOUS MEMORY

SPARSE MEMORY NUMA

requires

#ifdef CONFIG_ DISCONTIGOUS MEMORY
// Code Block 1

ifdef CONFIG_ NUMA
// Code Block 2

else
// Code Block 3

endif
#endif

satisfiable(K ∧ C ∧ BlockN)

crosscheck
K = (FLAT MEMORY→ MEMORY MODEL)

∧ (DISCONTIGOUS MEMORY→ MEMORY MODEL)
∧ (SPARSE MEMORY→ MEMORY MODEL)
∧ (NUMA→ MEMORY MODEL)
∧ (DISCONTIGOUS MEMORY→ NUMA)

P
ro

b
le

m
S

p
ac

e
C

on
st

ra
in

ts

C = (Block 1→ DISCONTIGOUS MEMORY)
∧ (Block 2→ Block 1 ∧ (NUMA)
∧ (Block 3→ Block 1 ∧ ¬Block 2)

S
olu

tion
S

p
ace

C
on

strain
ts

Figure 1. Inconsistency in Linux v2.6.33 in arch/x86/include/asm/mmzone_32.h found by our approach.

worlds in Linux has uncovered around 400 inconsistencies—and
with this, we have just touched the tip of the iceberg!

In [27], we have shown that there is reason to expect various
kinds of inconsistencies in the Linux implementation. In order to
detect both referential (referenced configuration items in the Kconfig
model that are not found in the source code and vice versa) and
semantic inconsistencies (code that cannot be enabled or disabled by
any valid configuration derived from the Kconfig model), we have
sketched a suitable infrastructure to address this problem; in this
work we present a concrete approach that is a fundamental part for
the solution of this problem. While various approaches [7, 13, 14, 21,
28] compare feature models with implementation variability models,
all of them either require the implementation model to be created and
maintained separately or have trivial (1 to 1) mapping from model
to solution. However, in many cases such models are simply not
available (e.g., because of the use of legacy code, 3rd party software,
etc.) and manual reengineering based on the implementation is not
feasible. Instead, we use the model that is hidden in the source code
as expressed by the means of CPP directives.

Our ultimate goal is to exploit both the configuration variability
from the feature model as well as the implementation variability
model from CPP directives, as shown in Figure 1. Nevertheless, in
this work we concentrate on the right hand side of Figure 1; that
is, how to extract the boolean formula from the preprocessor-based
source artifacts in order to enable the crosschecking between the
variability model and the implementation. Figure 1 shows a real
example of inconsistency between the variability model and the
implementation variability that was revealed by our approach. The
#else block of the code snippet on the right hand side will never
be selected by any valid configuration of the model shown in the left
hand side. This is because the feature DISCONTIGOUS_MEMORY
requires the feature NUMA as described in the variability model, and,
in the code, the conditional block that depends on NUMA is nested in
the block that depends on DISCONTIGOUS_MEMORY, therefore,
when the outer block is selected, the first inner block will always
be. Consequently, the #else block will never be enabled. The
problem satisfiable(K∧C ∧Block3), which conjugates the model
constraints (K), the implementation constraints described as CPP
statements (C) and a specific CPP block (Block3) is unsatisfiable.
By solving this formula we can assure that this block of code is
dead.

As we will show in the remainder of this document, the sole
model derived from the source artifacts not only enables the men-
tioned crosscheckings, by it can also reveal inherent inconsistencies

and defects in the source code. In this work, we present a funda-
mental building block for our approach to crosscheck model and
implementation variability; the extraction of the implementation
variability into a boolean formula enables several kinds of reason-
ings in order to better integrate CPP-based artifacts into the SPL
development.

1.1 Challenges
We present an approach to extract a variability model directly from
source code that uses the CPP, which can then be used for further
analysis. This makes most sense in projects with a considerable code
size; in smaller projects the implementation variability is rather clear.
In Linux, we are facing a project with nearly 30,000 source files that
contain over 60,000 configuration-dependent conditional blocks. In
order to make this technique useful for both (1) developers during
the regular development phase (where few files of interest), and
(2) variability studies (where the whole code base is of interest),
this process needs to be fast. The best technique proposed so
far is the use of symbolic execution techniques on preprocessor
statements [10, 15]. While these techniques are precise, they have
scalability issues. We propose an approach that is both precise and
fast. We envision the integration of our techniques in development
environments so that variability analysis, like finding configuration
defects, redundant or dead code, can be seamlessly integrated to the
build process.

1.2 Contributions
In summary, we make the following contributions:

1. We formalize the CPP directives using propositional logic.

2. We present an approach to build the boolean formula that
represents the variability of compilation units.

3. We provide a tool chain that implements our theoretical con-
cepts.

4. We present a feasibility study by applying our tool to the Linux
kernel, which revealed 4 inconsistencies in its code base (without
considering additional constraints from Kconfig).

2. Extracting Variability from Source Code
In this section, we formalize the mechanisms for conditional com-
pilation. We strictly follow the CPP language specification [11],
Section §10.6.1, and employ propositional logic as means of ab-

Directive Description
#if EXPR conditional inclusion on the following

block if EXPR evaluates to true
defined IDENT Inside EXPR, the operator defined

checks if the CPP flag IDENT has been
defined

#ifdef IDENT abbreviated form for
#if defined IDENT

#ifndef IDENT abbreviated form for
#if !defined IDENT

#else alternative block if the preceding block is
not included

#elif EXPR conditional inclusion on the following
block if EXPR evaluates to true and the
preceding block is not included

#else alternative block if the preceding block is
not included

#endif terminates an conditional included block

Table 1. C Preprocessor directives related with conditional compi-
lation

straction. We introduce several definitions that basically represent
conditional-compilation concepts in terms of logic constructs. With
these definitions, we build the boolean formulas that represent the
implementation variability model of CPP-based compilation units.

The resulting variability model mimics the semantics of the CPP
that are relevant for conditional compilation. On this basis, advanced
reasoning —similar to work published for feature models [4]— can
be done without an explicit variability description.

2.1 Background: Conditional Compilation
Conditional compilation relies on source code annotations that
follow the CPP language. The semantic rules that arise from the
CPP language specification are pretty complex. Fortunately, for a
quantitative analysis of the variability induced by CPP, it is sufficient
to focus on the rules that control conditional compilation.

