
Multi-Level Product Line Customization

Christoph ELSNER a, Christa SCHWANNINGER a,
Wolgang SCHRÖDER-PREIKSCHAT b and Daniel LOHMANN b

a Siemens Corporate Technology
Software & Engineering 2, Erlangen, Germany

{christoph.elsner.ext,christine.schwanninger}@siemens.com
b Friedrich-Alexander University Erlangen-Nuremberg

Department of Computer Science 4, Erlangen, Germany
{wosch,lohmann}@cs.fau.de

Abstract. Managing and developing a set of software products jointly using a soft-
ware product line approach has achieved significant productivity and quality gain
in the last decade. More and more, product lines now are becoming themselves en-
tities that are sold and bought in the software supply chain. Customers build more
specialized product lines on top of them or derive themselves the concrete prod-
ucts. As customers have different requirements, whole product lines now may vary
depending on customer needs—they need to be customized. Current approaches
going beyond the scope of one product line do not provide appropriate means for
customization. They either are tailored to specific implementation techniques, only
regard customization on few levels (e.g., only source code level), or imply a lot of
manual effort for performing the customization.

The PLiC Approach tackles this challenge by providing a generic, reusable ref-
erence architecture and methodology for implementing such customizable product
lines. In the reference architecture, a product line consists of so-called product line
components (PLiCs), which are flexibly recombinable slices of a formerly mono-
lithic product line, thereby maintaining strict separation of concerns. The approach
furthermore comprises a tool-supported methodology for recombination of PLiCs
based on customer needs and thus minimizes manual intervention when customiz-
ing. We implemented the PLiC Approach for a complex model-driven product line,
where it facilitates comprehensive customization on various levels in the models,
the model transformation chain, and in the source code with reasonable effort. This
gives evidence that our approach can be applied in various other contexts where the
same or fewer customization levels need to be considered.

Keywords. Software Product Line Development, Model-Driven Development,
Software Product Line Architecture

1. Introduction

Product line engineering [7,25,27] denotes a collection of engineering techniques sup-
porting the efficient reuse of a common set of core assets when developing similar prod-
ucts. There exist different maturity stages for implementing a software product line [8].
The more mature stages imply that the process of deriving a product can vastly be auto-
mated [12]: A product is specified (i.e., configured) in a problem space, where domain-
specific terms and concepts exists that the customer is familiar with. An automated map-



ping of this specification to appropriate implementation artifacts in the solution space
then generates the concrete product. For example, a model-driven product line for build-
ing automation uses models as input that specify a house and its interior devices in prob-
lem space. Automated model transformations and code generation then map these mod-
els to house-specific source code, which, together with manually implemented source
code, constitutes the solution space.

This automated type of product line engineering, which minimizes the implemen-
tation knowledge for product derivation, is to prefer even more when customers acquire
a whole product line to derive the products themselves, or when they reuse it to build
more specialized product lines. The scenario that a whole product line itself is the unit
of sales is also called software supply chain [19] or software ecosystem [10] in recent
work. Given this as a prerequisite, the scope of a product line in the supply chain should
be adapted to the needs of the customer prior to sales. We will denote this case as product
line customization. Doing so, different market segments can be satisfied more appropri-
ately, leading to better market coverage and finally to more sold product line instances.
A further consequence is, that product line customization on an automated product line
needs to be performed in the problem space, in the solution space, and in the mapping
between them.

For example, commercial embedded operating systems such as VxWorks [37], Win-
dows CE [38], and ProOSEK [28] are highly configurable and can be regarded as auto-
mated product lines. A customer acquires one of these product lines and uses its config-
uration interface to derive a concrete product tailored to his needs. However, the product
lines vary themselves depending on customer needs. The Windows CE development en-
vironment, for example, exists in special versions for PocketPC, PocketPC Phone Edi-
tion, Smartphone, and industrial applications, each allowing to derive a variety of oper-
ating systems to meet the needs of the developers. The situation is similar for VxWorks
from Wind River, which furthermore offers symmetrical multiprocessing capabilities –
a highly crosscutting feature – as optional add-on. The ProOSEK product lines, finally,
differ in the embedded hardware they support.

There are several implementation approaches that go beyond the scope of one single
product line. They do not explicitly consider product line customization, as characterized
above, and have further drawbacks: They are either tailored to specific implementation
technologies, they confine themselves to a restricted set of customization mechanisms,
or lack concepts for automating the process of product line customization and product
derivation (see related work, Section 7). However, all these points need to be addressed
when developing a concept for product line customization, this is, when the product line
itself becomes a product which needs to be tailored.

In one of our industry cooperations, we explicitly met the case of product line cus-
tomization. A set of similar embedded product lines has been implemented by using a
common code repository. A script file selects the corresponding files for a concrete prod-
uct line, which is the commodity sold to the customer. It also initiates the interpretation
of preprocessor directives for those files in which concerns related to different product
lines are intermingled. According to our experience, such code-centric methods can be
regarded as state-of-the-art in industry. Due to a non-disclosure agreement, further de-
tails cannot be published. However, already from the general description of the process,
we can derive the following shortcomings:



Intermingled Concerns Within the Asset Base
In the above described example all files are managed in the same repository and scripts
decide if they are included into a specific product line or not. To be able to relate a file to
the product line(s) it belongs to, strict guidelines or methods are required. Implementing
variability with preprocessor directives results in intermingled concerns within a file. It
is hard to decide which part of which file will actually be included into which product
line and, finally, in which product. Furthermore, preprocessor directives typically render
advanced editor support unusable, for example when a function or variable is declared
in both the if- and else-branch of a preprocessor statement. Depending on the number of
directives, they strongly impair readability and comprehensibility of source artifacts. [30]
Intermingled Concerns within the Monolithic Product Line Generator
The knowledge on how to produce a certain product line is encoded implicitly in the
script file and controlled by various script parameters. It must perform several tasks, for
example file selection, preprocessing, as well as generating the problem space represen-
tation (e.g., a feature model or a configuration interface) and the derivation infrastructure
of the target product line. The multitude of tasks and the monolithic nature of the script
file make it very hard to understand, maintain, and adapt.

To approach these two problems of intermingled concerns, both within the asset base
and the generator, we regard the separation of concerns (SoC) as a key design principle.
This means that optional or alternative parts of a product line (i.e., the customizable
parts) reside in a dedicated artifact. We call such a part of a product line a product line
component (PLiC). It constitutes a slice of a product line that comprises the problem
space, mapping, and solution space artifacts required for customizing the product line.
The product line generator than composes the PLiCs according to customer requirements
for creating a customized product line.

To tackle product line customization, we developed the PLiC Approach. It provides
a generic, reusable reference architecture and a methodology for implementing customiz-
able product lines. In the reference architecture, a product line consists of so-called prod-
uct line components, which are flexibly recombinable slices of a formerly monolithic
product line, thereby maintaining strict separation of concerns. The approach comprises
a tool-supported, automated methodology for recombining PLiCs based on customer
needs and thus minimizes manual intervention when customizing. We implemented the
PLiC Approach for a model-driven product line, where it facilitates comprehensive cus-
tomization on various levels in the models, the model transformation chain, and in the
source code. In particular, we make the following contributions:

• We present a reference architecture for customizing product lines, the PLiC Ref-
erence Architecture, which is tailorable to arbitrary product line customization
settings (Section 2).

