Variability in Time — Product Line Variability and
Evolution Revisited

Christoph Elsner*, Goetz Botterweck', Daniel Lohmann*, Wolfgang Schroder-Preikschat*
* Siemens Corporate Technology & Research, Erlangen, Germany
christoph.elsner.ext@siemens.com
f Lero — The Irish Software Engineering Research Centre, Limerick, Ireland
goetz.botterweck @lero.ie
¥ Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
{wosch,lohmann } @cs.fau.de

Abstract—In its basic form, a variability model describes the
variations among similar artifacts from a structural point of
view. It does not capture any information about when these
variations occur or how they are related to each other in time.
This abstraction becomes problematic as soon as time-related
aspects become essential for the modeling purpose, e.g., when
providing long-term support for a product line or when planning
its future strategy.

In this paper, we provide an overview of approaches that
deal with time-related aspects in variability, which is summa-
rized under “variability in time”. In contrast, the modeling
of structural commonalities and differences is referred to as
‘“variability in space”. We take an inductive approach and
survey different uses of the term ‘variability in time”, which
turn out to be orthogonal. We generalize the uses and identify
three different types: variability of linear change over time
(maintenance/evolution), multiple versions at a point in time
(configuration management), and binding over time (product
derivation). We validate the types by using them to describe
complex product line evolution scenarios where they exhibit
expressive and discriminatory power. Finally, we go into depth
for the first type (maintenance/evolution) and identify the tasks
and aspects to be considered when building a detailed evolution
research agenda in the future.

I. INTRODUCTION

Variability can be seen as “the ability of a software system
or artefact to be efficiently extended, changed, customized or
configured for use in a particular context.” [30]. Similarly,
variability modeling techniques “aim at representing the vari-
ability in a product family”. [27] Well-known techniques are
feature modeling [14], orthogonal variability modeling [22],
COVAMOF [28], and decision modeling [2].

These techniques, however, describe the variability of a
product line for one particular moment in time only. Given
the inevitable change of a software system over time, several
authors added the time dimension to variability. Whereas the
classical notion of variability is referred to as “variability in
space” the new dimension is called “variability in time”! [22],
[91, [24], [32], [16], [19], [4]. For ease of reading, when we use

'We regard the terms “variability in time” and “variability over time”, both
in singular or plural, as synonyms.

the term variability without any qualification in the following,
we actually refer to “variability in space”.

The topic of “variability in time” is of considerable impor-
tance and has also been discussed in projects and workshops
([21], [33], [15]). However, recent uses and definitions of the
term refer to widely differing time-related variability issues.
Authors claiming to address “variability in time”—according
to their definition—therefore actually only address a subset of
time-related problems. Whereas there exists substantial work
and a common understanding on what “variability in space” is
about, this is not the case for “variability in time”. For time-
related variability issues in product line engineering, an estab-
lished body of knowledge, which allows for decomposing and
structuring the problem in an appropriate way, is still missing.
This paper performs first steps towards such a common body
of knowledge.

We take an inductive approach and survey different uses
of “variability in time” (Section II). They turn out to be
orthogonal, so we generalize them and identify three types
of variability in time: variability of linear change over time
(maintenance/evolution), multiple versions at a point in time
(configuration management), and binding over time (product
derivation) (Section III). This gives an expressive terminology
for characterizing complex time-related variability interrela-
tions, which we illustrate for several product line evolution
scenarios (Section IV). Finally, we go into depth for the first
type (maintenance/evolution), for which we define tasks and
aspects (future planning, present modeling and tracking, past
analysis) (Section V), serving as a prerequisite for defining a
research agenda in the future.

II. VARIABILITY IN TIME IN THE LITERATURE

In this section we report on the uses of the term “variability
in time” in recent work. Interestingly, it only appears in papers
within the product line context. The term has been used to
describe three different problem areas: product line evolution,
product line versioning, and product line binding variability.

A. Product Line Evolution Variability

One definition recited several times [19], [12], [34] is of
Pohl et al. [22]: “Variability in time is the existence of different

versions of an artefact that are valid at different times.” This
definition is not without problems. Having different versions
of an artifact is obviously not specific to software product
lines. It holds for every evolving software system. However,
even for single system development, it is common that one
product is released in different versions and, thus, one has to
deal with different artifact versions at the same time. This
definition, however, implicates that there is a straight flow
of artifact versions, each new version actually invalidating its
predecessor.

