
Dead or Alive: Finding Zombie Features in the
Linux Kernel∗

Reinhard Tartler, Julio Sincero, Wolfgang Schröder-Preikschat, Daniel Lohmann
{tartler, sincero, wosch, lohmann}@cs.fau.de

Friedrich-Alexander-University Erlangen-Nuremberg

ABSTRACT
Variability management in operating systems is an error-
prone and tedious task. This is especially true for the Linux
operating system, which provides a specialized tool called
Kconfig for users to customize kernels from an impressive
amount of selectable features. However, the lack of a ded-
icated tool for kernel developers leads to inconsistencies
between the implementation and the variant model described
by Kconfig. This results in real bugs like features that can-
not be either enabled or disabled at all; the so called zombie
features.

For both in the implementation and the variant model, these
inconsistencies can be categorized in referential and semantic
problems. We therefore propose a tool approach to check
the variability described by conditional compilation in the
implementation with the variant model for both kinds of
consistency. Our analysis of the variation points show that
our approach is feasible for the amount of variability found
in the Linux kernel.

1. INTRODUCTION
Operating systems provide no business value of their own.
Their sole purpose is to ease the development and execution
of applications on some hardware platform, that is, to serve
application developers and application users with a virtual
machine layer that provides the “right” set of features for
their particular problem domain. Of course, this pays off only
if the operating-system itself is reusable for many different
applications and hardware platforms. Historically, this led
to the idea of configurable system families, in which each
family member subsumes a particular set of features. In
fact, much of the work of the software-engineering pioneer’s
from the 70s was motivated by practical problems that stem

∗This work was partly supported by the German Research
Council (DFG) under grants no. SCHR 603/7-1 and SCHR
603/4

from the feature variability of configurable operating-system
families [5, 15, 6].

Today, the number of configurable features offered by many
operating systems is still an order of magnitude higher than
the variability we typically find in software product lines and
software families from other domains: The feature model
of the (very small) PURE embedded operating system, for
instance, already offers more than 250 configurable features
[2]; eCos [13], which targets the same domain, provides more
than 750 features. However, the Linux kernel, which is the
subject of this paper, can be configured by even more than
8000 (!) configuration options [17].

It should be clear that both, kernel hackers and end users,
have to be supported by extra means and tools for variability
management to handle this impressive amount of features.
With the graphical configuration editors build around the
Kconfig tool, end-user support is already very reasonable.
For kernel hackers, however, variability management is an
error-prone and tedious task. The result are bugs and zombie-
features that are still presented in Kconfig, but not in the
code or vice versa.

1.1 Variability Management in Linux
The variability management techniques employed in the
Linux kernel can be divided into three levels:

Model Level. The Kconfig tool set was especially written
to support the modeling of features and interdepen-
dencies of the Linux kernel. It provides a language to
describe a variant model consisting of features (referred
to as config options) together with their constraints
and dependencies. Modularization of the variant model
is supported by an inclusion mechanism. In Linux
kernel version 2.6.30, a total of 534 Kconfig files are
employed, consisting of 88, 112 lines of code that de-
scribe 8063 features and their dependencies. In many
respects, the resulting variant model can be compared
to feature models known by the software product-line
community [18].
The user configures a Linux kernel by selecting fea-
tures from this model. During the selection process,
the Kconfig configuration utility implicitly enforces all
dependencies and constraints, so that the outcome is
always the description of a valid variant. Technically,
this description is given as a C-style header file that de-

fines a CONFIG_xxx preprocessor macro for every selected
feature.

Generation Level. Coarse-grained variability is implemented
on the generation level. The compilation process in
Linux is controlled by a set of custom scripts called
Kbuild that interpret a subset of the CONFIG_xxx flags
and drive the compilation process by selecting which
compilation units should be compiled into the kernel,
compiled as a loadable module, or not compiled at all.

Source Code Level. Fine-grained variability is implemented
by conditional compilation using the C preprocessor.
The source code is annotated with preprocessor direc-
tives (like #ifdef CONFIG_xxx or #if(CONFIG_xxx ...)),
which are evaluated in the compilation process. This
is the major variability mechanism used in the Linux
kernel.

Whereas in other domains the set of features is usually
the outcome of a top-down domain analysis (requirement-
motivated features), the majority of features we find in
configurable operating systems are usually the result of a
bottom-up design and implementation process, beginning
on the level of hardware-abstractions up to the kernel APIs
(implementation-motivated features). This is particularly
true in Linux, which is a very source-code–centric project.
New or improved features are implemented first; later on
they are assigned a CONFIG_xxx symbol which is, together
with their dependencies, integrated into or updated in the
Kconfig model. This, however, is a manual and tedious task
that nevertheless requires the skills of an experienced kernel
hacker.

