
Leviathan: SPL Support on Filesystem Level

Wanja Hofer1, Christoph Elsner1,2, Frank Blendinger1,
Wolfgang Schröder-Preikschat1, and Daniel Lohmann1

1 Friedrich–Alexander University Erlangen–Nuremberg, Germany
2 Siemens Corporate Research & Technologies, Erlangen, Germany

{hofer,elsner,wosch,lohmann}@cs.fau.de

A lot of configurable software, especially in the domain of embedded and operat-
ing systems, is configured with a source preprocessor, mostly to avoid run-time
overhead. However, developers then have to face a myriad of preprocessor di-
rectives and the corresponding complexity in the source code, even when they
might only be working on the implementation of a single feature at a time. Thus,
it has long been recognized that tool support is needed to cope with this ‘#ifdef
hell’. Current approaches, which assist the software developer by providing pre-
processed views, are all bound to a special integrated development environment.
This eliminates them from being used both in industry settings (where domain-
specific toolchains are often mandated) and in open-source projects (where di-
verse sets of editors and tools are being used).

We therefore propose to tackle the problem at a lower level by providing
variant views via a virtual filesystem. Our Leviathan filesystem allows the de-
veloper to mount one or more concrete product variants to work on. A variant
is hereby defined as a set of enabled and disabled features (possibly output by
a feature modeling tool to ensure correctness). A mounted variant essentially
provides virtual files and directories, which are in fact slices of the original con-
figurable code base, preprocessed by Leviathan’s corresponding preprocessor
component (e.g., CPP or M4). This technique enables the use of arbitrary file-
based tools and tasks on that view. Operation includes read-only tasks such as
reasoning about variants by viewing the differences between, or feeding them
into syntax validators or code metric analysis tools. Furthermore, Leviathan’s
virtual files are also editable with arbitrary tools; Leviathan will merge back
the changes into the configurable code base transparently in the background.

Leviathan’s write-back support enables the developer to make changes di-
rectly on the mounted view. For instance, he can directly debug a mounted
variant and modify the variant’s code to get rid of a bug, eventually saving the
changes in his editor. In the background, the write request will be handled by
Leviathan’s write-back engine, which is responsible for mapping source config-
uration blocks (enclosed in preprocessor directives) to variant blocks (actually
visible in the view). This mapping and merging is either done heuristically (if
the source configuration blocks are rather large in a given SPL) or with the help
of markers, which Leviathan inserts as language-dependent comments in the
mounted view to make the write-back process completely unambiguous.

By providing toolchain-independent views on preprocessor-configured code
bases, Leviathan introduces SPL support in unprecedented domains like open-
source projects (e.g., Linux) and industry projects.

J. Bosch and J. Lee (Eds.): SPLC 2010, LNCS 6287, p. 491, 2010.
c© Springer-Verlag Berlin Heidelberg 2010


	Leviathan: SPL Support on Filesystem Level

