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Abstract

In this paper we present a prototype of the RTSC — the Real-Time System
Compiler. The RTSC is a compiler-based tool that leverages the migration from
event-triggered to time-triggered real-time systems. For this purpose, it uses an
abstraction called Atomic Basic Blocks (ABBs) which is used to capture all
relevant dependencies of the event-triggered system in a so-called ABB-graph.
This ABB-graph is transformed by the RTSC and finally mapped to a statically
computed schedule that could be executed by standard time-triggered real-time
operating systems. Moreover, we demonstrate the applicability of our approach
and the operation of our prototype by transforming the event-triggered imple-
mentation of a real-world embedded system into a trime-triggered equivalent.

1. Introduction

At the beginning of any real-time systems project one has the
choice to either go for an event-triggered or a time-triggered
solution. Event-triggered systems have the advantage of being
much more flexible and, thus, are much more handy when
dealing with changing requirements or uncertain knowledge
(aperiodic events for instance as their period is not known).
According to [1] these were the reasons to select an event-
triggered approach when building the space shuttle primary
avionics system. On the other hand, time-triggered systems can
be verified much easier. This is a significant advantage for any
kind of dependable system. Therefore, Gagne and Sheppard
made a great effort to port the F18 mission computer software
to a time-triggered execution environment [2]. A significant part
of this porting process had to be done manually. Thus, this was
a work-intensive and also a possibly error-prone undertaking.
Often the transition from an event-triggered system to a time-
triggered system or vice versa is even deemed too cumbersome
to be a viable option. In such cases, a redesign of the system
tied with the re-implementation of large parts of the system
becomes inevitable.

The reason for this problem could be found at the control
flow abstraction that is associated with the event-triggered and
time-triggered paradigm, respectively. While this abstraction is
relatively feature rich in event-triggered systems and offers var-
ious mechanisms for blocking and non-blocking uni- and multi-
lateral synchronisation, it is rather ascetic in time-triggered
systems, which offer pure run-to-completion semantics, only.
These abstractions tend to infiltrate the structure of the applica-
tion and the real-time system resulting in implementations that
are closely coupled to these abstractions. This problem presum-
ably also abets the dogmatic division of real-time systems into
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event-triggered systems and their time-triggered counterparts.

In previous work [3], [4] we challenged that dogmatic divi-
sion. The main distinction among these control flow abstractions
is the ability to express dependencies among different activities.
So, we proposed an intermediate representation called Afomic
Basic Blocks (ABBs) to capture these dependencies irrespective
of the used control flow abstraction. In [5] we went one
step further and advocated for a compiler-based tool working
on an intermediate representation based on ABBs. Such a
tool would hopefully be able to automate considerable parts
of the migration from an event-triggered to a time-triggered
implementation of a real-time system and vice versa. In this
paper we present our recent efforts to build a prototype of such
a tool. For now, we focus on an automated transition from event-
triggered to time-triggered systems. The transition from time-
triggered to event-triggered systems is subject to future work.
So, the contributions presented in this paper are as follows:

o A fine-grained system model that builds on top of ABBs
and supports the migration between event-triggered and
time-triggered systems and vice versa.

o An automated transformation procedure that maps an
ABB-based dependency graph extracted from an event-
triggered real-time system to a time-triggered execution
environment.

« A prototypical implementation of a compiler-based tool,
called Real-Time System Compiler (RTSC) to transform
an event-triggered into a time-triggered system in a semi-
automatic fashion.

o An evaluation of our prototype giving evidence of the
validity of our approach by transforming a real-world
event-triggered hard real-time system into a time-triggered
equivalent.

In the following section 2 we briefly sketch the notion of
Atomic Basic Blocks introduced in [5] and in section 3 we
give a detailed description of our system model built on top
of ABBs. In section 4 we revisit the design of the RTSC and
describe the transformation used to migrate an event-triggered
to a time-triggered system. Section 5 gives an overview over
the prototypical implementation of the RTSC and 6 presents an
evaluation of our prototype. The subsequent section 7 discusses
related work while section 8 finally concludes the paper.
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2. Atomic Basic Blocks

Atomic Basic Blocks are our basic abstraction playing a key
role in the migration procedure. All analyses and transforma-
tions apply to graphs made up by ABBs. So, ABBs also serve
as intermediate representation of the RTSC, comparable to the
intermediate code used in any other compiler.