• We discuss possible implementation alternatives for product line customization,
thereby showing that SoC can be achieved regardless of the implementation tech-
nologies used (Section 3).

• We present a tool-supported methodology for composing the PLiCs, which min-
imizes the manual intervention during customized product line creation (Sec-
tion 4).

We illustrate the PLiC Approach with a case study of a small product line customization.
We customize the SmartHome [36,14] product line with a PLiC for safety augmenting it



with capabilities for triple modular redundancy and error injection. Each of the Sections
2 to 4 therefore first describes an example problem, then presents the general solution to
solve the problem, and finally maps this solution to the example case. We will present
further results of our case study implementation in Section 5. In Section 6 we discuss
them with respect to generalizability and scalability of the approach, and, finally, we
address related work and draw a conclusion in Sections 7 and 8.

2. A Reference Architecture for Customizing Product Lines

In this section, we present our generic reference architecture for developing customizable
product lines, the PLiC Reference Architecture. It is tailorable to a wide range of settings.
For illustration, we apply it to the model-driven product line SmartHome.

2.1. Example Problem

SmartHome [36,14] is a product line developed for construction experts such as archi-
tects and interior designers. It has been created in the context of the research project
AMPLE [1] and is based on the widely-used model-driven framework openArchitecture-
Ware (oAW) [26], which in turn is based on Eclipse. SmartHome facilitates modeling of
buildings and their electrical interior devices in problem space and generates the software
from the model for automatically controlling these devices.

Originally developed for standard homes, the product line now shall be extended to
serve the market for industrial buildings as well. To segment the market, the assumed
business model of our case study is to offer a standard version of the product line as well
as an extended version, which includes advanced safety features.

2.2. Product Line Components

A product line component (PLiC) is a slice of a product line that encapsulates optional
or alternative parts of the product line. It comprises the problem space configuration, the
mapping (e.g., via file selection or code generation), and the solution space artifacts re-
quired for customizing the product line for a specific customer group. The notion of com-
ponent in the term PLiCs stems from the fact that, on the one hand, they can be plugged
into product lines to extend them and, on the other hand, points at the conventions they
have to follow to do so.

For the rest of the paper, we will generally refer to a PLiC as an additional customiza-
tion, whereas we will call the entity to be customized the base product line. This implies
a hierarchical product line approach [9] and matches our case study domain where the
Safety PLiC customizes the SmartHome base product line. In ideal case, also the base
product line is a regular PLiC. However, when dealing with a legacy product line, it may
also be treated as a special entity to avoid refactoring.

2.3. PLiC Reference Architecture

The PLiC Reference Architecture provides a framework for integrating PLiCs into a base
product line. It must be generic and consider SoC as a key architectural principle. These
constraints can be mapped to the following architecture-relevant requirements:



1. Support for Arbitrary Product Lines
The PLiC Reference Architecture must not depend on a specific product line ar-
chitecture. Thus, it has to support arbitrary product lines given a certain predeter-
mined infrastructure technology (e.g., EMF [31], feature modeling [6]) and build
tooling (e.g., make, Ant).

2. Separating Concerns of Base Product Line and PLiCs
All artifacts of PLiCs and the base product line should remain clearly separated
and interact with each other in a well-defined way (see Section 1, shortcoming 1).

Based on these requirements we developed the PLiC Reference Architecture as
shown in Figure 1. The strategy is to implement as much as possible in the lower lay-
ers of the hierarchy to foster reusability. Whereas layer 1 provides support for arbitrary
product lines, layers 2 and 3 consider SoC as a key architectural principle:

PL Infrastructure

PLiC Framework

PLiC Coordinator1

BPL1
C14C13C12C11

BPL2
C24C23C22C21

BPLn

Cn5Cn4Cn3Cn2Cn1

CPL11 CPLn1 CPLn2CPL12 CPL13 CPL21 CPL22 CPLn3

PLiC Coordinator2 PLiC Coordinatorn

3

2

1

0

C
o

m
m

o
n 

In
fr

a
st

ru
ct

ur
e

Figure 1. The PLiC Reference Architecture

Layer 0. The architecture is based on a common product line infrastructure like com-
mercial product line tooling [6] or model-driven product-line-enabled frameworks [26].
Layer 1. Based on Layer 0, the PLiC Framework provides base functions for defining
and coordinating the overall product generation process. These functions are the building
blocks for customization. They are used by the above layer to easily specify the points
during product generation where PLiCs can customize the base product line (details will
follow in Section 3). The PLiC Framework supports arbitrary product lines, as it does
not imply the use of specific types of configuration models or assume predefined steps
of product generation.
Layer 2. For each base product line (BPL), a PLiC Coordinator needs to be designed.
It specifies the concrete customization points (the customization interface) at which a
PLiC can extend the BPL. During product generation, the PLiC Coordinator ensures that
PLiCs may extend a BPL only at these predefined points. As each PLiC itself contains all
information necessary to generate its part of the product, there does not exist a monolithic
product generation facility as in repository-based approaches (Section 1, shortcoming 2).
Layer 3. Customized product lines (CPLs) are specified on top of a PLiC Coordinator.
A CPL represents a BPL enriched (in problem space, mapping, and solution space) with
PLiCs. Following the principle of SoC, we avoid physical copying and merging of BPL
and PLiC files. Instead, a CPL is a simple placeholder that forwards the actual product
generation to the PLiC Coordinator, which dynamically composes the product generation



logic of the base product line and the chosen PLiCs. 1 A complete customized product
line delivered to a customer therefore comprises the PLiC Coordinator, the BPL, the set
of chosen PLiCs, and the CPL, which is the frontend for the customer.

2.4. Example Solution

In our example scenario, the SmartHome product line is extended with a product line
component for safety, which can be employed to meet the requirements of industrial
building automation. The PLiC Reference Architecture model must be applied accord-
ingly. The PLiC Framework has to be developed to extend the model-driven product line
infrastructure oAW to provide a general, easy-to-use interface for all artifacts that shall
be customizable, particularly, models, metamodels, transformators, generators, and code
(Section 3). Furthermore, a PLiC Coordinator for the specific product generation process
of SmartHome and the customization needs of the Safety PLiC must be developed (Sec-
tion 4) and, finally, SmartHome must be adapted to this PLiC Coordinator (Section 5).

3. Maintaining Separation of Concerns When Implementing Customizations

After applying the PLiC Reference Architecture to a product line, it is still open how
to actually implement the customizations that a PLiC shall apply to the base product
line. In the following, we will argue that any artifact involved in product generation
can be customized, whereas strict separation between base functionality and additional,
customized functionality can be achieved.

3.1. Example Problem

The SmartHome product line facilitates modeling of buildings and their electrical devices
and generates the specific software for all device controllers. Code generation builds
on top of a multi-level model-driven process involving several technologies, in particu-
lar models, metamodels, model transformations, code generation, and manually imple-
mented application logic components. A PLiC may extend the base product line on all
these levels for implementing a customization, so all these implementation technologies
need to support SoC.