The C Preprocessor is controlled via special preprocessor di-
rectives that are specified directly in the source code. Not every
preprocessor directive is useful for implementing variability. For
the purposes of this paper, we focus on the subset of the CPP lan-
guage that includes directives shown in Table 1. The directives #if,
#elif, #ifdef and #ifndef are used to declare conditional
blocks, which are skipped or copied to the output stream depending
on the result of the evaluation of their argument. This argument can
either be a single CPP flag (such as the IDENT parameter of the
#ifdef and #ifndef directives) or a logical expression (such as
the EXPR parameter of the #if and #elif directives). Addition-
ally, conditional blocks can be nested.

In this context the C Preprocessor is used to insert slices of
source code into its output stream according to the set of defined
CPP flags. Technically, these flags are defined at compilation time
either as command-line parameter or by using #define directives.
In this paper, we discuss boolean configuration flags only. In practice,
configuration flags can also be integers that are compared and
checked during preprocessing.

The following listing shows the most trivial example of a
conditional block:

1 #ifdef CONFIG_SMP
2 //block 1
3 #endif

The number of variants that can be composed from this code snippet
is two: Either the item CONFIG_SMP is set, then block 1 is

selected, or if CONFIG_SMP is not set, then block 1 is skipped.
The next listing shows alternative blocks:

1 #ifdef CONFIG_SMP
2 //block 1
3 #else
4 //block 2
5 #endif

Here, we have again in total two variants that can be composed.
Depending on the definition of CONFIG_SMP, either block 1 or
block 2 is selected. Another use of if-groups can be seen in the
following listing:

1 #ifdef CONFIG_SMP
2 //block 1
3 #elif defined CONFIG_APIC
4 //block 2
5 #endif

In this example, there are three variants that can be composed: If
both items are unset, then none of the blocks are selected. Block 2
is selected only if CONFIG_SMP is unset and CONFIG_APIC is
set. If both flags are set, then block 1 gets precedence.

Important for the understanding of our approach is the concept
of block. It represents the snippet of code that is controlled by
conditional compilation. The variability of a CPP-based compilation
unit is basically the set of all possible block combinations that the
CPP can generate for the compilation unit.

2.2 Basic Definitions
DEFINITION 1. [Configuration] Given n boolean configuration
flags found in a compilation unit u, a configuration is the vector
#»

f = f1, . . . , fn, where fi is a boolean variable representing the
assignment of the i-th configuration flag.

Configuration flags control the selection of conditional blocks in a
compilation unit. Each member of the vector

#»

f represents the flag
assignments as seen by CPP. For example, the file shown in Listing 1
makes use of three different flags; therefore its configuration vector
is defined as

#»

f = {A, B, C}. If this file is compiled with only
the flag B is defined, according to our definition, the configuration
vector is set as

#»

f = {false, true, false}.

DEFINITION 2. [Block Selection] Given a compilation unit u with
m conditional blocks, the block selection is the vector

#»

bu =
b1, . . . , bm, where bi is a boolean variable that represents the
presence of the i-th conditional block.

1 #if (defined A || defined B || defined C)
2 //block 1
3 # if defined A
4 //block 2
5 # elif defined B
6 //block 3
7 # else
8 //block 4
9 # endif

10 #endif

Listing 1. Example of Conditional Blocks

Each variable in this vector represents a conditional block in the
compilation unit u. The block selection represents the selection as
done by the CPP; that is, the members of the vector

#»

bu that represent
selected blocks are set to true and members representing skipped
blocks are set to false. For example, the block selection vector of
the file shown in Listing 1 is defined as

#»

bu = {b1, b2, b3, b4}. If
this file is compiled with only flags A and B set, that is, using the
configuration vector

#»

f = {true, true, false}, the resulting pre-
processed file will contain blocks b1 and b2, consequently, the block
configuration vector will be

#»

bu = {true, true, false, false}
Using Definition 1 and Definition 2, the process of applying a

set of configuration flags
#»

f to a compilation unit u that contains m
conditional blocks

#»

bu can be expressed by the following function
(which is compilation unit dependent, therefore, the index u) Pu:

Pu(
#»

f) 7→ #»

bu (1)

This function represents the mapping from a given configuration
#»

f to a specific block selection
#»

bu if preprocessing is performed
by the CPP tool. Since the basic nature of propositional formulas
is to work on binary decisions, our approach does not attempt to
calculate the function Pu directly. Instead, a helper function Cu that
checks the behavior of CPP for a given configuration is built using
propositional logic. Our approach allows deducing the variability
indirectly with the following checker function:

DEFINITION 3. [Checker Function] Given a function Pu that rep-
resents the conditional compilation semantics of the CPP language,
a configuration vector

#»

f and a compilation unit u with the block
selection vector

#»

bu, the checker function Cu is defined as:

Cu(
#»

f ,
#»

bu)→

true ⇐⇒ Pu(
#»

f) =
#»

bu

false ⇐⇒ Pu(
#»

f) 6= #»

bu
(2)

In order to extract the variability model from the compilation
unit u, the function Cu must be constructed. According to the
specification of the CPP language there are three preconditions
for the inclusion of a conditional block during preprocessing:

1. The expression that controls conditional inclusion must eval-
uate to true, otherwise the block is completely skipped [11,
§6.10.1, 1].

2. A nested block can be selected if and only if its parent is also
selected [11, §6.10.1, 5].

3. For if-groups (groups that contain the directive #elif or
#else), the blocks are evaluated in declaration order. The first
that evaluates to true is selected, all others are skipped. The
#else conditional is selected when none of the predecessor
blocks of the if-group evaluates to true [11, §6.10.1, 5].

These three preconditions control the presence condition of con-
ditional blocks. Together, they are necessary and sufficient, which
means that if they are valid for a specific block, this block will
necessarily be selected by the CPP. They can be directly translated
to the following helper functions:

expression(bi) Given a block bi, the function expression(bi) returns
the logical expression as specified in the block declaration. Ex-
ample: For the first block in Listing 1, the function expression(b1)
returns: A ∨B ∨ C.

parent(bi) Given a block bi, the function parent(bi) returns the
logical variable that represents the selection of its parent. If the
block is not nested in any other block, then the result is always

true. Example: For the third block in Listing 1, the function
returns: b1.

noPredecessors(bi) Given a block bi, the function noPredeces-
sors(bi) returns the negation of the disjunction of all its pre-
decessors (logical variables representing blocks) in an if-group.
Example: For the fourth block of Listing 1 (noPredecessors(b4)),
the function returns: ¬(b2 ∨ b3).