1.2 Problem Statement
It is not difficult to imagine that this process leads to in-
consistencies between the Kconfig representation of features
and their dependencies as seen by the user who configures a
Linux kernel, and the implementation.

It is clear that the Kconfig tool cannot solve variability
management problems satisfactorily for kernel developers,
as it has no access to the use of its config options in the
code base. Likewise, the C Preprocessor is not able to detect
inconsistencies of config options during parsing because it
has no capabilities for interpreting the Kconfig model.

Undoubtedly, the variability described in the Kconfig files
and in the source code are conceptually interconnected and
have to be kept consistent. However, there is a gap between
the various tools that are involved during the configuration
and compilation phase of the Linux kernel. This gap has
to be closed in order to detect existing bugs and avoid new
ones when new features are added or existing features are
refactored. This is especially important because changes
(new additions or refactoring) at both sides (Kconfig model
or code base) may potentially break consistency.

1.3 Our Contribution
In this paper we introduce a set of conditions that have to
be asserted between code base and the Kconfig model in
order to preserve consistency. We also confirm that this is

a real problem by analyzing the current code base of the
Linux kernel and show real bugs. We also expound that
such bugs are introduced due to inadequate tool support.
Moreover, we sketch the requirements of a tool to detect
such inconsistencies, and, therefore, is able to close the gap
between the variability at model level and source code level.

2. PROBLEM ANALYSIS
While analyzing the Linux family model we discovered that
the implementation in form of C source code and the family
model described in Kconfig show obvious inconsistencies. In
summary, we identify two dimensions of consistency.

Referential consistency is categorized by:

1. every reference to a configuration item in the source
code is referenced in the Kconfig variant model

2. every Kconfig option from the variant model is refer-
enced from the implementation in the source code

Furthermore, semantic consistency can be accounted by:

3. every single configuration item in the source code is
selectable in the Kconfig variant model

4. the Kconfig variant model covers all #if branches for all
conditional blocks that use more than one configuration
item

Fragments in the source code or in Kconfig that violate one
or more of these consistency conditions result in features that
can never be enabled or disabled. We therefore call features,
which are implemented by fragments that are either always
dead or alive zombie features.

In this paper, we focus on variation points that are imple-
mented by configuration-controlled conditional compilation.
Configuration controlled means that only conditional blocks
that are affected by the configuration selection are considered.
In Linux that means preprocessor macros beginning with the
string CONFIG_. In theory, these macros should only be set in
generated, configuration-derived files. In practice, this rule
is not strictly enforced, so that estimations need to be made
carefully.

As of version 2.6.23, the Linux source tree contains a script
scripts/checkkconfigsymbols.sh that is intended to test the
source code against the Kconfig model with respect to refer-
ential integrity regarding CONFIG_xxx symbols. However, this
script is obviously not employed by the Linux maintainers,
as a simple test run reports over 760 unresolvable references
in kernel version 2.6.30. We modified the script to avoid
false positives by only considering unresolvable references
that appear in preprocessor directives (i.e., only in lines that
start with #if or #elif). Even though this is most probably
too strict and we thereby miss some legitimate problems, the
number of unresolvable references only went down to 360.
Further inspection of the Linux code base shows that 206
macros, which start with the CONFIG_ prefix, are being defined

or undefined with the preprocessor. From these macros, only
39 are defined within Kconfig, this means that we estimate
at least 321 real issues that need to be investigated!

This number is still calculated conservatively. A first analy-
sis of the findings reveal several obvious bugs, such as the
misspelling of CONFIG_CPUMASKS_OFFSTACK in the file include/-

linux/irq.h (most probably CONFIG_CPUMASK_OFFSTACK was
meant), or the item CONFIG_CPU_HOTPLUG in the file kernel/-

smp.c, which should probably read CONFIG_HOTPLUG_CPU.1

Even though these number of inconsistencies already sounds
pretty alarmingly, they most probably cover only the tip of
the iceberg. Besides additional inconsistencies with respect to
referential integrity that arise from Kconfig items that are not
present in the source code, we can also expect inconsistencies
between the encoding of feature dependencies and feature
interactions in Kconfig and in the source code.