3.2. Implementation of Customizations

We divide the asset base of a product line into fundamentally three levels. In each level,
customization needs may arise. Bottom-up, these levels are the passive artifact level, the
active artifact level, and the top artifact level.

The passive artifact level consists of artifacts that either immediately contribute to
end products (e.g., compiled code, configuration files) or that are transformed in some
way prior to their contribution (e.g. models, source code). Passive artifacts may reside
both within problem space (i. e., models) and solution space (all kinds of artifacts). The

1Keeping the BPL and PLiC files separate and avoiding copying has, besides a clear structure, further advan-
tages. It hinders that differing versions of BPLs and PLiCs are used in different CPLs, as both multiple version
keeping and reconciliation is very costly and should be avoided.



active artifact level contains those artifacts that transform other (usually passive) arti-
facts. They are, for example, compilers, model-to-model transformators, and model-to-
code generators. This level also contains the logic to select passive artifacts according to
the concrete product configuration. Therefore, it represents the mapping from problem
space to solution space artifacts as well as the mapping between solution space artifacts.
The top artifact level serves for specifying the overall product generation process and
therefore the sequence for applying active artifacts.2 It may consist of a hierarchy of
make files or a script file describing the model transformation sequence. The artifacts of
the top level together with the active artifacts are sometimes also referred to as product
generation facility.

Separating concerns between the base product line and the PLiCs depends on the
capabilities of the employed implementation languages and the level of invasiveness
of the PLiC’s intended customizations on each level. We distinguish three classes of
customizations: noninvasively-implementable customizations, invasively-implementable
customizations, and customizations by shifting to a higher level.

Noninvasively-implementable customizations do not require any changes to the base
artifact. In the simplest case, the extension of a passive artifact is well-modularizable, can
be implemented in a dedicated file, and can be composed by general-purpose compilers,
weavers, linkers, etc. Active artifacts (e. g., model transformations), on the other hand,
are often executed sequentially and therefore can be implemented separately as well. If
the employed languages have advanced capabilities for SoC (e.g., aspect orientation [23,
22]), even fine-grained customizations can be implemented in the PLiC without need
for adapting the base product line. Furthermore, current component frameworks such as
Spring provide means for advanced SoC in common third generation languages by using
interceptors.

Invasively-implementable customizations exploit the fact that refactoring of the base
artifact often provides a viable solution for SoC. Various loose-coupling design pat-
terns [17] (Observer, Mediator, etc.) can be applied for this purpose. Single program
statements can also be factored out into dedicated methods to make them advisable by
aspects, or to simply override them using inheritance.

In case the base product line consists of passive artifacts lacking mature mechanisms
for SoC (e.g., XML, C) and performance constraints impede the use of certain design
patterns, but there is still the need for fine-grained customizations, we advocate for solv-
ing the problem via shifting to a higher level. Then, the mentioned noninvasive and in-
vasive customizations can be applied on the active instead of the passive artifact level.
For example, it is possible to map arbitrary textual customizations to a customization
problem on text generation level (e. g., JET, XPand), where loose-coupling design pat-
terns may be applied. Furthermore, concerns can be separated in several domain-specific
models and can be recombined either with custom-made model transformators or with
the help of a model merging tool.

3.3. Example Solution

In the following, we will apply the strategy for implementing customizations to our safety
extension for the SmartHome product line. Its model-driven product generation process

2Strictly seen, the active artifact level would also comprise the top artifact level. However, as we need to
distinguish the two levels for the following classification, we keep both levels separate.



is based primarily on domain-specific EMF (Eclipse Modeling Framework) models. A
building is described in a problem space model and automatically and repeatedly trans-
formed first to a platform-independent and then to a platform-specific solution space
component model. Finally, application glue code is generated. Business logic is imple-
mented manually in Java. We will first give an overview of the various customization
technologies used and then give some concrete examples.

3.3.1. Overview

Within the SmartHome customization case study, separation of concerns on various lev-
els became necessary, both for passive artifacts such as models, metamodels, and source
code and for active artifacts such as model transformators and model generators. All
technologies and tools we use are publicly available as part of the Eclipse framework.

SoC for Passive Artifacts
On source code level, we use plain Java to implement well-modularized components and
AspectJ [23,22] for crosscutting concerns. To merge concerns on model and metamodel
level, we use the aspect model weaver XWeave [18] for basic model composition tasks.
We implement more advanced model weaving logic by shifting the problem to the active
artifact level. There, we can perform the weaving procedurally by using the XTend model
transformation language of oAW. For textual languages that do not provide means for
proper SoC we also employ active artifacts, namely templates written in oAW’s text
generation language XPand.

SoC for Active Artifacts
The active logic of PLiCs also has to be integrated into the overall product generation
process. As separate model transformation modules can often be serialized, there rarely
is a need for advanced SoC mechanisms such as aspect orientation. It is sufficient to
control the proper execution of the model transformation sequence from the top artifact
level. This does however not apply to code generation. Variation points must be explicitly
foreseen in generator templates to be able to customize certain parts of a generated file.
To be able to customize code generator templates without invasive refactoring, we use
the aspect-oriented extensions [26,36] of the XPand language of oAW.

Top Level Artifact
In oAW the overall product generation process (i. e., the sequence of model transforma-
tion and text generation) is defined in an XML dialect called workflow language. We
currently do not employ techniques for advanced SoC at this level and assume that these
issues are solved on lower artifact levels. We use the workflow language therefore at the
top artifact level to integrate the various customizations of passive and active artifacts.

The customizations relate to the PLiC Reference Architecture (Figure 1) as follows:
basic technologies such as transforming models, generating files, weaving aspect code,
etc. reside in layer 0. The PLiC Framework on layer 1 provides a common interface to
these, so they can be used as building blocks to compose complex product derivation.
In our case, the building blocks are available as “functions” in the oAW workflow lan-
guage, so that a software architect can concisely formulate the interfacing of product line
components and the base product line via writing an oAW workflow.

We will now illustrate how flexible SoC-maintaining customizations can be imple-
mented by describing concrete examples for metamodel (a special case of model weav-



ing), transformator, and generator customization. All examples have been implemented
within the Safety PLiC case study using the above-mentioned techniques.

3.3.2. Metamodel Customization Example

SmartHome provides two different metamodels in the problem space: one feature model
[21] for configurative variability (burglar alarm feature, temperature manager feature)
and one EMF-based metamodel for constructive variability (for modeling rooms, doors,
windows, sensor and actuator devices, controllers, etc.). Models (instances of the meta-
models) describe a concrete house and are the input for product generation. To express
additional safety concepts within the problem space models, the Safety PLiC extends
the corresponding metamodels. It provides the product line with additional problem
space variability: for error injection (for testing purposes) and triple modular redundancy
(TMR).