Note that the helper functions do not return boolean values, they
actually return3 logic expressions containing logic symbols and oper-
ators. Using these functions, the presence condition for conditional
blocks is constructed as follows:

DEFINITION 4. [Presence Condition] A conditional block bi is
selected by CPP if and only if the following conjunction holds:

PC(bi) = expression(bi) ∧ noPredecessors(bi) ∧ parent(bi)
(3)

The presence condition PC(bi) allows us to build a boolean formula
that can be used to check if a specific block is to be selected
for a configuration

#»

f . Combining all presence conditions of a
compilation unit allow us to build the checker function:

Cu(
#»

f ,
#»

bu) =
^

i=1..m

bi ↔ PC(bi) (4)

The checker function returns a boolean formula containing n + m
variables, where n is the size of the vector

#»

f and m is the size of the
vector

#»

bu. The function is simply the conjunction of the presence
condition of all blocks of a specific compilation unit. It is important
to note that the vector

#»

f does not explicitly appear on the right hand
side of the function because it will appear implicitly a result from
function expression(bi) when calculating the presence condition
of a block. Also important, is the biimplication between a block and
its presence condition. When a block has its presence met, it is not
only allowed to be enabled, but it will necessarily be enabled by the
CPP, it means that not only the block implies its presence condition,
but the presence condition also implies the block, therefore the
biimplication.

This function is satisfiable for the variable assignments that
correspond to valid behaviors of the CPP. The checker function is
able to verify if a specific block selection

#»

bu represents the resulting
preprocessing when given a configuration

#»

f and a compilation
unit u. Consequently, the term variability is defined as follows:

DEFINITION 5. [Variability] Given a compilation unit u and the
checker function Cu, the variability V of a compilation unit u is the
set of all block selections

#»

bu for which there exists a selection
#»

f
such that Cu is satisfied:

V = { #»

bu | ∃
#»

f : Cu(
#»

f ,
#»

bu)} (5)

2.3 Calculating Variability with Checker Function

The variability V (Formula (5)) is therefore the set of vectors
#»

bu that
can be mapped by the function Pu(

#»

f) (Formula (1)) with at least
one input configuration

#»

f . This set can be calculated by generating

3 For some function calls, the returned expression is trivial. For example,
the call of parent() for a top-level block, expression() for an else block, or
noPredecessors() for a block that does not belong to a if-group. In all cases,
we can return the constant true and (optionally) avoid its inclusion in the
resulting presence condition.

1 #if defined A || defined B || defined C
2 # if defined (A && B)
3 # elif defined (A && C)
4 # elif defined (B && C)
5 # ifdef C
6 # else
7 # endif
8 # else
9 # endif

10 #endif

Listing 2. Source Code Example with all language features for
Conditional Compilation.

the Checker Function Cu (Formula (4)), and solving the satisfiability
problem that follows from Formula (2). The complexity to produce
these constraints therefore effectively scales linearly (O(n)) with
the number of conditional blocks. Solving the resulting formulas of
course remains NP complete.

The result of this method is therefore a propositional formula
that represents the implementation variability. It serves as a building
block for further reasoning techniques that can be integrated into
software engineering tools. The formula that we generate is not
a visual or editable model; it is a logic representation of the
variability as described by the CPP annotations, similar to other
approaches [4, 6, 7, 20] that translate visual models (e.g., feature
models) into boolean formulas.

Concrete Example
In order to explain how the construction of the checker function
works in practice, we show the results for a combined example.
For additional examples, please refer to [25]. In order to make the
understanding easier, we use the following annotations:

• The symbol� at the end of each line specifies in which iteration
the presence condition of the corresponding conditional block is
generated.

• Each clause has been marked with an overbrace (
I f()z}|{) in order

to indicate which helper function provided each part of the
resulting presence condition.

The example shown in Listing 2 uses all semantic elements of
the CPP language that are relevant for conditional compilation. The
complexity of the example is typical for real world code. From this
source code, we construct the checker function as shown in Figure 2.

The first iteration generates the clause for the top level block
b1. The clause I expression() generates a biimplication from the
block b1 on its expression, i.e., the block is selected if and only if
its expression holds. This clause corresponds to the helper function
expression(bi) as described in Section 2.2.

The biimplication for block b2 (lines 2-3) is generated in itera-
tion 2. The first clause (marked withIparent()) ensures that if block
b2 is selected, then b1 must be as well. This clause corresponds to
the helper function parent(bi). Clause Iexpression() is constructed
in the same way as for block b1.

For block b3 (lines 3-4) all three helper functions contribute to
its presence condition. Because this block is a successor of block b2

and must not be considered by CPP in case block b2 is selected, the
clause InoPredecessor() ensures that b3 can only be selected if b2

is not.
Blocks b5 (line 5) and b6 (line 6) form a group of blocks nested

inside block b4 (line 4-8). Therefore, iteration 5 and 6 generate
the clauses I parent(), I expression() and I noPredecessor() for

Cu({A, B, C}, {b1, . . . , b7}) =
^

i=1..7

bi ↔ PC(bi) =^
i=1..7

bi ↔ expression(bi) ∧ noPredecessors(bi) ∧ parent(bi) =

“
b1 ↔ (

Iexpression(b1)z }| {
A ∨B ∨ C)

”
(� 1)

∧
“
b2 ↔ (

Iexpression(b2)z }| {
(A ∧B) ∧

Iparent(b2)z}|{
(b1))

”
(� 2)

∧
“
b3 ↔ (

Iexpression(b3)z }| {
(A ∧ C) ∧

InoPredecessor(b3)z }| {
¬(b2) ∧

Iparent(b3)z}|{
(b1))

”
(� 3)

∧
“
b4 ↔ (

Iexpression(b4)z }| {
(B ∧ C) ∧

InoPredecessor(b4)z }| {
¬(b2 ∨ b3) ∧

Iparent(b4)z}|{
(b1))

”
(� 4)

∧
“
b5 ↔ (

Iexpression(b5)z}|{
(C) ∧

Iparent(b5)z}|{
(b4))

”
(� 5)

∧
“
b6 ↔ (

InoPredecessor(b6)z }| {
¬(b5) ∧

Iparent(b6)z}|{
(b4))

”
(� 6)

∧
“
b7 ↔ (

InoPredecessor(b7)z }| {
¬(b2 ∨ b3 ∨ b4) ∧

Iparent(b7)z}|{
(b1))

”
(� 7)

Figure 2. Checker function for Listing 2.

both blocks with the corresponding expressions and using the same
parent (b4).

Block b7 (line 6) is treated in the last iteration. Since this is an
#else block without an expression of its own, only the clauses
Iparent(), and InoPredecessor() are generated.