Other authors [24], [7] use the term “variability in time”
to describe not only the change of the artifact versions over
time, but also of their variability dependencies (denoting the
“variability in space”) over time. As requirements change over
time, the product line must evolve as well. For a product line
this means adding, removing, or changing features, as well as
adding, removing, or changing variability dependencies (e.g.,
mandatory, optional, alternative). Still, however, they do not
address multiple artifact versions valid at the same time.

B. Product Line Versioning Variability

In [32], in turn, the problem of “variability in time” is
seen as a problem of dealing with multiple valid versions
at the current moment in time. Maintaining one product in
different versions in parallel is already a challenge for single
product development, as each product consists of a multitude
of artifacts of specific versions. For product lines this problem
is even more difficult; a multitude of products, each possibly
having several released versions, must be related to the correct
artifact version for maintenance.

C. Product Line Binding Variability

Other authors, finally, use the term “variability in time”
to describe the creation time and binding time of variability
[4], [6], [12], [13]. During domain engineering, at certain
phases of system development (e.g., analysis, design, coding
compilation, linking, distribution, installation, start-up, or run-
time) variation points are “made explicit”, meaning foreseen,
designed, or implemented in a dedicated way. In application
engineering, these variation points are successively bound to
specific variants, decreasing the variability until at the end one
specific system is the end product.

III. ASSIGNING THE DIFFERENT NOTIONS TO TYPES

As can be seen from the previous section, the notion of the
term “variability in time” varies considerably, each adopting a
different viewpoint. However, the uses actually are orthogonal.
Thus, in this section, we assign the different notions of
the term to types, which will help to reason about product
line variability over time providing a reasonable terminology.
We generalize the three above notions and subordinate more
time-related variability research, both from general software
engineering and product line research, to which we will give
exemplary literature references. We distinguish between the
following three types of variability in time: variability of
change over time (maintenance/evolution), multiple versions

at a moment in time (configuration management), and binding
over time (product derivation).

A. Variability of Linear Change over Time:
Maintenance and Evolution

Meta-studies indicate that 50 to 90 percent of costs refer
not to development of software products but to their chang-
ing [17]. As described in Section II, the popular definition of
“variability in time” in [22] denoting the existence of different
artifact versions at different times does not address this issue
appropriately in the context of software product lines.

The discipline of software engineering providing compre-
hensive concepts, methods, and tools for changes is called
software maintenance or software evolution. For this paper,
we will not strictly distinguish between both terms. However,
commonly, the term maintenance has a rather “reactive” con-
notation (i.e., corrective or adaptive maintenance according to
[18]), whereas evolution tends to be used in a more “proactive”
way (i.e., perfective or preventive maintenance in [18]). In the
following we will use the more appropriate term, respectively.

Evolving a product line is much more complex as in the case
of single systems, since the variability (in space) changes over
time as well. Formalizing the different types of product line
changes to ensure consistency is a big challenge specific to
product line engineering. A taxonomy for the different types
of product line evolution operators with a special focus on
requirements level changes is given in [26], for example. A
more empirical approach categorizing the findings of two case
studies into an approach relating the reasons of product line
changes to their architectural impact can be found in [29].
Finally, a framework for decentralized evolution of product
line feature models is presented in [23]. It facilitates speci-
fying explicitly which change operations are permitted on a
feature model by defining allowed deviations with respect to
a reference feature model.

B. Variability of Multiple Versions at a Moment in Time:
Configuration Management

From a simplified point of view, software maintenance may
be seen as a continuous flow of versioning over time, each
new version invalidating its predecessor. In this form, it does
not concern multiple versions of the same artifact at the same
time. This is a task of configuration management.

Software configuration management (SCM) is often defined
as a holistic discipline comprising tools, techniques, and
processes for tracking and controlling everything related to
versioning and changing of software-related artifacts (e.g.,
[20]). Version management tools such as SVN or ClearCase
constitute the technical side of SCM. In this paper, we will
use the term configuration management in a narrower sense:
managing different versions of the same artifact throughout the
software lifecycle, or, as stated informally in [20]: “eliminating
the confusion and error brought about by the existence of dif-
ferent versions of artifacts”. Thus, it deals with maintaining the
integrity of products considering that they may be comprised
of artifacts of different versions.