We created an additional safety feature model for the PLiC with only one optional
feature: errorinjection (see Figure 2, left). Weaving with the base feature model is
a function provided by the PLiC Framework and currently produces just a simple union,
which is logically equivalent to two separate feature models. To formulate dependencies
between features of the base product line and the PLiCs we use the constraint mecha-
nisms of pure::variants [6], a commercial tool we use for feature modeling.3

MovementSensor MovementSensor
isRedundant: boolean

ms1: MovementSensor ms2: MovementSensor
isRedundant: boolean = true

<<instance>> <<instance>>

PSMM

PSM

safety

errorinjection

Figure 2. The Problem Space Metamodels of the Safety PLiC

Furthermore, we extended the EMF-based constructive variability metamodel by
attaching the boolean attribute isRedundant to certain devices types. When set to
true for a device, a procedural model transformation (Section 3.3.3) will generate the
code for three device instances and a voter instead of a single device. The weaving in
this case is performed by a procedural model transformation. The right-hand side of
Figure 2 shows the adding of the isRedundant attribute to the metamodel element
MovementSensor.

3.3.3. Transformator Customization Example

SmartHome maps the devices modeled in problem space to a platform-independent ap-
plication component model in solution space. There, the PLiC Coordinator executes an

3Error injection is implemented as AspectJ aspect, which is a noninvasive code level customization. The
aspect is woven only in case the errorinjection feature is selected.



additional model transformation provided by the Safety PLiC. If the isRedundant at-
tribute is selected, the model transformation then triplicates the corresponding applica-
tion component model elements, generates an appropriate voter component model ele-
ment and wires them appropriately (Figure 3).

C

C

C

C

Voter

Figure 3. Transformation to a TMR System (Illustrative Example)

The model element of a voter component is generated to map exactly the interface
of the encapsulated application component. This approach enables us to add TMR capa-
bilities to virtually every application component. Note, however, that the decision if the
semantics of an application component actually allows TMR capabilities is shifted to the
application engineer.

3.3.4. Generator Customization

Since the model element of a voter component is generated, its implementation code
must be generated as well. We do this with additional code generator templates the Safety
PLiC provides. For every method of every voter component in the model, appropriate
code is generated to invoke the encapsulated application components, collect their re-
sponses, perform majority voting and return the result or trigger error processing.

4. A Methodology for Integrating PLiCs With the Base Product Line

We already have shown how to map a product line to our reference architecture and how
arbitrary types of customizations can be implemented while maintaining SoC. In this
section, we will provide a methodology for integrating PLiCs into the base product line
that also considers the derivation of a product from the extended product line. The PLiC
Coordinator serves for automating this process.

4.1. Example Problem

The SmartHome product line is itself a product on the software market. As safety is op-
tional, it must be acquirable with and without the Safety PLiC integrated. A methodology
and a tool supporting the customization process are needed. It has to weave the concerns
of the base product line and the PLiC to build up a composed product line that facilitates
generating customized products.



4.2. The PLiC Coordinator

A PLiC Coordinator needs to be implemented for each base product line. It performs
exactly three tasks: It (PCTask 1) specifies the customization points where PLiCs can
extend the base product line, it provides functionality to (PCTask 2) set up a new CPL,
and, when it is invoked by the CPL during product generation, it (PCTask 3) mediates
between base product line and PLiCs, so that PLiCs can only extend the base product
line as specified beforehand.

4.3. Methodology for integrating PLiCs

Before we describe how we implemented the PLiC Coordinator for the concrete Smart-
Home case study, we give an overview of how to apply the general methodology. There-
fore, we assume that a PLiC Coordinator and PLiCs already have been implemented.
The following four steps need to be performed for generating a customized product (cf.
Figure 4).

1. Specify CPL

PLiC Coordinator

PL

C4C3C2C1

2. Set Up CPL

CPL3. Specify CPL Product 

4. Generate CPL Product 

PLiC 1 
PLiC 2 
PLiC 3 
PLiC 4 

CPL

CPL

P
Li

C
 C

o
or

di
n

a
to

r

Prob. Space 
Model

Platf.-Indep.
Model

Platf.-Spec.
Model

Program 
Code

PSM

CBDM

SGIM

Code

BPL PLiCs

Prob. Space 
Model

Platf.-Indep.
Model

Platf.-Spec.
Model

Program 
Code

Figure 4. The PLiC Coordinator From a User Perspective

1. Specify CPL
Given that the PLiC Coordinator, the base product line, and the PLiCs, are al-



ready implemented, a CPL needs to be specified. Therefore, a human configura-
tor selects the PLiCs that shall customize the base product line.

2. Set Up CPL
The PLiC Coordinator tool then sets up a CPL (PCTask 2) according to the CPL
specification. Thereby, the CPL mainly consists of customized problem space
metamodels, which have to be instantiated for product specification, and genera-
tion scripts that refer to the PLiC Coordinator.

3. Specify CPL Product
An application engineer creates the problem space models based on the cus-
tomized metamodels the CPL provides.

4. Generate CPL Product
The CPL passes the problem space models to the PLiC Coordinator, which runs
the product generation and integrates base product line and PLiC artifacts at all
appropriate locations (PCTask 3, based on the specification of PCTask 1). Fig-
ure 4, phase 4, shows these locations for the SmartHome example case.

The PLiC Coordinator implements the customization phases two and four, whereas
phases one and three are manual configuration steps. The details of the activities will
differ depending on the languages employed (e.g., for modeling, model transformations,
code generation, and programming) and on the desired granularity of customization ca-
pabilities. The subsequent section will explain this concept with SmartHome and the
Safety PLiC example.

4.4. Example Solution

This section describes the implementation of the PLiC Coordinator of SmartHome. First,
the tooling is described: the oAW workflow language and how the PLiC Framework
extends it (corresponding to layer 0 and 1 in Figure 1). Then, we will illustrate how the
PLiC Coordinator is implemented in the extended oAW workflow language and how our
methodology has been applied to SmartHome and the Safety PLiC.

4.4.1. The oAW Workflow Language and the PLiC Framework

The oAW framework facilitates the specification of model-driven processes with an
XML-based domain-specific language (oAW workflow language). In its basic version, it
already supports loading of models and metamodels, scheduling model transformations
and code generation, and integrating arbitrary other functionality with a lightweight plug-
in mechanism called workflow components. The workflow language is the preferred way
for oAW developers to specify the overall structure of the model-driven application gen-
eration process. Workflow scripts therefore reside on the top artifact level according to
our classification in Section 3.2. Roughly, they may be characterized as Apache-Ant–like
build scripts for model-driven application generation.

As a consequence, the PLiC Coordinator for our oAW-based product line is imple-
mented in the workflow language. To ease defining PLiC Coordinators for other oAW-
based product lines, the PLiC Framework we developed offers various additional work-
flow components. They constitute the building blocks to implement the three PLiC Co-
ordinator tasks PCTask 1 to 3: specifying the customization points for PLiCs, creating
CPLs, and mediating between PLiCs and base product line during product generation.



Actually, the first and the third task can be combined. For this purpose, one has to
accept that the script performing the customization is at the same time the specification
of the locations where the based product line may be customized.

4.4.2. Implementation of the PLiC Coordinator for SmartHome

We implemented all necessary tasks for SmartHome’s PLiC Coordinator. Thereby, we
decided to conflate PCTask 1 and 3, which basically means that the script performing the
customization is at the same time the specification of allowed customization points.