We identify the following solutions that satisfy this checker
function:n

{∅, ∅}, {C, b1, b7}, {B, b1, b7},

{B, C, b1, b4, b5}, {A, b1, b7}, {A, C, b1, b3},

{A, B, b1, b2}, {A, B, C, b1, b2}
o

Note that the tuples are in the form (
#»

f ,
#»

b), but for an easier-to-read
representation we show only the vector members that are set to true,
therefore, the empty set ∅ represents a vector where all member are
set to false. From these solutions, we identify as variability:

V =
n
{b1, b7}, {b1, b4, b5}, {b1, b7}, {b1, b3, }{b1, b2}

o
(6)

The set V corresponds to all possible configurations (different
block selections) that the CPP can generate for the file shown in
Listing 2. This is possible to be calculated due to the characteristics
of the boolean formula shown in Figure 2, which is built taking into
consideration the structure of the input file and the semantics of
the CPP language, as a result, it is a compact boolean formula that
mimics the CPP preprocessor for a specific source file.

2.4 Reasoning on Implementation Variability Models
The formula explained in Section 2.3 represents the implementation
variability model of a compilation unit. Based on this model,
similar reasoning techniques like already proposed for feature
models [4, 6, 29] can be performed as well.

Number of variants: using the formula Cu built by our ap-
proach, we are able to calculate the number of all possible different
configurations a compilation unit can be translated to, for example
sat_count(Cu).

Calculating all variants: using Cu we can also calculate all
valid variable assignments, for example all_sat(Cu). Using this, we
can classify which assignments lead to the same configuration, and,
as a result, the unique set of valid block configurations.

Validation: using Cu, we check for internal consistency, that is,
checking for each block of a compilation unit if it is selectable by
at least one valid configuration, for example satisfiable(Cu ∧ bi).
External consistency (e.g., implementation model versus feature
model) can also be performed to check if each block is selectable by
at least one valid configuration from the feature model. For example,
using FM as the boolean formula representing a feature model, we
can calculate satisfiable(Cu ∧ bi ∧ FM).

Reasoning about edits: the algorithms for reasoning about edits
to feature models presented by Thum [29]—for finding out how a
refactoring on a feature model (in our case on the CPP directives)
impacts the model variability—can also be applied to the formula
Cu.

Filtering and partial configurations: reducing the number
of variation points is an effective means to help understanding
the implementation. By preconfiguring a subset of the available
configuration flags (assignments to some variables of

#»

f) to constrain
the Cu formula, both simplified #ifdef expression of conditional
blocks as well as unselectable blocks can be queried and used to
provide such a partial view

3. Analyzing Implementation Variability
With the theoretical insight on how to extract a variability model
from CPP statements from the previous section, in this section we
discuss and evaluate how to apply our approach to SPLs.

3.1 Implementation Overview
Our approach is organized in a frontend and a backend part such that
it can be applied to any kind of software using CPP annotations. The
frontend analyzes and extracts the expressions and structure of CPP
statements in an implementation variability database. On this basis,
the backend generates the formulas as presented in Section 2.3.

As frontend, we have written the tool source2rsf, which extracts
CPP directives from source files. It is based on the existing prepro-
cessor implementation found in the sparse [18] analyzer. The tool
captures the details of block declarations such as #ifdef expres-
sions, nesting, successors, predecessors, etc. This data is saved in
text files and contains all the required input information for build-
ing the constraints of the checker function from Section 2.3. The
backend is implemented with our tool undertaker, which uses the
concepts from Section 2.2 to construct the checker function de-
scribed in Section 2.3. It produces propositional formulas that can
be further processed with standard Binary Decision Diagram (BDD)
packages like buddy [5] or SAT solvers like limmat [17]. As already
studied [4, 20], the reasoning techniques described in Section 2.4
have drastic performance fluctuations depending on the used real-
ization technique. For example, calculating the number of variants
can be efficiently done by BDDs, whereas SAT solvers are more
suitable for validation checking. For this reason, we provide both
variants of our backend.

3.2 Analyzing Source Artifacts vs. Compilation Units
The frontend can be employed in two distinct modes, which have a
large impact on the results.

In compilation-unit mode, the frontend is used together with or
in place of compiler invocations. In this mode, the frontend includes

104 #ifdef CONFIG_PROC_FS
105 #include <linux/proc_fs.h>
106 #include <linux/seq_file.h>
107 #endif

Listing 3. Excerpt of net/ipv4/igmp.c: The headers
proc_fs.h and seq_file.h are processed the (additional) con-
dition that the configuration option CONFIG_PROC_FS is set.

referenced headers by processing #include directives in order
to detect variability defects "across" source artifacts, an approach
that also is commonly used by static analysis tools, such as the
proposed approaches to analyze CPP-induced variability by means
of symbolic execution [10, 15]. While analyzing variability “as the
compiler sees it” clearly has its merits, this approach also has serious
practical limitations. Firstly, the tools need to be integrated in the
build scripts of the software to be analyzed, which can be a tedious
task. Secondly, the coverage is often unclear, as in nontrivial SPLs
(such as Linux) not only the preprocessor, but also the build scripts
themselves are employed to implement variability; the set of source
artifacts that actually gets compiled depends on the configuration.
Thirdly, in large SPLs the expansion of #incude files into many
compilation units can lead to a significant growth of the code lines to
be analyzed, with consequences for the analysis computation times.
We shall see the results for Linux in Section 3.5.

For this reasons, we also support a source-file mode. In this
mode, the frontend simply processes each and every source artifact.
This does not require integration into the build scripts, maximizes
the analysis coverage and avoids unnecessary processing of headers
that are included by several other implementation artifacts. The
limitations of this approach are that it (a) misses potential changes
to CPP identifiers induced by the build system itself and furthermore
(b) misses configuration defects that spread across multiple source
artifacts.

Listing 3 shows a typical example how (b) manifests in Linux.
The constraints that are in effect in lines 105 and 106 of igmp.c,
which use the #include directive to textually include other
source artifacts, are taken into account only in compilation-unit
mode, but missed in source-file mode – the ‘imported” variability
from the header files proc_fs.h and seq_file.h is not taken
into account. For reasoning techniques like reasoning on edits or
calculating partial configurations (cf. Section 2.4), this fact may
not matter, but in general, this can skew the results. We shall discuss
the effects for analyzing Linux in Section 3.5.

3.3 Efficient Analysis for Very Large Variability Models
Our approach calculates a logical formula that needs to be solved. In
this formula, each conditional block and each configuration flag
is represented by a logical variable. As solving this formula is
essentially a satisfiability problem, which is NP-complete, a very
important question to be answered is how this approach scales for
very large SPLs. In order to handle the problem size, we have applied
two optimizations.