ABBs are designed to carry all relevant dependencies and
properties of a real-time system independent of the underlying
real-time paradigm. As relevant dependencies we consider
directed order relations carrying optional temporal delays and
mutual exclusion relations. Relevant properties of ABBs are
their WCET and their deadline.

The similarity of the terms Afomic Basic Blocks and basic
block — the abstraction widely used in compiler construction —
is not at random: an ABB aggregates one or more basic blocks.
Like basic blocks, ABBs form graphs. First of all, ABBs reflect
the control flow graphs (CFG) described by basic blocks. On
the function-level the CFG formed by ABBs is a coarsening of
the CFG formed by basic blocks. The same holds for the data
flow graph. ABBs extend these graphs and also include inter-
function dependencies that cross function boundaries. Such
dependencies result from synchronisation mechanisms that
are used to explicitly establish dependencies among different
flows of control. These dependencies are typically initiated
by system calls to the employed real-time operating system
(RTOS), for example, locking a mutex or posting a semaphore.
In ABB-graphs, interactions between different functions are
only allowed at boundaries of ABBs. Thus, ABBs are described
by the following rules:

1) ABBs contain one or more basic blocks. On the function-
level, ABBs form a coarsening of the control flow graph
and data-flow graph of the function.

Every ABB has exactly one distinguished entry basic
block and at most one distinguished exit basic block.
Except these basic blocks no other basic blocks have
preceding or succeeding basic blocks outside that ABB.
An ABB always lasts from the end of the preceding ABB
to an appropriate ABB termination. ABB terminations
mark positions in the CFG that are either origins (so
called joins) or targets (so called joinpoints) of inter-
function dependencies.

If an ABB termination is located within a basic block
the basic block is divided into two subsequent parts.

2)

3)

4)

The program statements that constitute ABB terminations
depend on the operating system API that is used to implement
the real-time application and its semantics. Typical system calls
resulting in joins are forking threads, setting flags, leaving
critical sections or defining global variables. Joinpoints are
created by waiting for signals, entering critical sections or
reading global variables.

As an example, Figure 1 presents the ABB-graph that
was extracted from the function CSYSTEM_Handler2. The
dashed arrows and boxes show the original basic blocks and
the corresponding CFG. The solid arrows and boxes depict
the extracted ABBs and the control flow edges mirroring the
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Fig. 1. ABB-graph of function CSYSTEM_Handler?2

original CFG. The ABB termination marking the end of ABB
ABB 8 results from forking another flow of control, this in
indicated by the label ABBTerm = Fork. Similarly ABB
ABB 12 was terminated by a return instruction. All other
ABBs are closed by an artificial ABB termination; this is
needed to satisfy item 2 of the rules stated above.

3. System Model

In this section we discuss the elements of the system model
in more detail. We describe which elements our system model
comprises and how ABB-graphs are used to describe the
structure of the overall system. The presented system model
intentionally does not make any assumptions on the execution
model of ABB-graphs. Our ambition is to map dependency
graphs formed by ABBs to an arbitrary execution environment
that either works in an event-triggered, a time-triggered or a
mixed-mode fashion.

3.1. Events

Every activity in a real-time system is initiated by an event.
Among events, periodic and non-periodic events as well as
physical and logical events are further distinguished. Periodic
events are characterised by a period, a phase and a jitter,
while just a minimum interarrival time could be given for
non-periodic events. Physical events are created by peripheral
hardware components by setting flags or issuing interrupt
requests, for instance. Logical events on the other side, relate to
changes in the logical state of the application. As an example,
consider chunks of a message arriving at the serial port. The
arrival of each chunk produces an interrupt; these interrupts are
physical events. After a certain amount of chunks the message
is complete; this is a logical event. Each logical event is related
to a physical event, as a logical event usually can not occur
without a preceding physical event. The distinction of physical
and logical events enables a much better capturing of the actual
temporal properties of an application. Physical events usually
tend to occur much more frequently but also less time is needed
to handle them, while it is the opposite for logical events.