For concise formulation, we developed an extension to the oAW language that sup-
ports iteration. For example, in the following Listing 1, the SmartHome PLiC Coordi-
nator specifies that each PLiC needs to provide a file called model.xmi at a certain
location in the file system. During runtime, it loads the model and adds it to a so-called
list slot with name modelLib for further processing:

Assuming

< p l i c I t e r a t e o r d e r =" l u x u r y p l i c , s a f e t y p l i c ">
< pl icEnv >

< p l i c I n j e c t o r
p a r a m e t e r =" u r i "
p a t t e r n =" p l a t f o r m : /%{ plicName } / s r c / model . xmi " / >

< p l i c I n j e c t o r
p a r a m e t e r =" m o d e l S l o t "
p a t t e r n ="%{plicName } " / >

<readModel / >
< / pl icEnv >
< pl icEnv >

< p l i c I n j e c t o r
p a r a m e t e r =" m o d e l S l o t "
p a t t e r n ="%{plicName } " / >

< addToLis tS lo t
l i s t S l o t =" modelLib " / >

< / pl icEnv >
< / p l i c I t e r a t e >

Listing 1: Iteration Example for oAW Workflow Language

The plicIterate element denotes a loop statement, which iterates over all PLiCs
of the current CPL. It has an optional order attribute specifying the iteration order.
The plicIterate element contains an arbitrary number of plicEnv environments.
Each plicEnv environment denotes a parameterized call to a basic workflow compo-
nent. Therefore, it contains a number of plicInjector elements, which character-
ize the parameterization, and one workflow component (in the example, readModel
and addToListSlot, respectively), which is called with variable parameters. In the
example, the first plicEnv environment will inject the values for the parameters uri
and modelSlot into the readModel workflow component component. In each it-
eration these two parameters of the readModel component will be injected differ-
ently according to what is specified in the pattern attribute of an injector. The
%{plicName} token within a pattern will be substituted with the actual name of the
PLiC for each iteration. The second environment injects the name of the current PLiC



into the parameter modelSlot of the addToListSlot component accordingly. Pat-
terns may also contain calls to static Java methods for more flexible pattern resolution,
e.g., %{mypack.MyClass.modelPath4PLiC(%{plicName})} is also a valid
token in a pattern.

All customizations PLiCs add to the base product line are implemented similarly
in the oAW workflow language, for example, for adding further model transformations,
source code, or metamodel weavers for CPL creation. As a general rule, PLiCs remain
passive and provide their customizations as files in the file system following the naming
convention implied by the PLiC Coordinator. This makes sure that PLiCs cannot act
uncontrolled on the product line, but only as specified by the PLiC Coordinator.

4.4.3. Integrating SmartHome and the Safety PLiC

In the following, we apply our methodology thereby illustrating the steps required to
integrate the Safety PLiC into the SmartHome product line (also cf. Figure 4).

1. Specify CPL
A human configurator selects the Safety PLiC for integration into the CPL. Fur-
thermore, he sets up the integration configuration of the Safety PLiC, which de-
termines the way how the PLiC establishes the CPL.
In our case study, for example, we want to control explicitly which of the Smart-
Home devices may later be transformed to a TMR system. The human configu-
rator thus can explicitly select in the integration configuration those metamodel
elements that shall have the isRedundant attribute, what allows for semanti-
cally correct problem space metamodel instantiation during CPL Product Spec-
ification. We support two kinds of integration configuration, via feature model
and via textual configuration file.

2. Create CPL
When its appropriate oAW workflow is executed the PLiC Coordinator cre-
ates the CPL. As specified in this workflow, the Safety PLiC may change
the problem space metamodels of the base product line. It alters them in two
different ways: the feature model is extended with an additional feature for
errorinjection and the constructive variability metamodel is extended with
an additional isRedundant attribute for all configured metamodel elements
(e.g., the MovementSensor, see Figure 2).

3. Specify CPL Product
The application engineer (i.e., a building architect) now manually configures the
feature model and constructs a model conforming to the extended constructive
variability metamodel according to his needs. For our case study, we assume that
he actually activates the errorinjection feature and instantiates a building
with some devices including a MovementSensor with its isRedundant at-
tribute set to true.

4. Generate CPL Product
For product generation, the CPL redirects the actual integration to the workflow
of the PLiC Coordinator. The PLiC Coordinator takes care of executing the trans-
formators and generators of SmartHome and the Safety PLiC at the appropriate
stages of the product generation process. Furthermore, it arranges the adding of
further model elements and of manually written application code provided by the
PLiC at appropriate locations in the file system.



In our use case, we execute the additional transformator and generators of the
Safety PLiC as stated in Section 3.3. We also include the model elements and
the manually implemented code. The final result is a GUI-based application with
functionality for injecting errors and testing the functionality of the voter devices.

5. Further Study Results

This section will give more details on the case study performed. As a result, we can say
that customizing the product line on various levels with our approach has been possible
with very reasonable additional effort (less than 1000 lines of new and re-factored code,
implemented in about 3 man-days). This gives evidence that our approach can be ap-
plied in various other contexts where the same or fewer customization levels need to be
considered. As the PLiC Framework layer needs to be implemented only once per base
technology (e.g., oAW), the additional effort per product line is threefold: refactoring the
base product line, implementing a PLiC Coordinator and CPLs, and implementing cus-
tomizations in separate PLiCs instead of intermingling their functionality with the base
product line.

5.1. Refactoring the Base Product Line SmartHome

We implemented two variants of the PLiC Approach for SmartHome. For the first alter-
native we ported the workflow files of SmartHome to the PLiC Coordinator and intro-
duced the ability to iterate over PLiC artifacts at appropriate locations. The refactoring
affected approx. 700 lines of workflow code (size of an average product is around 20K
lines in Java).

Second we implemented a minimal-invasive version, in which the PLiC Coordinator
uses the aspect-oriented capabilities of the oAW framework and our extensions provided
by the PLiC Framework to weave the corresponding PLiC artifacts into the base Smart-
Home workflow at the appropriate locations. Doing so, we could restrict the changes to
a few lines of code and the SmartHome product line still had no direct dependency on
the PLiC Framework, making its use and thus customization fully optional.

Comparing the two we prefer the first refactoring alternative. Although it initially
resulted in more effort, we expect it to cope better with product line evolution. Aspect-
orientation, as used in the second alternative, often suffers from the fragile pointcut prob-
lem [32], which occurs when a change in the base program has an unintended effect on
the set of points in the control flow (join points) an aspect gives advice to.

5.2. Implementing the PLiC Coordinator and CPLs

The oAW workflow language and our extension to it provide a good level of abstraction.
Therefore, the implementation of a PLiC Coordinator can be kept very concise. The
PLiC Coordinator only consists of workflow files of about 140 lines of XML in total in
the aspect-oriented version and 850 lines in the version where we ported all workflow
files from SmartHome to the PLiC Coordinator. The CPL for SmartHome plus the Safety
PLiC comprises less then 40 lines written in the workflow language.



5.3. PLiC Implementation

We developed two PLiCs for the SmartHome product line, one for luxury and one for
industrial settings.

The Industrial PLiC provides a superset of the functionality of the Safety PLiC,
which we used to present our approach throughout this paper. It additionally introduces
a monitoring interface to all application components on model level and generates the
appropriate application code into the base classes of the components. Furthermore, an
additional monitoring station component is introduced into the system polling the status
of the devices and reacting accordingly (warning, alarm, emergency shut-down, etc.).