The first optimization is to tailor the analysis to only those
#ifdef statements that are actually controlled by the configuration
process. Essentially, only these statements constitute the interesting
variation points for our analysis. The exact set of configurability-
related CPP-identifiers depends on the configuration tool, but gen-
erally can be easily determined. In the case of Linux this is even
prescribed by a coding guideline: configuration-related preprocessor
flags are always prefixed with CONFIG_. Therefore, only #ifdef
expressions that contain one or more CONFIG_-prefixed identifiers
mark interesting variation points. Our tool uses an optional matching

1 #ifdef CONFIG_SCHEDSTATS
2 // code ommitted
3 #ifdef CONFIG_SMP
4 // code ommitted
5 #endif
6 // code ommitted
7 #else /* !CONFIG_SCHEDSTATS */
8 // code ommitted
9 #endif

10

11 #ifdef CONFIG_SCHED_SMT
12 // code ommitted
13 #else
14 // code ommitted
15 #endif

Listing 4. Excerpt of kernel/sched.c, lines 307ff: Two
#ifdef-clouds, which can be processed independently.

expression to automatically detect—and skip—conditional blocks
that are not of interest.

The second optimization is to split the variability model of a com-
pilation unit into smaller models that can be validated independently.
The smaller models contain only blocks that are related. A block is
related to the block it is nested in, and to its alternative blocks (in an
if-group). We call these groups of blocks #ifdef-clouds. Consider
Listing 4, which is taken from the source code of the Linux sched-
uler. The conditional blocks that start with CONFIG_SCHEDSTATS
(lines 1 to 9) and CONFIG_SCHED_SMT (lines 11 to 15) are inde-
pendent, because the CPP-statements from the first group cannot
take effect on the number of variants that can be produced from the
second group—and vice versa. This means that we can calculate
and solve the logical formulas for both clouds independently, which
effectively reduces the problem size. For example, when we consider
the file shown in Listing 4 as a whole, the resulting boolean formula
contains 8 variables (5 blocks + 3 identifiers). In contrast, when we
analyze the clouds independently, the first will produce a formula
with 5 variables (3 blocks + 2 identifiers) and the second with 3
(2 blocks + 1 identifier). For very large SPLs (such as Linux) this
optimization has a dramatic effect (and actually makes the approach
feasible at all). Recall that to check the validity of blocks we have
to solve the formula satisfiable(Cu ∧ bi) for every block of the file
(or in the optimized version for every block of a cloud). The fewer
variables in the formula Cu the faster we can solve the satisfiability
problem.

3.4 Case Study #1: Variability Analysis of the Graph
Product Line

In order to evaluate how well the various reasonings presented in
Section 2.4 can be performed we conduct two case studies. The
first study case is performed with the well-known Graph Product
Line (GPL) [19]. We used the CPP-based version of this project
that was generated with the CIDE [13] tool. In this evaluation, we
implement the reasoning number of variants and calculating all
variants in order to get insights into the implementation variability
and compare it with the feature model. These two reasonings require
the BDD variant of our backend implementation.

The feature model of the GPL contains 20 features, of which 140
valid variants can be created. Using our approach we now analyze
the variability of the source code. For this, we analyze all 10 java
files with our tools. Table 2 summarizes the number of variants,
blocks and #ifdef clouds per implementation file. Interestingly,
the variability is very concentrated in two hot spots, namely the files

Implementation Variability
Source File: V C B
Neighbor.java 1 0 0
Edge.java 2 4 4
WorkSpace.java 2 1 1
Main.java 3 1 2
NumberWorkSpace.java 3 1 2
RegionWorkSpace.java 4 1 3
CycleWorkSpace.java 4 1 4
WorkSpaceTranspose.java 6 1 5
Vertex.java 2,064 26 79
Graph.java 5,760 43 121

Total 10,367 79 221

Table 2. Implemenation Variability Analysis of the Graph Product
Line. Where V is the number of variants, C the number of #ifdef
clouds, and B the number of blocks.

Mode: Source File Compilation Unit
#ifdef clouds 25,844 3.67 · 106

Coverage 100% 77%
t(frontend) > 20 min ≈ 5.5h
t(Validation w/ SAT) > 6 min ≈ 6h
t(Validation w/ BDD) > 275 min N/A

Table 3. Evaluation Results for Linux Kernel Version 2.6.33. The
columns compare the two different approaches scanning all source
files and scanning all compilation units.

Vertex.java and Graph.java. By combining all possible
variants of all implementation files we are able to calculate the total
number of variants that is described by the code base: 10,367. This
represents the total number of variants that can be generated with
the CPP if all 20 CPP identifiers could be selected and deselected
in an arbitrary fashion.

Even though this number is way below the 220 combinations that
are theoretically possible, it is also way above the 140 variants that
are specified by the feature model. In fact, the variability described
by the feature model covers less than 2% of the variability described
in the source code. This dramatically demonstrates the “semantic
poorness” of CPP-based variability. How the CPP is employed to
implement variability in some source code does not teach us much
about the actually intended variability. This also indicates that an
automatic extraction of feature models from the implementation (an
idea that frequently pops up) is probably a very challenging task.

Our conclusion is that both models of variability, feature model
and implementation, have very different characteristics and need to
be investigated together. Our approach facilitates this for SPLs that
employ the CPP for the implementation of variability. For example,
we can use Cu to check if all different variants (from the feature
model) will actually differ in the generated code . The importance
of operations that search for inconsistencies between model and
implementation (short: crosscheckings) has been confirmed by
several authors [7, 21, 28]. Our approach contributes to this body
of work by enabling—through automatic extraction—the use of
the implementation variability in form of CPP directives in the
reasoning processes.

3.5 Case Study #2: Finding Dead Code in Linux
To learn how well our approach performs on real software projects,
we apply it to a very large SPL [23]. According to [16], the Linux
kernel code is one of the largest configurable software projects that
is available for analysis, which makes this code base an ideal test

bed for our approach. The evaluation is done on a modern Intel
Quad Core workstation with 2.83 GHz and 8 GB RAM. Table 3
summarizes the results.

In order to get insight about the practical differences of the
two modes of operation as defined in Section 3.2, we apply both
approaches to Linux version 2.6.33. The frontend extracts prepro-
cessor statements from the source code and stores them in a way
usable for the backend.

In source-file mode, the frontend processes all 26,765 source files
that match the pattern *.[chS], which results in 25,844 #ifdef
clouds. With this approach, we gain full source-tree coverage and
can create all logical formulas in about half an hour.