[[[Linear change over time [Multiple versions at a moment in time |

Binding over time |

Focus Change as continuous flow

Managing artifact versions in parallel

Binding VPs as process in time

Off focus Multiple artifact versions

Evolving artifacts Evolution and versioning of VPs

Software engineering field Maintenance/Evolution

Configuration management

Product derivation

Exemplary PL challenge Consistent evolution of ViS

Consolidating versions and ViS

Time flexibility for binding ViS

PL: product line | VPs: variation points | ViS: variability in space

TABLE I
OVERVIEW OF THE THREE TYPES OF “VARIABILITY OVER TIME”.

Once a product is delivered to a customer, keeping it in
sync with the product line core assets is often not part of
the contract or even feasible (e.g., due to hardware changes).
However, the released products have to be maintained as
well, for instance by bug-fixing (corrective maintenance) or
for possible future update requests (perfective maintenance).
Therefore, the configuration of the specific product (i.e., all
its artifacts in their specific version) must on the one hand
be frozen in time. On the other hand, the product must keep
in contact with the evolving core asset base to support the
product’s maintenance.

Consolidating versioning and software product lines vari-
ability is an important research challenge of product line en-
gineering. It has both been addressed in research prototypes by
integrating product line functionality into version management
tools (e.g., [31]) or vice versa (e.g., [32]).

1) Versions over Time and Continuity: According to
Aoyama [1] evolution can be continuous or discontinuous.
Continuous evolution corresponds to a set of requirement
changes that is small enough, so that only little architec-
tural reengineering is required. Above a certain threshold of
changes, it is necessary to re-engineer the architecture, leading
to substantial architectural and implementational differences.
When the continuity is interrupted, a new product line genera-
tion arises and, for a certain period of time, both product lines
have to be maintained in parallel. Major architectural reengi-
neering leads to differences that are difficult to track. Dealing
with those problems is a further challenge for configuration
management.

C. Variability of Binding in Time:
Product Derivation

A considerable amount of variability of a product line is
planned early in the software product line lifecycle, during
scoping [25]. The actual implementation of the variability
(foreseeing and implementing variation points) can be per-
formed at different moments in domain engineering, as well
as the binding of these variation points to variants for product
derivation in application engineering [4]. Various binding
techniques ranging from coding time to run-time may be
applied.

Although the term “variability in time” has been used in
the context of variation point creation and binding, one might
argue that it is a rather trivial observation that this is usually
done in a process over time. However, we believe that it is
possible to gain some remarkable insights if seen in a broader

scope. Creation and binding of variability successively over
time is also known as multi-level and staged configuration,
respectively [8]. Such an approach is required, if it is neces-
sary to model so-called “software ecosystems”, this is when
software product lines themselves pass through several distinct
organizations until the variability is completely bound [3].

A further variability aspect is introduced if the variation
points are designed in a way that it is possible to bind them
at different stages (e.g., either at compile time or at run-time).
Then, additional variability, so-called “timeline variability”
[10] is introduced, leading to an even more complex product
configuration over time.

D. Intermediate Summary

Table I summarizes the three aforementioned types of
“variability in time”. They differ in what is in and off their
focus and in the fields of classical software engineering
that address them. To indicate that “variability in time” has
specific product-line-related challenges, we also mention one
exemplary challenge tackled by recent product line research.
Providing a complete list of all relevant challenges is beyond
the scope of this paper.

IV. SCENARIOS

In the following, we apply the three different types of
“variability in time” to describe several complex product line
scenarios where they exhibit expressive and discriminatory
power, giving evidence that they provide the right abstraction
for talking about variability over time.

Scenario 1: Interaction of Product Line and Products.
Figure | shows a product line scenario containing each of the
types of “variability in time”. The first type—linear change
over time (maintenance)—develops in parallel with the time
flow (horizontal axis). The vertical axis, in turn, corresponds to
the binding of variability. Interaction of the upper product line
evolution and the lower product maintenance corresponds to
configuration management, which is the third type. It becomes
necessary, for example, when a product bug-fix is fed back
into the product line core assets (bottom-up), or, vice versa,
a product receives a feature upgrade from the core asset base
(top-down).