The Luxury PLiC introduces convenience devices and their implementation. The
HumanPresenceSensor, for instance, detects the presence of residents. According
to their profile, the convenience functions (temperature, light, windows, etc.) can vary.
Touchscreen devices, which can be placed into the rooms of the house, allow the man-
agement of the profiles. An HTTP interface facilitates control of house settings with
general-purpose computers or handheld devices.

Both PLiCs have been implemented maintaining strict SoC between their function-
ality and the base product line. For this purpose, we used the customization strategy
and the publicly available technologies and tools explained in Section 3.3. By providing
a template PLiC, we were able to minimize the additional effort when creating a new
PLiC. The template PLiC already provides “empty” metamodel, model, transformation,
and generator files as well as an empty source code folder at the locations the PLiC Co-
ordinator expects them. When developing a new PLiC based on the template, one can
directly add the new model elements or execution logic to the appropriate files and the
PLiC Coordinator will immediately consider them without further effort.

6. Discussion

In this section, we discuss the applicability of the approach in other contexts, describe the
types of variability our approach is suited for, and address the scalability of the approach.

6.1. Applicability in Other Contexts

The PLiC Approach is not limited to certain implementation languages or capabilities.
In Section 3.2, we already have indicated how separation of concerns can be handled
depending on the capabilities of the employed implementation languages and the gran-
ularity of customizations. Comparing the three classes of customizations, we favor the
use of noninvasive or invasive techniques over customization by shifting the artifact level
from passive to active artifacts. Whilst we do not see scalability issues when using model
transformators, text generation templates makes the generated code more complex to deal
with and should therefore not be used extensively, merely for customization purposes.

As a consequence we consider the PLiC Approach as not suited when the following
conditions come together: (1) fine-grained product line customizations must be scattered
over a (2) large number of files having (3) languages with limited means for SoC and
(4) design patterns for loose-coupling may not be applied. A purely preprocessor-based
repository approach as described in Section 1 is more appropriate in such a case, although



it bears the indicated shortcomings. Note, however, that the PLiC Approach does not
prescribe how to implement variability within the context local to a PLiC or the base
product line. In particular, concerns may be intermingled and even be implemented by
preprocessors statements there.

Our approach is not limited to model-driven product lines; in our case study we
also dealt with manually implemented code. Having a non-model-driven process would
even ease product generation to some extent, as there is no staged modeling process with
several engagement points for PLiCs on different levels. For primarily manually imple-
mented product lines, the user would usually exchange the oAW workflow language,
which is very useful to specify model-driven processes, with other build languages, for
example make files or Ant scripts. Arbitrary build languages are possible, but they have to
support parameterizable functional abstraction and an iteration concept. Although these
capabilities are not really the strength of make files and of Ant scripts, they can be inte-
grated when using shell scripting within make and Java Ant Tasks within Ant.

As mentioned, we build on an extension of the oAW workflow engine for our ap-
proach. The extension became necessary due to its restricted functional and iteration ca-
pabilities. In Section 8, we will indicate how we intend to further improve this situation.

6.2. Supported Variability Types

Variability generally can be implemented in a positive or negative manner, that is either
a variant is built in and cut out if not needed (negative), or a minimal core is extended
with an option (positive). We do not recommend the use of PLiCs to implement negative
variability with respect to the base product line, however. PLiCs mainly induce additive
functionality on model level with additional transformator and generator logic, additive
functionality on code level by adding classes and aspects. Although it is possible to re-
move functionality from the base product line by adding a PLiC with an aspect on code
level or model level, we agree with GACEK ET AL. [16] that doing this with aspect orien-
tation can be an inefficient and difficult task and might require unorthodox refactorings
within the base product line.

6.3. Scalability

We do not have scalability studies beyond the integration of the two PLiCs mentioned.
The concept is intended to include or exclude specific sub-domains according to cus-
tomer needs, so we expect rather few PLiCs. In its integration feature model (see
Section 4.4.3), a PLiC can define dependencies regarding other PLiCs. Although we
can technically handle a larger amount of PLiCs this way, we recommend the use of
lightweight features over heavyweight PLiCs in cases where product line customization
is not needed.

Testing efforts increase when using product line customization. The features the
PLiCs introduce have to be tested in various combinations, of course. Additionally, all
valid combinations of base product line and PLiCs have to be tested. However, this is an
inherent property of product line variability and not a shortcoming of the PLiC Approach.



7. Related Work

The PLiC Approach defines a reference architecture and a method for customizing prod-
uct lines on multiple levels. This is a new viewpoint; to our knowledge there exist no
publications regarding this topic. There are, however, various points of intersection with
related work, in particular when we account for the abilities we consider necessary: We
developed it to support full product derivation automation, to offer flexible and compre-
hensive means of customizations, and to be tailorable to a wide range of product line
settings. There are no other approaches that fulfill all these requirements we regard as
necessary.

Our work was initially inspired by so called hierarchical product families, which
consist of several product families built upon a common core product family platform
(BOSCH, [9]). The approach usually implies extensive manual effort during platform
customization and product derivation. The PLiC Approach combines the hierarchical
idea with automated product lines, which are specified only in problem space, model-
driven product derivation, and highly flexible customization techniques.

In [13], CZARNECKI ET AL. present their concept for multi-level customization in
application engineering. Our approach resembles it as we also identify the need for cus-
tomizing domain-specific model-driven product line platforms. Whereas the authors con-
centrate on feature-based customization of models, we also cover transformator, gener-
ator, and code level customizations. Furthermore, we do not tackle the customization of
products in application engineering, but the customization of product lines in domain en-
gineering. In particular we consider extending problem space metamodels and therefore
the product line domain.

BOSCH furthermore discusses composition-oriented approaches in [9]. They are
based on components that are freely composable within specified architecture compo-
sition rules. When the components are structured hierarchically and still offer means to
defer variability binding to later stages, like in the product populations approach of OM-
MERING [34], they could be used to implement similar customization objectives. How-
ever, the approach is usually tied to the Koala [35] component model, which determines
the implementation style and language and can therefore not be applied in arbitrary prod-
uct line settings. Furthermore it neither addresses model-driven development nor separa-
tion of concerns.

AHEAD of BATORY ET AL. [4,5] and its model-driven extension [33] derive prod-
ucts by means of step-wise refinement. The authors do not tackle the problem of cus-
tomizing model-driven product lines in domain engineering; nevertheless their work re-
sults relevant to our research. The concept of feature-oriented model-driven develop-
ment (FOMDD) includes feature refinements, which refine artifacts (e.g., program code
or models) with the feature-oriented superimposition mechanism, and model transfor-
mations, which transform artifacts (model-to-model, model-to-text, text-to-text). Thus,
a variable set of artifacts and feature refinements, together with the static set of model
transformations, constitutes a product line. Providing different subsets of artifacts and
feature refinements to different customers then would conform to what we call product
line customization.