In compilation-unit mode, the frontend extracts preprocessor
statements from expanded compilation units. We compile a kernel
with the assumably “largest configuration”, which is allmodconfig
on the x86 architecture. During this analysis, ony 77% of all source
files are accessed, the remaining 23% source files of the Linux tree
belong to other configurations only. Note that while the coverage is
lower, the number of #ifdef clouds is orders of magnitudes higher
(3.6 million). The reason for this is that a compilation unit in general
consists of more than one source file, and many (if not most) header
files are included textually in many different compilation units. This
leads to the fact that conditional blocks in the same header files have
to be processed several times.

On this basis, we implement a consistency check that validates
the extracted implementation variability model. It essentially detects
conditional blocks that are not selected under any possible input
configuration, which we call dead blocks [27]. Since this check is
a satisfiability problem, the SAT variant of the undertaker tool is
sufficient to perform this reasoning. However, we also use the BDD
variant in addition to compare the performance of both backends.
It turns out that both the frontend as well as the backend of our
toolchain take their time: about half an hour when employing source-
file mode and over 12 hours in compilation-unit mode. Note that
these numbers describe the times necessary to analyze the whole
code base, however, the source files are analyzed independently of
each other. This means that if our approach is employed during
implementation, the developer can find problems in specific files in
less then one second. Nevertheless, these numbers also show that
with our approach this kind of complete analysis becomes feasible
even with very large scale SPLs.

Naturally, the BDD and SAT variants of the backend find
the same dead blocks. We reveal 60 dead blocks in compilation-
unit mode and 4 in source-file mode, two of which meanwhile
have been confirmed as new bugs (the other two are still under
investigation) by the upstream Linux developers, who have accepted
our corresponding patches4. These bugs have remained undetected
in the Linux source code for more than 5 years!

Analyzing Compilation Units Revisited
The variability model extraction in compilation-unit mode requires
a considerably larger amount of time than processing all source
files individually. However, as the two modes of operation produce
different results only 5, for compilation units that use conditional
#include directives (as shown in Listing 3), we have analyzed
how many compilation units actually use this construction. It turns
out that from 7,081 processed compilation units, less than 5%
actually use conditional #include directives. This means that,
a both fast and complete analysis can be achieved by first processing

4 http://lkml.org/lkml/2010/4/26/90,
http://lkml.org/lkml/2010/4/26/87
5 Note that the 4 dead blocks found with the source-file mode were also
found by the compilation-unit mode, the other 56 dead blocks result from
specific combinations of source files through conditional inclusion.

all source file individually, then determining which compilation
units use conditional #include directives, and finally reprocess
only these ones in expanded compilation mode.

4. Discussion
The implementation variability model that we automatically extract
from CPP-based source files can be used in a variety of ways to
improve the SPL development. We have shown that our implementa-
tion can be used to analyze the variability of an SPL implementation
as well to reveal inconsistencies. Nevertheless, our model can also
be combined with several state-of-the-art techniques to support dif-
ferent areas of the SPL development. This section is to be understood
as an analogy to various related approaches that apply reasoning and
similar techniques to feature models. Future work include picking up
ideas sketched in this section for the development and/or integration
of new tools to support further analysis and bug finding techniques.

4.1 Understanding the Variability of Software Product Lines
The management of variability is crucial for SPLs. However, un-
derstanding the variability spread over many artifacts can be very
complicated, and, without appropriate tool support, it can be even
hopeless. In order to answer questions like Is the code base flexible
enough to build all variants allowed by the feature model? an ap-
propriate representation of the implementation variability model is
absolutely required. Such an implementation variability model en-
ables SPLs tools to be aware whether the feature model is expressive
enough, or efficiently check if any two valid and distinct variants
produce the same configured source tree without actually running
the CPP. Both cases are an indicative of bugs; either in the feature
model or in the implementation.

Another important matter for the understanding of SPLs is
feature interaction. Features that have no relationship in the feature
model often interact with each other in the implementation. An
implementation model that contains the information regarding how
code depends on features can also help with the understanding
of (static) feature interactions. Moreover, this information from
the implementation model is an important element for metrics, for
example, for determining the level of interaction of features (with
how many other features it appears on block declarations, etc.), or for
the level of scattering of a feature (in how many block declarations
it appears), among others.

4.2 Maintenance and Evolution
In order to avoid the introduction bugs during refactoring, checking
the consistency of the variability among different artifacts is very
important. Therefore, tool support for assessing the effects of
refactoring on the variability is indispensable.

We believe that our model can support maintenance and evolu-
tion of SPLs by automatically detecting several kinds of inconsisten-
cies in different ways. For example, while working on new code or
changing the feature model, our techniques can help the developer to
check if his changes introduce any consistency problems. Moreover,
our tool can also be used periodically by an SPL specialist to check
for inconsistencies or simply to assess the current state of the SPL
variability in order to plan the SPL’s evolution steps, for example
addition of new feature, removal, refactoring, etc.

4.3 Testing
Techniques for testing SPLs can also take advantage of our approach.
For example, with a specific configuration (e.g., from the feature
model) at hand it is possible to assess how many (and which)
conditional blocks of a specific compilation unit will be covered
by a given test case. This information can be used to determine if
the configuration for the test is adequate (if it covers the required

http://lkml.org/lkml/2010/4/26/90
http://lkml.org/lkml/2010/4/26/87

blocks to be tested) or not. The other way around, that is, discovering
the number of different (and what they look like) configurations
that are necessary for covering all blocks of a specific compilation
unit can also be automatically determined using the implementation
variability model.

4.4 Limitations
The algorithm we have presented in this article has two obvious
limitations. First, the subset of the CPP language contains condi-
tional compilation with boolean configuration flags only. As far
as conditional compilation is concerned, the decision if a block
is selected or not is intrinsically boolean. Therefore, each ex-
pression that involves nonboolean flags and operators (e.g., ==,
<, etc.) is replaced by a new free logic variable. For example,
the expression #if CONFIG_BUFFER > 1024 is rewritten to
#if defined CONFIG_COMPARATOR_1.

The CPP language allows undefinition and redefinition of flags
in any line of the source code. This language detail is not currently
considered by the presented algorithm, but could be supported by
adding extra conjunctions to the checker function, more specifi-
cally, to the expression(bi) function. Here, for each expression, the
function would need to take undefinitions and redefinitions of the
undefined or redefined CPP flags into account.

While both cases are rather straightforward to implement, sup-
ported by experience with the Linux kernel presented in this article,
we believe that even the current implementation of the algorithm is
already well suited for many of the use cases we outlined above.