3.2. Tasks and Subtasks

All activities that are triggered by events are subsumed under
the term task. A task connects the temporal properties described
by the event to its corresponding handler. Each task consists
of one distinguished root subtask and zero or more additional
subtasks. A subtask encapsulates the actual implementation of
the event handler. The root subtask is executed every time the
associated event occurs, the other subtasks are forked by the
root subtask or one of its successors. Each subtask could be
assigned a soft, a firm or a hard deadline. The deadline marks
the latest possible completion time of this subtask relative to
the event associated with the task or a related physical event.
Tasks containing multiple subtask reflect the situation that the
same event could trigger different handlers each combined with
a different deadline. Each subtask is implemented by a handler
function. The control flow structure of the handler functions
and all other functions constituting to the implementation of a
subtask are described by ABB-graphs as presented in section 2.
Thus, a real-time system is represented as forest of ABB-graphs.
Each root node in this forest relates to the entry of a handler
function implementing a root subtask. All other subtasks are
either forked or triggered by the set of root subtasks.

3.3. Triggering and Forking Subtasks

Forking and triggering subtasks relate to special directed
dependencies targeting root nodes in the ABB-graph of a sub-
task. A forked subtask is immediately ready for execution. As
a consequence, the temporal properties exposed by the forked
subtasks are directly related to those of the forking subtask. In
our system model forking subtasks is only supported within
the same task. A triggered subtask, on the other side, does not
inherit the temporal properties of its predecessor. These are still
described by the event tied to the task enclosing that subtask.
Furthermore, it is only supported to trigger the root subtask
of a task but no other subtasks. Triggering subtasks is useful
when a subtask handling a physical event results in a change
of the logical state of the system and, thus, in a logical event.

3.4. Mutual Exclusion

Mutual exclusion dependencies are expressed by sets of
neighbouring ABBs in the ABB-graph that form critical sec-
tions. Each critical section is assigned one or more resources.
Critical sections associated with the same resource must not
be executed in an overlapping manner.

3.5. Example

Figure 2 shows the ABB-graph of a Task named Task2.
It is triggered by a non-periodic event with a minimal inter-
arrival time of 10 milliseconds. The task contains a subtask
CSYSTEM_Handler?2 implemented by a function of the same
name. Its ABB-graph was already presented and discussed
in section 2. At ABB 8 the subtask CSYSTEM_Handler2
forks a subtask called CSYSTEM_Handler3, which is also
implemented by a function of the same name and consists of
a single ABB (ABB 14), only.
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4. The Transformation Procedure

In this section we revisit and refine the design of our RTSC
tool presented in [5]. First, we give an overview of the overall
design of the RTSC. Thereafter, we have a closer look on
central components of the RTSC and the transformation taking
place in these components. Although the RTSC is intended to
provide a general operating system (OS) aware compiler tool,
we restrict ourself to the steps that are necessary to migrate
an event-triggered system to its time-triggered counter part for
reasons of space and to maintain focus.

4.1. Overview

Figure 3 depicts the conceptual design of the RTSC. The
basic structure of the source and target real-time system are
stored in Task Databases (Task DBs). These Task DBs describe
the source and the target real-time system in terms of the system
model presented in section 3. The Source Task DB contains
all events, tasks and subtasks that are present in the source
real-time system, whereas, the Target Task DB encompasses
all entities that should also be present in the target real-time
system. Both, the Source and the Target Task DB, are provided
as input to the RTSC. Automatically mapping the Source Task
DB to an appropriate Target Task DB is beyond the scope of this
paper. First, an OS-dependent Front-End extracts the relevant



ABB-graphs from the implementation of the source real-time
system. It starts from the handler functions of the subtasks
given in the Source Task DB. These ABB-graphs constitute
an OS-independent specification of all relevant dependencies
in the given source system. In the next step, these ABB-
graphs are handed over to a combined Analyser/Composer.
This component performs the necessary steps to transform
the source real-time system targeting a certain RTOS and a
certain real-time paradigm into the target real-time system
maybe targeting a different RTOS and a different real-time
paradigm. If necessary, a Checker ensures that certain temporal
constraints prescribed in Target Task DB are fulfilled. Finally,
an OS-dependent Back-End emits the implementation of the
transformed real-time system and also creates the required
configuration data for the targeted OS.

4.2. Front-End

Succinctly, the front-end extracts an OS-independent ABB-
graph from the implementation of the source real-time system.
As first step, the functions marked as handler functions of
subtasks in the Source Task DB are identified by means of
their names. After that, the implementation is scanned for ABB
terminations and ABBs are constructed. Subsequently, local
ABB-graphs reflecting the function’s CFG are built. These
local ABB-graphs are then connected by dependencies crossing
function boundaries. For this purpose, we search for matching
pairs of joins and joinpoints (e.g. setting/awaiting the same flag)
and create dependencies between the corresponding ABBs.