FOMDD postulates a product line to exhibit strong properties: implementing each
feature in separate files and having a commuting relationship between features refine-
ments and model transformations [33]. Both properties are not respected within the PLiC



Approach and we expect them to hinder scalability and expressivity. Having a commut-
ing relationship between feature refinements and model transformations means that ev-
ery refinement of models or code in solution space must also already be possible in prob-
lem space and the problem space refinement must be transformable to the solution space
feature refinement. This restriction either (1) hinders concise, domain-specific problem
space models or (2) hinders refinement flexibility in solution space models. In any case,
it (3) limits the expressivity of refinements, as they themselves must be transformable.
On the other hand, implementing each feature strictly separately in a model-driven envi-
ronment would lead to a fast increase of the number of files and to complex dependen-
cies for non trivial features. The PLiC Approach, in contrast, bundles several features ac-
cording to their sub-domains into distinct PLiCs. This means, a PLiC can provide more
coarse-grained means for composing product lines leading to less and less intricate de-
pendencies during composition, as within the context of a PLiC, we are not restricted to
implement each feature in strictly separated artifact.

When implementing product lines strictly feature oriented and using certain re-
stricted programming languages, recent research has shown how type safety can be guar-
anteed for all valid feature compositions [2]. As our approach intentionally does not
make this restrictions, we cannot leverage their results. However, one promising direction
might be to restrain ourselves to component-based composition and apply an approach
similar to [20], where the authors extend various existing component models (e.g., EJB,
and CORBA) with type checking.

There are aspect-oriented modeling approaches which primarily concentrate on sep-
arating concerns in UML-based solution space models and therefore have a different fo-
cus. They do not provide a methodology for flexible customization, but rather an ap-
proach for composing model fragments. Theme/UML [3,11] uses UML aspect models to
describe different concerns of an application and transforms them to an aspect-oriented
programming language such as AspectJ. The aspect-oriented model-driven framework
described in [29], in contrast, performs the weaving of the aspect models already on
model level, so that code for arbitrary programming languages may be generated. Both
aspect model composition approaches fit well into the PLiC Approach, where they would
be applied in a similar manner as the model weaver XWeave [18] we have used in our
SmartHome case study.

One refinement approach for product lines specifically tackling model-driven devel-
opment is that of YIE ET AL. [39]. There exists a concept comparable to PLiCs called
model refinement line (MRL). The authors propose the use of separate, aspect-oriented
models for MRLs along several model-driven stages. A high-level security aspect model
of the MRL, together with its references to the base problem space model, is transformed
separately from the base product line. The actual integration of the MRL model and the
product line model is deferred to the platform-specific level right before code genera-
tion. On the one hand, the approach is limited to customization in problem space, as the
aspect-oriented security model only can reference concepts existing in the base prob-
lem space model. On the other hand, additional model transformations must be imple-
mented for the security aspect model to transform it to a platform-specific solution space
representation until it can be woven into the base product line.

A further issue to consider is the collaboration of the various stakeholders partic-
ipating in large-scale product-line configuration. In [24], the authors propose to use a
workflow-like plan that safely guides stakeholders during the configuration process and



propose a set of reasoning algorithms that can be used to provide automated support for
product configuration. Currently, our approach only addresses the implementation side
of product line composition not reasoning and process support for configuration. The
integration of these mechanisms and algorithms was, at least for this paper, out of scope.

Summing up, all related approaches supporting automated product derivation have
rather limited means of customization. Each of them relies on one specific customiza-
tion principle, whether composition based on model weaving [13], feature-oriented [33],
aspect-oriented [29,11,39], or component-oriented [34] composition. They neglect the
power of plurality of customization methods that we pointed out in Section 3 and that we
regard as on of the key features of our approach.

8. Conclusion

In this paper we presented the PLiC Approach, which facilitates customizing whole prod-
uct lines by slicing them into recombinable parts called product line components (PLiCs).
Its generic reference architecture and the presented methodology are adaptable to a wide
range of product line settings, consider flexible and comprehensive means of customiza-
tions, and provide for full product derivation automation. Our case study involving a
complex model-driven product line has been implemented with reasonable effort, while
maintaining strict separation of concerns between base product line and PLiCs. It gives
evidence for the applicability of our approach to product lines having equally or less
complex product derivation infrastructures.

For comprehensive customization, a modular and well-considered product deriva-
tion architecture is crucial. The next step we plan to take is therefore designing an aspect-
oriented extension for the oAW workflow language [15] to provide also the topmost level
of a model-driven product derivation infrastructure with capabilities for SoC. Finally, we
hope that our point of view will help us to develop better patterns for product deriva-
tion infrastructures in general. Modularization and separation of concerns have multiple
benefits on this level, not only for the purpose of customization.

References

[1] AMPLE project homepage. Aspect-Oriented Model-Driven Product Line Engineering. http://
ample.holos.pt/.

[2] Sven Apel, Christian Kästner, Armin Größlinger, and Christian Lengauer. Type safety for feature-
oriented product lines. Automated Software Engineering – An International Journal.

[3] Elisa Baniassad and Siobhán Clarke. Theme: An approach for aspect-oriented analysis and design. In
Proceedings of the 26th International Conference on Software Engineering (ICSE ’04), pages 158–167,
Washington, DC, USA, 2004. IEEE Computer Society Press.

[4] Don Batory. Feature-oriented programming and the AHEAD tool suite. In Proceedings of the 26th
International Conference on Software Engineering (ICSE ’04), pages 702–703. IEEE Computer Society
Press, 2004.

[5] Don Batory, Jacob Neal Sarvela, and Axel Rauschmayer. Scaling step-wise refinement. In Proceedings
of the 25th International Conference on Software Engineering (ICSE ’03), pages 187–197, Washington,
DC, USA, 2003. IEEE Computer Society Press.

[6] Danilo Beuche. Variant management with pure::variants. Technical report, pure-systems GmbH, 2006.
http://www.pure-systems.com/fileadmin/downloads/pv-whitepaper-en-04.
pdf, visited 2009-03-26.

http://ample.holos.pt/
http://ample.holos.pt/
http://www.pure-systems.com/fileadmin/downloads/pv-whitepaper-en-04.pdf
http://www.pure-systems.com/fileadmin/downloads/pv-whitepaper-en-04.pdf


[7] Jan Bosch. Design and Use of Software Architectures, Adopting and Evolving a Product Line Approach.
Addison-Wesley, 2000.

[8] Jan Bosch. Maturity and evolution in software product lines: Approaches, artefacts and organization.
In Proceedings of the 2nd Software Product Line Conference (SPLC ’02), pages 257–271, Heidelberg,
Germany, 2002. Springer-Verlag.

[9] Jan Bosch. Expanding the scope of software product families: Problems and alternative approaches.
In Christine Hofmeister, Ivica Crnkovic, and Ralf Reussner, editors, Quality of Software Architectures,
Lecture Notes in Computer Science. Springer-Verlag, 2006.

[10] Jan Bosch. From software product lines to software ecosystems. In Proceedings of the 13th Software
Product Line Conference (SPLC ’09), 2009. ISBN 978-0-9786956-2-0.