The figure may be interpreted as follows: For the version of
the product line in 2009, binding of variability (the derivation
of the product A and B) is done in a single step. The product
line evolves and, in 2010, product C (V1) is derived. This
product has to be maintained in parallel to the evolving core

-

Variability

Product Line
(full variability)

Partially configured product |
(some variability left)

Fully configured product _ |
(no variability left)

Organization X

%,
Organization Y

2010

Fig. 1.

asset base. After creation of a maintenance release in 2011 C
(V2), the adaptations are merged back into the product line,
which is a configuration management task. Product D is bound
in separate steps (staged configuration [8]). Finally, in 2013,
product E results from staged configuration involving multiple
parties. The supplier (organization X) hands over the partially-
configured product line to its customer (organization Y), which
binds the remaining variation points and completes product
derivation. This is also referred to as software ecosystems [3].

Scenario 2: Interaction of Product Lines. The following
scenario (Figure 2) illustrates continuity and discontinuity of
product lines. Again, maintenance corresponds to the hor-
izontal axis, configuration management, here not between
products and their product line, but between distinct product
lines, to the vertical axis. Product derivation is not shown in
the figure. Subsequently, we distinguish between product line
generations, releases, and revisions using version numbering
(<gen>.<rel>.<rev>). This terminology is similarly used
in other publications (e.g., [29], [1]) and can be found likewise
in various software projects.

Starting in 2009 with development of the product line,
version n.m.0 is released in 2010, and, one year later in
an updated revision (n.m.1). In 2011, a new release is split
up from n.m.2. Both releases now have to be maintained
in parallel. Usually, the older release then primarily experi-
ences corrective and maybe adaptive maintenance, whereas
the newer one keeps evolving further (perfective, preventive
maintenance). Until the end of maintenance of release m,
considerable interaction between m and m+1 may occur (e.g.,
backporting of functionality), making complex configuration
management (“release management”) tasks necessary between
the product lines.

An even more profound break is the change of generations.

2011

Product line evolution scenario.

According to [1] this is the case when the prospected changes
are beyond a level of tolerance, so that it is necessary
to reengineer the software architecture completely. This is
the case starting from year 2012 where generation n+1 is
launched. The current state of the art in development and the
lessons learnt from the previous generation build the input for
creating a new product line architecture. Although the overall
architecture is build from scratch, successful core assets of the
prior generation may be ported (year 2014). Similarly as in a
case of release change, maintenance operations performed on
one product line generation may need to be transferred to the
other one (e.g., forwardporting). This task is more challenging
though, as, due to the differing product line architectures,
the previously common core assets may have drifted apart
considerably. This could be called “product line generation
management”.

V. PRODUCT LINE EVOLUTION IN DEPTH

In the previous sections, we identified three types of
“variability over time” and applied them to two evolution
scenarios. Now, it is necessary to further decompose and
to identify the relevant tasks and aspects to be considered
within each type. This will serve as a foundation to define
a research agenda for giving appropriate support with tools
and methods in the future. For the type of product derivation,
there already exists substantial research, even on advanced
topics (e.g., staged configuration, software supply chains and
ecosystems) [8], [11], [3]. For this paper, we will only perform
this decomposition for “product line evolution”; addressing
versioning-related variability issues is out of scope for this
paper and will be future work.

Product line evolution just is starting to get a foundation
suitable for modeling. In [26] a set of evolution operations is
defined, and [5] presents initial concepts for evolution-enabled

ranch

Revision\r—Revision

Internal n.m.o

Baseline

Release n.m
maintenance

Revision—, 5
el
=4

n.m.1 ‘wn.m.z w
\
\

Branch Backport of changes

Generation n

\ \

Internal
Baseline

nm+1.0 \

Release n.m+1

\

Lessons Learnt
SRV |

Generation n+1
Release n+1.0

(RevisionT—RewsmnT—Rewsmn

| Accumulated 3

] A
] I <
Knowiedge }——Q_&%‘RewslonYRewsmn

Revision Revision 5
R3 o> =
=
m+12 n.m+1.3 /nm+1.a W
[
|

|n.m+1.1

maintenance

Extraction of selected components Forwardbort of changes

| \

RewsmnT—x

n+1.0.1 n+1.0.2
Branch
Al

Internal
Prototype

n+1.0.0

\ \ \ \
2009 2010 2011 2012

Fig. 2.

feature modeling. For defining the tasks and aspects relevant
for product line evolution, we run through a complete iteration
of what may be called the “evolution lifecycle”. Depending
on the intention of an observer, product line evolution has the
following lifecycle phases: future planning, present tracking,
present/past analysis, and correction/realignment. Figure 3
illustrates this.