These dependencies, however, still are OS dependent, be-
cause they carry the explicit semantics of the original system
call. Thus, we obtain an OS-independent representation by
lowering these dependencies to generic directed dependencies.
The original semantics of the system call are reflected by
guarding the joinpoint with a logical expression, its guard. This
expression specifies the set of preceding joins that have to be
finished so that the succeeding joinpoint can be executed. As
an example, a joinpoint waiting for a flag to be set, would be
guarded by a disjunction of all joins setting that flag. At this
time, we also extract the sets of ABBs forming critical sections
from the ABB-graph. In a last step, we remove the original
OS calls from the implementation and gain an OS-independent
representation of the source real-time system that still contains
all relevant dependencies between its tasks and subtasks.

Our front-end still suffers some restrictions and, thus, implic-
itly relies on some assumptions. Currently, a flow- and path-
insensitive analysis to obtain the global dependency graph is
performed. This, of course, restricts the use of OS functions
within library routines to a certain extent. We need to know
which OS object is manipulated at a certain line of code.
We are confident that this problem could be mitigated by a
more sophisticated analysis as presented in [6]. Furthermore
we expect the application itself and the OS API to be well-
formed. This mainly refers to a non-ambiguous usage of OS
objects and operating system calls. On the application level,
for instance, we assume that the same instance of a semaphore
is not reused for a different purpose at a different location. On
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the OS level we assume that the same system call is not used
for different purposes, too. This implies that the semantics
of a system call are determined by the system call itself. As
an example, we require that semaphores are not used for
unilateral and multilateral synchronisation. These restrictions
and assumptions, however, either do not go beyond those that
are also present in similar approaches or are mostly technical
and could be relaxed by a more sophisticated implementation.

4.3. Analyser/Composer

In this subsection we describe the mapping of a directed,
non-cyclic ABB-graph provided by the Front-End onto a time-
triggered execution environment. We suppose that this execution
environment provides non-preemptable threads with run-to-
completion semantics. Thus, a thread can only be scheduled
after the preceding thread is guaranteed to be finished. All
transformation steps take place in the target real-time system.
So, the ABB-graph extracted by the Front-End first is attached
to the tasks and subtasks described by the Target Task DB.

4.3.1. Creating private ABB-graphs. In a first step we create
a private ABB-graph for each task in the system. This step is
necessary as the scheduling algorithm that we use cannot deal
with elements that are activated by a multitude of predecessors.
Instead, this algorithm assumes that all predecessors have to
be finished before a common successor can be executed.

The ABB-graph produced by the front-end only reflects
dependencies on the function level. Functions are typically
called from more than one location within a program and,
hence, can be activated by a bunch of predecessors. The same
holds for subtasks, that are forked more than once. We address
that problem by creating private copies of the ABB-graphs
of the handler functions of all subtasks. Then, we recursively
clone the ABB-graphs of all functions that are called and all
subtasks that are forked by this handler if the corresponding
entry ABBs have more than one predecessor. Otherwise, we just
assign that ABB-graph to the calling or forking subtask. Note
that we solely clone the ABB-graphs, not the actual functions.
Also note that trigger dependencies are not covered here.

4.3.2. Triggering Tasks. In a next step, we take care of trigger
dependencies introduced in section 3. If a task is triggered
by another task, it basically maintains the temporal properties
specified by its associated event. Nevertheless, the triggering
predecessor needs to be completed before the triggered task can
be executed. Hence, in a time-triggered execution environment,
a triggered task polls its predecessor for a flag that is inserted
by the RTSC. The predecessor sets this flag as soon as it
reaches the trigger condition.

In this step, the RTSC also inserts clones of tasks handling
logical events that are triggered by tasks handling related phys-
ical events. This is required if the temporal distance between
the physical and the logical event is too big so that the deadline
referring to the physical event cannot be met. By inserting addi-
tional logical events this temporal distance can be eliminated to
enable a timely execution of the task handling the logical event.



Self-trigger dependencies are special trigger dependencies.
In that case a task just triggers itself. Though, we assume
that self-triggering tasks do not immediately become ready for
execution again. Here, the concerned action could be performed
in a loop as often as needed. Instead, we expect that a known
amount of time has to pass by before that happens; this delay
has to be reproduced as precisely as possible. For this purpose,
we adjust the period of the event associated with that task to
the greatest common divisor of all possible delays. The RTSC
maintains an additional period counter to track the current
delay. The period counter is initialised when the task triggers
itself and is decremented every time the task is scheduled. The
original handler function of this subtask is only executed if
the period counter indicates that the delay has passed and the
appropriate trigger flag is set.