5. Related Work
Analyzing large scale software projects with transformation systems
are related to our approach; DMS [2] proposed by Baxter is probably
the most renowned one. In context of this framework, an approach
has been published [3] that aims at simplifying CPP statements by
detecting dead code and simplifying CPP expressions. Unlike our
approach, this work uses concrete configurations to evaluate the
expressions partially [12]. In contrast to that, our work does not
require concrete values for CPP identifiers, but produces a logical
model in form of a propositional formula that can either be evaluated
directly or can be combined with further constraints like the ones
extracted from the feature model. We believe that our approach
would fit great in the DMS framework.

Analyzing conditional compilation with symbolic execution has
been proposed by Hu et al. [10] in 2000. This approach maps
conditional compilation to execution steps: Inclusion of headers
map to calls, alternative blocks to branches in a control flow
graph (CFG), which is then processed with traditional symbolic
execution techniques. Lattendresse [15] improves this technique
by using rewrite systems in order to find presence conditions
for every line of code. Similarly to our approach the presence
conditions of all conditional blocks are calculated during the process
as well. However, symbolic evaluation does not actually calculate
the variability as per definition 5, which is required for the reasoning
techniques that we present in section 2.4. While it would be possible
to use the presence conditions learned with symbolic execution
and construct the checker function (Formula 4), we present an
lightweight approach that does scale (the algorithm for generating
the boolean formula grows linearly with respect to the number
of blocks) to code bases of millions of code, as presented by our
evaluation on the Linux kernel in Section 3.5.

Other approaches extend the grammar of the C/C++ parser by
CPP directives. Badros et al. [1] propose the PCp3 framework to
integrate hooks into the parser in order to perform many common
software-engineering analyses. This technique is technically similar
to our integration into the tool sparse [18]. However, the focus is
on mapping between unprocessed and preprocessed code, whereas

our work aims at mapping towards higher level models. Garrido [9]
extends the parser with the concept of conditional abstract syntax
tree (AST)s, which enables preprocessor-aware refactorings on CPP-
based source files. We believe that this work can be combined with
our approach to further assist software engineering tools.

The crosschecking between different variability models is also
related to our work. Metzger et al. [21] present several formaliza-
tions that allow for consistency checks between variability models.
Czarnecki et al. [7] present an approach to checking the consistency
of feature-based model templates, that is, checking consistency of
feature models and model templates. Thaker et al. [28] present an
approach to the safe composition of product lines, it is much related
to our idea of crosschecking. However, their approach exploits the
structure of the code, which is based on the feature-oriented soft-
ware development, therefore, it can not be used in projects that rely
on the CPP like the Linux kernel. We believe our technique is com-
plementary to these approaches; as they also use propositional logic,
we could provide the implementation model directly as a formula,
avoiding its representation in a specific model format.

The evaluation of variability from models is also related to our
work. Czarnecki et al. [8] present an approach to transform logic for-
mulas into feature models. This technique could be combined with
ours in order to automatically generate models from the boolean
formula that is generated with our algorithm. Benavides et al. [4]
present several techniques for reasoning on feature models after
transforming them into boolean formulas. We have shown how the
same kind of reasoning can be applied to the resulting implementa-
tion variability model of our approach. She et al. [22] presents an
approach to convert the Linux Kconfig model into feature models.
On the one hand, complementary to our work, it could be used
in combination with our algorithm to provide the crosscheckings.
On the other hand, contrary to our work, the source code files—
consequently the CPP information— are not taken into considera-
tion.

6. Conclusions and Future Work
This article has presented an efficient approach to the automatic
extraction and analysis of the implementation variability described
as CPP directives. Our novel extraction process scales linearly with
respect to the number of conditional blocks of a source file, which
allow us to generate the boolean formulas for all source files of the
Linux kernel in less than 30 minutes.

Our analysis process uses well-established formalisms—BDDs
and SAT solvers—that allow us to provide different reasonings on
the implementation variability. In order to assess the analysis process
in real software we have conducted two case studies: In the first,
using the Graph Product Line, we have analyzed and compared the
feature model and the implementation variability. This has given us
insights that both worlds show remarkably different characteristics
and, therefore, should always be studied together. In the second
case study, we have analyzed the entire code base of the Linux
kernel for dead code blocks. This study has shown the feasibility
of our approach to large SPLs and revealed interesting aspects of
the analysis of CPP directives in real-word large-scale software
projects.

We have explained the characteristics of the two different anal-
ysis strategies: source file and compilation unit modes. In order to
perform a precise analysis (very) efficiently, compilation-unit mode
should only be applied to compilation units that actually make use
of conditional #include statements, which reduces the analysis
time drastically. We have also presented highly effective further op-
timizations during the dead block analysis in Linux: When checking
the satisfiability of a specific block, the whole model can be split
into smaller models. With this, our analysis process took around 6
minutes for the actual search of dead blocks in all source files of

the Linux kernel. The study has revealed several inconsistencies in
the code base, our fixes for two of them have in the meantime been
accept in the Linux mainline tree.

Ideas for future work include (1) applying our approach to several
other software projects (2) cross-checking the implementation
variability model of the Linux kernel with the Kbuild model in
order to reveal the semantic inconsistencies and after that (3) a
detailed analysis and corresponding classification of configuration
problems found in the Linux kernel.

References
[1] Greg J Badros and David Notkin. A framework for preprocessor-aware

c source code analyses. Software: Practice and Experience, 30(8):907–
924, 2000.

[2] Ira D. Baxter. DMS: program transformations for practical scalable
software evolution. In 5th Int. W’shop on Principles of Software
Evolution (IWPSE’02), pages 48–51, New York, NY, USA, 2002. ACM.

[3] Ira D. Baxter and Michael Mehlich. Preprocessor conditional removal
by simple partial evaluation. In 8th Conf. on Reverse Engineering
(WCRE ’01), pages 281–, Washington, DC, USA, 2001. IEEE.

[4] D. Benavides, A. Ruiz-Cortés, and P. Trinidad. Automated reasoning
on feature models. In 17th Int. Conf. on Advanced Information Systems
Engineering (CAISE ’05), volume 3520, pages 491–503, Heidelberg,
Germany, 2005. Springer.

[5] BuDDy project. http://sourceforge.net/projects/
buddy, 2009.

[6] Andreas Classen, Arnaud Hubaux, and Patrick Heymans. A formal
semantics for multi-level staged configuration. In 3th Int. W’shop
on Variability Modelling of Software-intensive Systems (VAMOS ’09),
pages 51–60, 2009.

[7] Krzysztof Czarnecki and Krzysztof Pietroszek. Verifying feature-based
model templates against well-formedness OCL constraints. In 6th
Int. Conf. on Generative Programming and Component Engineering
(GPCE ’06), pages 211–220, New York, NY, USA, 2006. ACM.