Proactive Planning. Scoping [25] is a crucial task for a
product line; its future development has to be planned. This
means, in the first case, planning the features and their vari-
ability for a certain moment in the future. This is however not
the only relevant planning task. Additionally, it is necessary
to plan the steps, how to reach the future plan (product line
evolution). Next to the (proactive) evolution of the product line
core assets, the maintenance of released products and previous
product line releases and generations must be planned and
aligned.

Tracking. Tracking a product line includes both logging
its current state and the changes performed on it. When
considering the state of a product line as its current features
and their dependencies, this can be done by using variability
modeling (e.g., feature modeling with versioned features and
dependencies) and change recording. This tracks the main-
tenance/evolution of the product line variability. However,
changes to released products (bug-fixes, updates) should con-
sequently also be tracked. This might be difficult, for example
in the context of software ecosystems and supply chains [3],
[11], as a product line supplier might not even know about the
actual products derived from its base product line for the end
customers.

Analysis. Given that the product line evolution has been
appropriately planned and tracked, we envision three types

\ \ \ \
2013 2014 2015 2016

time

Evolution paths of product lines (revisions, releases, and generations).

of analyses: evolution state analysis, evolution step analysis,
evolution conformance analysis.

« Analyzing the evolution state means checking the consis-
tency at a moment in time. This may involve that each
feature on model level must have assigned implementa-
tion artifacts, or that dependencies on feature level may
not contradict to those on implementation level.

o An evolution step is valid if it transforms one valid
evolution state to another valid one. For one concrete
evolution state as input, this is easy to check (simply
applying the evolution step and checking the result for
consistency). However, it might be possible to prove that
an evolution step produces always a valid result given a
valid input.

o Analyzing evolution conformance, finally, means check-
ing whether the current and past evolution states and
the transition steps performed comply to the evolution
how it has been planned. The result of the evolution
conformance analysis may not only comprise the actual
deviation but also recommendations about evolution steps
to perform to get on track again.

Each of these analyses will usually comprise the following
tasks: gathering the data, performing the analysis, and report-
ing of the outcomes, for example by visualization. This also
holds true for the maintenance of released products, which
must be analyzed as well.

Correction and Realignment. Based on the results of
the analyses it might be necessary to correct and realign the
development efforts or the product line evolution plan.

As we address a complete iteration of the evolution life-

Deviation

/ Detection \

Conformance

Constraints describing
Analysis

the evolution path \\

{

-

Product Line after
Evolution Step A2

Product Line after
[] Evolution Step A1 "
Product Line
at beginning
of evolution

ﬂ

Correction

,,,,, —

S
Planned Goa
for Evolution Phase
B

for Evolution Phase
A

Time

Fig. 3.

cycle, we are confident that we cover the crucial tasks and
aspects to be considered when defining a research agenda for
product line evolution in the future.

VI. DISCUSSION

The aim of the paper is to perform first steps towards a com-
mon body of knowledge for variability over time. Validation of
the results achieved is difficult, as a common terminology and
understanding on concepts is missing. Addressing this problem
best possible, we base our research both on existing work
and exemplary validation. More precisely, our typification of
“variability in time” is based on a literature survey and we
referred to related work and assigned it to the corresponding
types wherever appropriate. Second, we exemplarily validated
the identified types by applying them to complex product line
scenarios, where they exhibited expressiveness.

VII. CONCLUSION

Current authors address different time-related variability
issues when talking about “variability in time”. Without a
common framework of concepts, it will be difficult to relate
advancements to each other, finally hindering progress. In this
paper, we performed the first steps to approach this problem.
We surveyed the different uses and found out that their notions
are actually orthogonal. By generalization, we received three
types of “variability in time”: variability of linear change
over time (maintenance/evolution), multiple versions at a point
in time (configuration management), and binding over time
(product derivation). We applied the three types to two product
line scenarios, where they exhibited expressive and discrimi-
natory power, giving evidence for their usefulness as part of
a body of knowledge for time-related variability issues.

As a first step towards further refinement, we extracted
the necessary tasks and aspects relevant for the type mainte-
nance/evolution, thereby covering a complete iteration of the
“evolution lifecycle”. These results can be used for defining a
research agenda for developing tools and methods supporting
product line evolution. Obviously this paper can only be seen
as a first step towards a common body of knowledge, which

Planning, tracking, analysis, and realignment of evolution.

has to be developed in vital discussion with the research
community. However, we hope that our work stimulates further
researchers to engage with the various dynamic properties of
product lines and the challenges imposed by this fact.