4.3.3. Spanning the Hyperperiod. Creating a static schedule
often is equivalent to ordering a directed acyclic graph (DAG)
with respect to temporal constraints. The linearised DAG then
is executed cyclically. As a consequence the DAG has to
comprise all activities of a complete hyperperiod of the given
real-time system. Otherwise, it cannot be executed cyclically in
general. So, we now expand the given real-time system to the
hyperperiod determined by the target real-time system. This
task could be further refined to the following steps:

1) Convert the guards into disjunctive normal form (DNF)

2) Compute the hyperperiod

3) Clone tasks as needed

4) Rematch joins and joinpoints

The very first step is just a preparation step for matching
joins and joinpoints again. Here, we compute the DNF for
every joinpoint guard present in the system. The next step,
determining the hyperperiod, is obvious.

After that, the actual expansion of the application is carried
out. Every task whose associated event in the target real-time
system has a period that is smaller than the hyperperiod is
cloned as often as needed. The cloned tasks are triggered by
events whose period is set to the hyperperiod and their phase
is set to the sum of their original phase and a multiple of their
original period. After this step, all events of the system have
the same period — the hyperperiod — and their original period
is mapped to an according phase.

In the last step, we first rip up all dependencies connecting
different tasks. For each joinpoint, we then try to find a set of
joins that satisfies the guard of that joinpoint. This is accom-
plished by a relatively simple list-scheduling like heuristic. The
heuristic expects that each join and joinpoint can be replaced
by one of its clones and that each join can only be used to
satisfy at most one guard. The aim of the heuristic is to find a
valid matching and to minimise the temporal distance between
the joinpoint and the joins satisfying its guard without unnec-
essarily delaying the joinpoint. As the implemented heuristic
is rather simple, it is by no means guaranteed that a suitable
matching is found if such a matching exists. Additionally, more
sophisticated matching algorithms could be used. An algorithm
targeting a similar problem that is based on linear programming
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is presented in [7], for instance. In our previous experiments,
however, the heuristic we implemented did not impose any
restrictions.

The example in Figure 4 illustrates that transformation step.
For reasons of simplicity, all unnecessary information is omitted
in this ABB-graph. The original ABB-graph comprises three
Tasks T1, T2 and T3. All of them are triggered by periodic
events; T1 and T3 are triggered every 10 time units, T3 with
an additional phase of 5 time units, T2 is triggered every 5
time units. The joinpoint at ABB 4 is guarded by the logical
expression (1 V 5). Due to its period of 5 time units task T2
is cloned one time in the expanded system resulting in the
task T2a. The joins at ABB 1 and 5 are matched with the
joinpoints at ABB 4 and 4a, respectively.

4.3.4. Serialising the ABB-graph. Scheduling ABBs belong-
ing to alternate branches of if-else-statements sequentially is
not very helpful because in no case all of them are executed.
We try to avoid such situations by serialising the ABB-graph
as far as possible. This is accomplished by shifting outgoing
dependencies to succeeding ABBs in the ABB-graph and
incoming dependencies to preceding ABBs. When shifting
dependencies, of course, we must ensure that we do not create
any circles within the ABB-graph. As an effect we can collapse
all ABBs making up the if-else-statement if we can shift all
inter-function dependencies out of the if-else-statement. Hence,
there also is no need to temporally order these ABBs anymore.

Figure 5 shows simplified versions of the ABB-graph already
presented in Figure 2 and exemplifies the effect of serialising
the ABB-graph. If the original dependency between ABB 8
and ABB 14 could be shifted to the dependency between ABB
12 and ABB 14 as shown in Figure 5 (a), then we can collapse
the ABBs ABB 5, ABB 8, ABB 11, ABB 12 and ABB 13
into the single ABB ABB 5« as shown in Figure 5 (b).

We assume that the ABB-graph is acyclic, but there still
might be patterns that cannot be serialised by shifting incoming
and outgoing dependencies. Such patterns typically result from
producer-consumer interactions [6]. In such a case, either
the producer or the consumer would have to be statically
segmented in at least two fragments, via some sort of source
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code transformation. This is not supported by the RTSC, yet.