[8] Krzysztof Czarnecki and Andrzej Wasowski. Feature diagrams and
logics: There and back again. In 11th Software Product Line Conf.
(SPLC ’07), pages 23–34. IEEE, Sept. 2007.

[9] Alejandra Garrido. Program refactoring in the presence of preprocessor
directives. PhD thesis, University of Illinois at Urbana-Champaign,
Champaign, IL, USA, 2005. Adviser-Johnson, Ralph.

[10] Ying Hu, Ettore Merlo, Michel Dagenais, and Bruno Lagüe. C/C++
conditional compilation analysis using symbolic execution. In 16th
IEEE Int. Conf. on Software Maintainance (ICSM’00), page 196,
Washington, DC, USA, 2000. IEEE.

[11] International Organization for Standardization. ISO/IEC 9899:TC2:
Programming languages — C. International Organization for Standard-
ization, Geneva, Switzerland, 2005.

[12] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial evaluation
and automatic program generation. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1993.

[13] Christian Kästner, Sven Apel, and Martin Kuhlemann. Granularity in
software product lines. In 30th Int. Conf. on Software Engineering
(ICSE ’08), pages 311–320, New York, NY, USA, 2008. ACM.

[14] Christian Kästner, Sven Apel, Salvador Trujillo, Martin Kuhlemann,
and Don Batory. Guaranteeing syntactic correctness for all product
line variants: A language-independent approach. In Proceedings
of the 47th International Conference Objects, Models, Components,
Patterns (TOOLS EUROPE), volume 33 of Lecture Notes in Business
Information Processing, pages 175–194. Springer Berlin Heidelberg,
June 2009.

[15] Mario Latendresse. Rewrite systems for symbolic evaluation of c-like
preprocessing. In CSMR ’04: Proceedings of the Eighth Euromicro
Working Conference on Software Maintenance and Reengineering
(CSMR’04), page 165, Washington, DC, USA, 2004. IEEE Computer
Society.

[16] Jörg Liebig, Sven Apel, Christian Lengauer, Christian Kästner, and
Michael Schulze. An analysis of the variability in forty preprocessor-
based software product lines. In 32nd Int. Conf. on Software Engineer-
ing (ICSE ’10), New York, NY, USA, 2010. ACM.

[17] The Limmat SAT solver. http://fmv.jku.at/limmat/, 2002.
[18] Linus Torvalds. Sparse - a semantic parser for C. http://www.

kernel.org/pub/software/devel/sparse/, 2003.
[19] Roberto E. Lopez-Herrejon and Don Batory. A standard problem for

evaluating product-line methodologies. In 3rd Int. Conf. on Generative
and Component-Based Software Engineering (GCSE ’01), volume
2186, pages 10–24, Heidelberg, Germany, 2001. Springer.

[20] Marcílio Mendonça, Andrzej Wasowski, Krzysztof Czarnecki, and
Donald D. Cowan. Efficient compilation techniques for large scale
feature models. In 5th Int. Conf. on Generative Programming and
Component Engineering (GPCE ’08), pages 13–22, New York, NY,
USA, 2008. ACM.

[21] Andreas Metzger, Patrick Heymans, Klaus Pohl, Pierre-Yves
Schobbens, and Germain Saval. Disambiguating the documentation
of variability in software product lines. In 15th IEEE Int. Conf. on
Requirements Engineering (RE’07), pages 243–253, Washington, DC,
USA, 2007. IEEE Computer Society.

[22] Steven She, Rafael Lotufo, Thorsten Berger, Andrzej Wasowski, and
Krzysztof Czarnecki. The variability model of the linux kernel. In
4th Int. W’shop on Variability Modelling of Software-intensive Systems
(VAMOS ’10), Linz, Austria, January 2010.

[23] Julio Sincero, Horst Schirmeier, Wolfgang Schröder-Preikschat, and
Olaf Spinczyk. Is the linux kernel a software product line? In Frank
van der Linden and Björn Lundell, editors, International Workshop on
Open Source Software and Product Lines (SPLC-OSSPL 2007), Kyoto,
Japan, 2007.

[24] Julio Sincero and Wolfgang Schröder-Preikschat. The linux kernel
configurator as a feature modeling tool. In Steffen Thiel and Klaus Pohl,
editors, 12th Software Product Line Conf. (SPLC ’08), Second Volume,
pages 257–260. Lero Int. Science Centre, University of Limerick,
Ireland, 2008.

[25] Julio Sincero, Reinhard Tartler, and Daniel Lohmann. An algorithm
for quantifying the program variability induced by conditional compi-
lation. Technical Report CS-2010-02, University of Erlangen, Dept. of
Computer Science, January 2010.

[26] Henry Spencer and Gehoff Collyer. #ifdef considered harmful, or
portability experience with C News. In 1992 USENIX ATC, Berkeley,
CA, USA, June 1992. USENIX.

[27] Reinhard Tartler, Julio Sincero, Wolfgang Schröder-Preikschat, and
Daniel Lohmann. Dead or alive: Finding zombie features in the Linux
kernel. In 1st W’shop on Feature-Oriented Software Development
(FOSD ’09), pages 81–86. ACM, 2009.

[28] Sahil Thaker, Don Batory, David Kitchin, and William Cook. Safe
composition of product lines. In 7th Int. Conf. on Generative Program-
ming and Component Engineering (GPCE ’07), pages 95–104, New
York, NY, USA, 2007. ACM.

[29] Thomas Thum, Don Batory, and Christian Kästner. Reasoning about
edits to feature models. In 31st Int. Conf. on Software Engineering
(ICSE ’09), pages 254–264, Washington, DC, USA, 2009. IEEE.

http://sourceforge.net/projects/buddy
http://sourceforge.net/projects/buddy
http://fmv.jku.at/limmat/
http://www.kernel.org/pub/software/devel/sparse/
http://www.kernel.org/pub/software/devel/sparse/

	Introduction
	Challenges
	Contributions

	Extracting Variability from Source Code
	Background: Conditional Compilation
	Basic Definitions
	Calculating Variability with Checker Function
	Reasoning on Implementation Variability Models

	Analyzing Implementation Variability
	Implementation Overview
	Analyzing Source Artifacts vs. Compilation Units
	Efficient Analysis for Very Large Variability Models
	Case Study #1: Variability Analysis of the Graph Product Line
	Case Study #2: Finding Dead Code in Linux

	Discussion
	Understanding the Variability of Software Product Lines
	Maintenance and Evolution
	Testing
	Limitations

	Related Work
	Conclusions and Future Work