ACKNOWLEDGMENT

This work was supported, in part, by Science Foundation
Ireland grant 03/CE2/I303_1 to Lero — the Irish Software
Engineering Research Centre, http://www.lero.ie/.

We thank Christa Schwanninger for her valuable comments
on a draft of this paper.

REFERENCES
[1] M. Aoyama, “Continuous and discontinuous software evolution: aspects
of software evolution across multiple product lines,” in Proceedings
of the 4th International Workshop on Principles of Software Evolution
(IWPSE ’01). New York, NY, USA: ACM Press, 2001, pp. 87-90.
C. Atkinson, Component-Based Product Line Engineering with UML.
Addison-Wesley, 2001.
J. Bosch, “From software product lines to software ecosystems,” in
Proceedings of the 13th Software Product Line Conference (SPLC '09),
2009, iSBN 978-0-9786956-2-0.
J. Bosch, G. Florijn, D. Greefhorst, J. Kuusela, H. Obbink, and K. Pohl,
“Variability issues in software product lines,” in Proceedings of the
4th International Workshop on Software Product-Family Engineering.
Heidelberg, Germany: Springer-Verlag, 2001.
G. Botterweck, A. Pleuss, A. Polzer, and S. Kowalewski, “Towards
feature-driven planning of product-line evolution,” in Proceedings of the
Ist International Workshop on Feature-Oriented Software Development
(FOSD’09). New York, NY, USA: ACM Press, 2009.
R. Capilla, A. Sanchez, and J. C. Dueiias, “An analysis of variability
modeling and management tools for product line development,” in
Proceedings of the Workshop on Software and Services Variability
Management. Concepts, Models and Tools, 2007.
J. O. Coplien, “Multi-paradigm design,” Dissertation, Vrije Universiteit
Brussel, 2000.
K. Czarnecki, S. Helsen, and U. W. Eisenecker, “Staged configuration
through specialization and multilevel configuration of feature models,”
Software Process: Improvement and Practice, vol. 10, no. 2, pp. 143—
169, 2005.
S. Deelstra, M. Sinnema, J. Nijhuis, and J. Bosch, “COSVAM: A
technique for assessing software variability in software product fam-
ilies,” in Proceedings of the 20st IEEE International Conference on
Software Maintainance (ICSM’04). Washington, DC, USA: IEEE
Control Systems Magazine, 2004.

[7]
[8]

[9]

http://www.lero.ie/

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]
[21]

[22]

E. Dolstra, G. Florijn, M. de Jonge, and E. Visser, “Capturing timeline
variability with transparent configuration environments,” in Proceedings
of the International Workshop on Software Variability Management, May
2003.

H. Hartmann, T. Trew, and A. Matsinger, “Supplier independent feature
modelling,” in Proceedings of the 13th Software Product Line Confer-
ence (SPLC ’09), 2009, iSBN 978-0-9786956-2-0.

A. Hubaux and A. Classen, “Taming time in software product lines,”
University of Namur, Rue Grandgagnage, 21, B-5000 Namur, Belgium,
Tech. Rep., July 2008.

M. Jaring and J. Bosch, “Representing variability in software product
lines: A case study,” in Proceedings of the 2nd Software Product Line
Conference (SPLC ’02). London, UK: Springer-Verlag, 2002, pp. 15—
36.

K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson, “Feature-
oriented domain analysis (FODA) feasibility study,” Carnegie Mellon
University, Software Engineering Institute, Pittsburgh, PA, Tech. Rep.,
Nov. 1990.

P. Knauber and J. Bosch, “Icse workshop on software variability
management,” in Proceedings of the 25th International Conference on
Software Engineering (ICSE ’03), vol. 0. Los Alamitos, CA, USA:
IEEE Control Systems Magazine, 2003, p. 779.

P. Knauber and S. Thiel, “Session report on product issues in product
family engineering,” in Proceedings of the 4th International Workshop
on Software Product-Family Engineering. Heidelberg, Germany:
Springer-Verlag, 2001.

J. Koskinen, “Software maintenance costs. updated: Sept. 28,
2004.” http://users.jyu.fi/~koskinen/smcosts.htm, P.O. Box 35, 40014-
Jyviskyld, Finland, 2004.

B. P. Lientz and B. E. Swanson, Software Maintenance Management.
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.,
1980.