4.3.5. WCET-Analysis. A necessary input for a static schedul-
ing algorithm is the WCET of the elements to be scheduled.
For this purpose we integrated an automated WCET-analysis in
the RTSC. Current WCET-analysis tools consist of two parts:
a high-level analysis and a low-level analysis. The high-level
analysis examines the CFG of a given function and transforms
it into a maximum flow problem that is usually solved via
linear programming [8]. The WCET of the basic blocks that
serve as input for the high-level analysis are determined by the
so called low-level analysis. The low-level part examines the
machine code and performs an extensive hardware-dependent
analysis to calculate the WCET of the given basic block. We
implemented a high-level analysis within the RTSC while we
use an external tool for the low-level part. For additional input
parameters needed for the high-level analysis that cannot be
determined from the source code directly (e.g. loop counts or
recursion depths), we rely on annotations.

4.3.6. Scheduling. The final step of the transformation process
is the computation of a static schedule that arranges all ABBs
in an absolute temporal order. To successfully schedule an
ABB-graph, the scheduling algorithm needs to deal with order
dependencies, mutual exclusion dependencies, release times
and deadlines. Hence, we chose the algorithm by Abdelzaher
and Shin [9] as it meets all our requirements. Furthermore, it
offers the possibility to target multiprocessor systems and to
incorporate an additional message scheduling algorithm later
on. Currently, we target systems with a single processor, only.
The order and mutual exclusion dependencies needed as input
can easily be extracted from the ABB-graph while the release
times and deadlines are stored in the Target Task DB.
Nevertheless, we had to modify that algorithm slightly.
Originally, it was supposed to schedule tasks, each consisting
of several modules. Implicitly, implementation elements do not
cross module boundaries, i.e. a function is never split across
two modules. This is inherently different with ABB-graphs.
The ABB-graph for a single function could easily comprise
several ABBs. If all ABBs were handled equivalently that
might lead to sequences of ABBs where ABBs of different
functions are intermixed without caution (see Figure 6 (a)).
This is not desired as such a schedule might contain lots
of non-local jumps between different functions that would
induce significant runtime overhead. For this reason, we try
to schedule ABBs belonging to the same function adjacently
(see Figure 6 (b)). We achieved this by modifying the EDF-
algorithm that is used inside of [9]. EDF schedules modules
according to their deadlines that are normally specified on a
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per task base. The deadline for each module is determined
with respect to the deadline of its successors and its own
WCET. So, ABBs belonging to the same function may be
allotted different deadlines favouring a inter-mixture of ABBs
belonging to various functions. We avoid this by assigning the
same deadline to all ABBs of a function. We break ties in the
EDF-algorithm in favour of that ABB that belongs to the same
function like the ABB that was scheduled at last.

4.4. Checker

The duty of the checker is to explicitly ensure that the
temporal properties that are specified in the Target Task DB
are met. As this paper considers only targeting time-triggered
operating systems such properties, primarily the schedulability,
are guaranteed by construction in the generated system.

4.5. Back-End

The task of the Back-End is to generate code that can be
execute by the targeted RTOS. In the specific case, we generate
configuration data and an application skeleton for the targeted
operating system. The application skeleton just calls the event-
handlers at predefined points in time that are specified by the
previously computed static schedule. The original application
(i.e. all the implemented event handlers and libraries) is directly
emitted as assembly code for the target system.

5. Implementation

The RTSC is implemented as a set of passes for the LLVM
compiler framework [10]. All our transformations work on the
virtual instruction set used as intermediate representation within
the LLVM that also serves as basis for ABBs. So, all of them are
basically implemented in a programming language and OS in-
dependent manner. Currently, we use the GCC-based front-end
of the LLVM to compile existing real-time applications written
in the C programming language into the LLVM representation.
We also make use of standard transformations and analyses
provided by the LLVM for standard compiler optimisations
and the code generation framework to emit assembly code for
the target processor.

While we implemented the high-level part of the WCET-
analysis on our own, we rely on an external tool for the low-
level part. Therefore, we integrated the static WCET analysis
tool aiT! into the RTSC. We use it to compute the WCET for
every single basic block in the system.

The RTSC currently encompasses a Front-End for an ar-
tificial event-triggered OS APIL. The API comprises services
for forking and triggering subtasks, lock variables, message
passing and flags. All in all, the expressiveness of this API is
very similar to the API specified by the OSEK OS [11] and
we intend to implement support for the OSEK OS API in the
near future. On the Back-End side, we currently support time-
triggered systems only. Here, we target operating systems that
are compliant with OSEKtime specification [12]. The processor

1. http://www.absint.com/ait



we currently target is the TriCore processor [13] by Infineon,
as we already have extensive experience using it and there
are several RTOS available for that processor. Last but not
least, the WCET analysis tool aiT is available for exactly this
processor. As the LLVM did initially not support it we also
implemented a LLVM Back-End for TriCore processor.