[11] Siobhán Clarke and Robert J. Walker. Generic aspect-oriented design with Theme/UML. In Robert E.
Filman, Tzilla Elrad, Siobhán Clarke, and Mehmet Akşit, editors, Aspect-Oriented Software Develop-
ment, pages 425–458. Addison-Wesley, Boston, 2005.

[12] Krysztof Czarnecki and Ulrich W. Eisenecker. Generative Programming. Methods, Tools and Applica-
tions. Addison-Wesley, May 2000.

[13] Krzysztof Czarnecki, Michal Antkiewicz, and Chang Hwan Peter Kim. Multi-level customization in
application engineering. Communications of the ACM, Special Issue on Software-Product Line Engi-
neering, pages 61–66, December 2006.

[14] Christoph Elsner, Ludger Fiege, Iris Groher, Michael Jäger, Christa Schwanninger, and Markus Völter.
Ample deliverable 5.3: Implementation of first case study: Smart home. http://ample.holos.
pt/gest_cnt_upload/editor/File/public/Deliverable%20D5.3.doc.

[15] Christoph Elsner, Daniel Lohmann, and Wolfgang Schröder-Preikschat. Towards separation of concerns
in model transformation workflows. In Steffen Thiel and Klaus Pohl, editors, Proceedings of the 12th
Software Product Line Conference (SPLC ’08), Second Volume. Lero International Science Centre, 2008.

[16] Cristina Gacek and Michalis Anastasopoules. Implementing product line variabilities. In Proceedings
of the 2001 Symposium on Software Reusability (SSR ’01), pages 109–117. ACM Press, 2001.

[17] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1995.

[18] Iris Groher and Markus Völter. XWeave: Models and aspects in concert. Proceedings of the 10th
International Workshop on Aspect-Oriented Modeling, pages 35–40, 2007.

[19] Herman Hartmann, Tim Trew, and Aart Matsinger. Supplier independent feature modelling. In Pro-
ceedings of the 13th Software Product Line Conference (SPLC ’09), 2009. ISBN 978-0-9786956-2-0.

[20] Georg Jung and John Hatcliff. A type-centric framework for specifying heterogeneous, large-scale,
component-oriented, architectures. Science of Computer Programming, 75(7):615–637, July 2010.

[21] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson. Feature-oriented domain analysis (FODA) fea-
sibility study. Technical report, Carnegie Mellon University, Software Engineering Institute, Pittsburgh,
PA, November 1990.

[22] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and William G. Griswold. An
overview of AspectJ. In J. Lindskov Knudsen, editor, Proceedings of the 15th European Conference
on Object-Oriented Programming (ECOOP ’01), volume 2072 of Lecture Notes in Computer Science,
pages 327–353. Springer-Verlag, June 2001.

[23] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira Lopes, Jean-Marc
Loingtier, and John Irwin. Aspect-oriented programming. In Mehmet Aksit and Satoshi Matsuoka,
editors, Proceedings of the 11th European Conference on Object-Oriented Programming (ECOOP ’97),
volume 1241 of Lecture Notes in Computer Science, pages 220–242. Springer-Verlag, June 1997.

[24] Marcilio Mendonca and Donald Cowan. Decision-making coordination and efficient reasoning tech-
niques for feature-based configuration. Science of Computer Programming, 75(5):311–332, May 2010.

[25] Linda Northrop and Paul Clements. Software Product Lines: Practices and Patterns. Addison-Wesley,
2001.

[26] OpenArchitectureWare homepage. http://www.openarchitectureware.org/.
[27] Klaus Pohl, Günter Böckle, and Frank J. van der Linden. Software Product Line Engineering: Founda-

tions, Principles and Techniques. Springer-Verlag, 2005.
[28] ProOSEK homepage. http://www.proosek.de/.
[29] Devon Simmonds, Raghu Reddy, Robert France, Sudipto Ghosh, and Arnor Solberg. An aspect oriented

model driven framework. In Proceedings of the 9th IEEE International EDOC Conference, pages 119–
130, Washington, DC, USA, 2005. IEEE Computer Society.

http://ample.holos.pt/gest_cnt_upload/editor/File/public/Deliverable%20D5.3.doc
http://ample.holos.pt/gest_cnt_upload/editor/File/public/Deliverable%20D5.3.doc
http://www.openarchitectureware.org/
http://www.proosek.de/


[30] Henry Spencer and Gehoff Collyer. #ifdef considered harmful, or portability experience with C News.
In Proceedings of the 1992 USENIX Annual Technical Conference, Berkeley, CA, USA, June 1992.
USENIX Association.

[31] David Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. EMF: Eclipse Modeling Frame-
work 2.0. Addison-Wesley Professional, 2009.

[32] Maximilian Störzer and Christian Koppen. Pcdiff: Attacking the fragile pointcut problem. In European
Interactive Workshop on Aspects in Software, Berlin, Germany, September 2004.

[33] Salvador Trujillo, Don Batory, and Oscar Diaz. Feature oriented model driven development: A case
study for portlets. In Proceedings of the 29th International Conference on Software Engineering (ICSE
’07), pages 44–53, Washington, DC, USA, 2007. IEEE Computer Society.

[34] Rob van Ommering. Building product populations with software components. In Proceedings of the
24th International Conference on Software Engineering (ICSE ’02), pages 255–265, New York, NY,
USA, 2002. ACM Press.

[35] Rob van Ommering, Frank van der Linden, Jeff Kramer, and Jeff Magee. The Koala component model
for consumer electronics software. Computer, 33(3):78–85, 2000.

[36] Markus Völter and Iris Groher. Product line implementation using aspect-oriented and model-driven
software development. Proceedings of the 11th Software Product Line Conference (SPLC ’07), pages
233–242, 2007.

[37] The Wind River VxWorks homepage. http://cdn.windriver.com/products/vxworks/.
[38] The Windows embedded CE developer center. http://msdn.microsoft.com/en-us/

embedded/aa731407.aspx.
[39] Andres Yie, Rubby Casallas, Dirk Deridder, and Ragnhild Van Der Straeten. Multi-step concern refine-

ment. In Proceedings of the Workshop on Early Aspects (AOSD-EA ’08), 2008.

http://cdn.windriver.com/products/vxworks/
http://msdn.microsoft.com/en-us/embedded/aa731407.aspx
http://msdn.microsoft.com/en-us/embedded/aa731407.aspx

	Introduction
	A Reference Architecture for Customizing Product Lines
	Example Problem
	Product Line Components
	PLiC Reference Architecture
	Example Solution

	Maintaining Separation of Concerns When Implementing Customizations
	Example Problem
	Implementation of Customizations
	Example Solution
	Overview
	Metamodel Customization Example
	Transformator Customization Example
	Generator Customization


	A Methodology for Integrating PLiCs With the Base Product Line
	Example Problem
	The PLiC Coordinator
	Methodology for integrating PLiCs
	Example Solution
	The oAW Workflow Language and the PLiC Framework
	Implementation of the PLiC Coordinator for SmartHome
	Integrating SmartHome and the Safety PLiC


	Further Study Results
	Refactoring the Base Product Line SmartHome
	Implementing the PLiC Coordinator and CPLs
	PLiC Implementation

	Discussion
	Applicability in Other Contexts
	Supported Variability Types
	Scalability

	Related Work
	Conclusion