D. Nestor, L. O’Malley, A. Quigley, E. Sikora, and S. Thiel,
“Visualisation of variability in software product line engineering,” in
Proceedings of the 1st International Workshop on Variability Modelling
of Software-intensive Systems (VAMOS), 2007. [Online]. Available: http:
/Iwww.vamos-workshop.net/2007/files/ VAMOSO07_0038_Paper_7.pdf
L. Northrop and P. Clements, Software Product Lines: Practices and
Patterns. Addison-Wesley, 2001.

K. Pohl, G. Bockle, P. Clements, H. Obbink, and D. Rombach, Eds.,
Product Family Development Seminar No. 01161, April 2001.

K. Pohl, G. Bockle, and F. J. van der Linden, Software Product Line

(23]

[24]

[25]

[26]

(27

[28]

[29]

[30]

(31]

(32]

(33]

[34]

Engineering: Foundations, Principles and Techniques. Springer-Verlag,
2005.

M.-O. Reiser and M. Weber, “Multi-level feature trees: A pragmatic
approach to managing highly complex product families,” Requirements
Engineering, vol. 12, no. 2, pp. 57-75, 2007.

J. Savolainen and J. Kuusela, “Volatility analysis framework for product
lines,” in Proceedings of the 2001 Symposium on Software Reusability
(SSR ’01). New York, NY, USA: ACM Press, 2001.

K. Schmid, “A comprehensive product line scoping approach and its
validation,” in Proceedings of the 24th International Conference on
Software Engineering (ICSE '02). New York, NY, USA: ACM Press,
2002.

K. Schmid and H. Eichelberger, “A requirements-based taxonomy of
software product line evolution,” Electronic Communication of the
EASST, vol. 8, 2007.

M. Sinnema and S. Deelstra, “Classifying variability modeling
techniques,” Information & Software Technology, vol. 49, no. 7, pp.
717-739, 2007. [Online]. Available: http://dx.doi.org/10.1016/j.infsof.
2006.08.001

M. Sinnema, S. Deelstra, J. Nijhuis, and J. Bosch, “COVAMOF: A
framework for modeling variability in software product families,” in
Proceedings of the 11th Software Product Line Conference (SPLC ’07).
Heidelberg, Germany: Springer-Verlag, 2007.

M. Svahnberg and J. Bosch, “Evolution in software product lines: Two
cases,” Journal of Software Maintenance, vol. 11, no. 6, pp. 391-422,
1999.

M. Svahnberg, J. van Gurp, and J. Bosch, “A taxonomy of variability
realization techniques,” Software - Practice and Experience, vol. 35,
no. 8, pp. 705-754, 2006.

C. Thao, E. V. Munson, and T. N. Nguyen, “Software configuration
management for product derivation in software product families,” in

Proceedings of the 15th Annual IEEE Int. Conf. and Workshop on the
Engineering of Computer Based Systems. Washington, DC, USA: IEEE

Control Systems Magazine, 2008, pp. 265-274.

A. van der Hoek, “Design-time product line architectures for any-
time variability,” Science of Computer Programming. Special Issue on
Software Variability Management, vol. 53, no. 3, pp. 285-304, 2004.
F. van der Linden, “Software product families in Europe: The Esaps &
Café projects,” IEEE Software, vol. 19, no. 4, pp. 41-49, 2002.

——, “Applying open source software principles in product lines,”
UPGRADE — European Journal for the Informatics Professional, vol. 10,
no. 3, pp. 3240, 2009.

http://users.jyu.fi/~koskinen/smcosts.htm
http://www.vamos-workshop.net/2007/files/VAMOS07_0038_Paper_7.pdf
http://www.vamos-workshop.net/2007/files/VAMOS07_0038_Paper_7.pdf
http://dx.doi.org/10.1016/j.infsof.2006.08.001
http://dx.doi.org/10.1016/j.infsof.2006.08.001

	Introduction
	Variability in Time in the Literature
	Product Line Evolution Variability
	Product Line Versioning Variability
	Product Line Binding Variability

	Assigning the Different Notions to Types
	Variability of Linear Change over Time: Maintenance and Evolution
	Variability of Multiple Versions at a Moment in Time:Configuration Management
	Versions over Time and Continuity

	Variability of Binding in Time:Product Derivation
	Intermediate Summary

	Scenarios
	Product Line Evolution in Depth
	Discussion
	Conclusion
	References