6. Evaluation

We have evaluated our the RTSC tool with a real-time system
that mimics a highstriker, the well-known attraction on fairs.
This system constitutes a fairly challenging evaluation scenario
as it comprises non-periodic events only and, thus, could serve
as prime example for an event-triggered system. The control
application also was developed in an event-triggered fashion
and we transformed it into an equivalent time-triggered one. In
our quantitative evaluation we mainly pay attention to temporal
parameters that are relevant for a successful operation of this
system. For a better understanding of the observed parameters
we first give a more elaborate explanation of the evaluation
scenario and then take a look at the measured parameters.

6.1. Evaluation Scenario

Our highstriker is equipped with a Plexiglas tube that houses
an iron projectile. The projectile is controlled by switching
coils attached to the tube in an equispaced manner. Hereby,
the projectile can be guided almost arbitrarily between the
different coils. Right above each coil there is a light barrier
that is used to track the position of the projectile.

The control application itself is state machine-based. A step
in the state machine is either triggered by the projectile leaving
or entering a light barrier or a countdown indicating that the
next step must be taken. The countdown is set up within a step
of the state machine itself, as some actions require the next step
to be carried out with a certain temporal distance. All these
occasions are subsumed by the logical event SMStep. If several
consecutive steps in the state machine are necessary, all these
steps are executed in a row within a loop. So, the task handling
SMStep is a self-triggering task as described in section 4.3. The
task is also triggered by the task handling the physical LightBar-
rier event. It is not necessary to perform a state machine step
every time a light barrier is entered or left. For this reason, the
SMStep task is triggered but not forked by the LightBarrier task.

Both events are obviously non-periodic. The minimum in-
terarrival times are achieved when the projectile crosses two
subsequent light barriers at its maximum speed of roughly
6.14 m/s. The length of the projectile of 8.2 cm leads to a
minimum interarrival time of about 12.8 ms for the physical
event LightBarrier. The distance of 23 cm between two light
barriers leads to an minimum interarrival time of 37 ms for
the event SMStep. The physical event LightBarrier is handled
by the task CSYSTEM_P_ ISR and the logical event SMStep
by the task CSYSTEM_FSM_Task. The deadlines of 1 ms are
empirical values we gained from the operation of our highstriker
experiment. The deadline of the task CSYSTEM_FSM_Task
handling the logical event SMStep refers to the physical event
LightBarrier. This information is summarised in the Source
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Event | Interarrival time | Task | Deadline
LightBarrier 12.8 ms | CSYSTEM_P_ISR Ims
SMStep 37 ms | CSYSTEM_FSM_Task 1ms
TABLE 1. Source Task DB
Event | Period | Task | Deadline
LightBarrier | 500 pus | CSYSTEM_P_ISR 500 us
SMStep 37 ms | CSYSTEM_FSM_Task 500 ps

TABLE 2. Target Task DB

Task DB that is depicted in Table 1. The Target Task DB that
is also provided as input for the RTSC is shown in Table 2;
in this case, it could easily be derived from the Source Task
DB. The events are converted into periodical events and their
deadlines and the period of the physical event are adjusted
according to the well known theorem by Nyquist and Shannon.
Both events are handled by the same tasks as in the source
real-time system. Note that the period of the event SMStep is
not adjusted, as it will be completely handled by the RTSC.

6.2. Evaluation Results

The schedule table generated by the RTSC is depicted in
Table 3. The schedule table is obviously not optimal; it could
be shortened to a period of 500 ps. At the moment, we do
not make any effort to produce a compressed schedule table.
The initial offset of 10 us is owed to a restriction in the
targeted RTOS. The RTSC automatically adjusted the period
of the task CSYSTEM_FSM_Task so its deadline related to
the physical LightBarrier event could be met. There was no
need to explicitly convert the former interrupt service routine
CSYSTEM_P_ ISR into a polling variant. The original system
suffered from bouncing light barriers, thus, CSYSTEM_P_ ISR
already had to filter relevant interrupts.

Using that schedule table and the transformed implemen-
tation generated by the RTSC, we were able to operate our
highstriker experiment the same way we already did it using the
original event-triggered implementation. Besides the successful
operation of the highstriker, we also performed a quantitative
comparison of the generated and the original system regarding
the following aspects: the event handler latencies and their
response times (Table 4), the accuracy of the countdowns (Table
5) and the overall CPU utilisation. 2

It is not astonishing that the original event-triggered system
outperforms its time-triggered counterpart generated by the
RTSC with respect to the event handler latencies and response

2. All benchmarks have been performed on an Infineon TriCore TC1796
processor running at a CPU clock speed of 100 MHz and a system clock speed
of 50 MHz. The STM-timer of the TC1796 was used for time measurement.
The CPU utilisation was determined by directly inspecting the CPU utilisation
of an idle function by the Trace32 debugger by Lauterbach. Data and code
were completely located in the internal RAM of the TC1796.

Start time | Task WCET
10 ps CSYSTEM_P_ISR 19,25 us

30 us | CSYSTEM_FSM_Task | 75,87 us
510 ps | CSYSTEM_P_ISR 19,25 us
530 us | CSYSTEM_FSM_Task | 75,87 us

TABLE 3. Schedule Table generated by the RTSC



Latency Response Time
min avg max min avg max
Source 6 us 8 us 10 ps 9 us 12 us 18 us
Target 13 s | 268 pus | 507 ps | 24 ps | 276 pus | 518 ps

TABLE 4. Event handler latencies and response times

Source Target
Countdown min avg max min avg max
4 3,05 3,63 4,01 4,00 4,00 4,00
9 8,01 8,46 8,98 9,00 9,00 9,00
14 14,00 14,00 14,00 14,00 14,00 14,00
18 17,05 17,50 17,99 18,00 18,00 18,00
86 86,00 86,00 86,00 86,00 86,00 86,00
950 949,07 | 949,49 | 950,00 | 950,00 | 950,00 | 950,00

TABLE 5. Countdown accuracy (in milliseconds)

times. The maximum latencies in the target system result from
the fact that the task CSYSTEM_FSM_Task is scheduled 20 us
after the task CSYSTEM_P_ ISR, summing up to the maximum
latency of 520 us. Interestingly, the generated target system per-
forms very well regarding the accuracy of the countdowns. The
fast response times and the precise countdown are facilitated by
a low overall CPU utilisation of only about 0.5% in the original
system. Due to overhead induced by polling the generated
system exposed a considerably increased overall CPU utilisation
of 4.1%. This, however, is a general problem of time-triggered
systems and not specific to the system generated by the RTSC.

7. Related Work

Using compiler techniques to improve and automate the
construction and analysis of real-time systems has already
been done before. Program slicing was employed in [14], [15]
to improve the schedulability of real-time system. In [16] a
method is given to analyse the schedulability of real-time
systems based on hierarchical event streams that could be
extracted from the CFG semi-automatically. Others created
domain-specific languages to describe the temporal structure
of real-time systems [17], [18], [19].

Considerable work has also been done regarding the pro-
vision of integrated tools and tool chains that support the
development of software for real-time systems. Among the
numerous examples are [20], [17], [18] or well-known com-
mercial products like TargetLink. Approaches comparable to
ours are implemented by Anvil [21] or PORTOS [22].

The authors of this paper, however, are not aware of any
tool or tool-chain that explicitly aids the migration between
different real-time paradigms. Most of these tools assume
some kind of abstract, model-based input. Thus, such tools
automatically gain independence of the employed real-time
paradigm. The RTSC, in contrast, works on the much lower
level of an existing implementation. So, the RTSC is also able
to deal with existing legacy software.

8. Conclusion and Future Work

In this paper we presented the first prototype of the RTSC,
a tool that assists in migrating from event-triggered to time-
triggered systems. It can already handle a certain range of
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real-world real-time systems and, thus, provides a profound
and comfortable alternative to ad-hoc techniques that are still
widely used in the development of time-triggered real-time
systems. Nonetheless, this prototype was just a first step and
there are more challenges that need to be tackled. As an
answer to the dawn of the multi-core era also in the field of
embedded real-time systems, we plan to target distributed and
multi-processor systems in the near future. Furthermore, we
want to add advanced analysis techniques and source code
transformation techniques to the RTSC. Thereby, more complex
real-time systems resulting in non-serialise-able ABB-graphs

shall be transformed into time-triggered equivalents.
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