3. SOLUTION OUTLINE
It is obvious that the simple approach taken by the scripts/-

checkkconfigsymbols.sh does only cover checking for refer-
ential consistency from the implementation to the variant
model. However, we require detecting violations of all four
conditions (i.e. both referential and semantic consistency),
with satisfying accuracy.

Conditional compilation is implemented by preprocessor di-
rectives that order conditional blocks in a defined order,
and is straightforward to analyze. However quantifying
configuration-controlled variability is more challenging. Con-
sider the following source code excerpt taken from the file
include/linux/init.h:

#ifndef _LINUX_INIT_H

#define _LINUX_INIT_H

[...]

#if defined(MODULE) || defined(CONFIG_HOTPLUG)

#define __devexit_p(x) x

#else

#define __devexit_p(x) NULL

#endif

[...]

#endif /* _LINUX_INIT_H */

This source code snippet shows a typical C header. The very
first preprocessor statement in this file is a technique known
as ”#include-guard”, so that multiple inclusions of this file
do not cause the actual contents to be evaluated multiple
times by the compiler. In any case, these kinds of blocks are
clearly not configuration controlled and therefore, must not be
counted. Next, this header defines a qualifier __devexit_p(x)

whose exact definition depends on both a configuration de-
pendent variable CONFIG_HOTPLUG as well as another macro
named MODULE. This macro can be totally unrelated to the
Kconfig selection. Therefore, our tool does consider this
conditional block as such, but for analyzing the variability
of the compilation unit, only the macro CONFIG_HOTPLUG is
considered.

1We have reported these inconsistencies as potential bugs to
the Linux community and are awaiting a confirmation.

However, not all conditional blocks contribute to configuration-
controlled variability. Consider the following code snipped
taken from the file kernel/printk.c:

static int __init console_setup(char *str)

{

[...]

#ifdef __sparc__

if (!strcmp(str, "ttya"))

strcpy(buf, "ttyS0");

if (!strcmp(str, "ttyb"))

strcpy(buf, "ttyS1");

#endif

[...]

}

The purpose of this conditional block is portability of the
file to the Sparc architecture. While this is an important
concern, it is not handled by the means of Kconfig and
therefore cannot be controlled by the user.

The preprocessor is used in this source file to include the pre-
viously shown header textually before passing the composed
text to the compiler. In order to calculate the variability of
the expanded compilation unit, the #include directive needs
to be expanded. This allows us to consider both cases: The
variability of the source file – the developer’s view – and the
variability of the compilation unit – the view of the compiler.

Interestingly, in Linux the configuration selection is not refer-
enced explicitly in any source file. Instead, the configuration
is implicitly present with a forced-#include technique as im-
plemented by the -include compiler command-line option of
GCC. This technique is used in all compilation units used
during the compilation phase of the Linux kernel. Tools for
evaluating the Linux source code therefore have to adopt
this technique as well.

In this example we identified two #ifdef-blocks that are
configuration dependent. The #ifdef-statement in the main
source file does reference an identifier with the substring
CONFIG_. However, it does not follow the convention that
configuration items in Linux must begin with that prefix.
Moreover the #if-statement in the header also contains an
#else-block, which we count as an extra block.

A tool that reliably detects these inconsistencies requires a
global view on all variation points in both the source code (the
declarations of conditional blocks) and the Kconfig family
model. As a first step, our framework therefore builds an
Implementation Variability Database by scanning the source
code. After scanning the complete kernel tree, the database
contains all configuration-dependent conditional-blocks from
the implementation of Linux. This is depicted in the lower
part of Figure 1.

This database is essentially a fact database. In order to query
such a database efficiently, first-order logic provides an appro-
priate language to create queries that allow drawing further
conclusions. We therefore use the crocopat tool for relational
programming [3] for this task. crocopat uses the rigi stan-
dard format from the rigi [20] reverse-engineering suite as
input format. With crocopat, we can trivially do prolog-like

Implementation Variability
Database

Family Model
Variability Database

Queries for each
feature

Kconfig

.h .h .h .h .h

.c .c .c

Figure 1: Our tool approach

queries on the Implementation Variability Database of any
sort.

From the Kconfig files we extract the dependencies and con-
straints into a second database, the Family Model Variability
Database. For this we need to parse the existing Kconfig files
in Linux and analyze the dependencies and constraints. In
order to be able to do queries and selections, we use the rigi
standard format again so that crocopat can be reused. This
is sketched in the upper part of figure 1.

In order to build the Implementation Variability Database
we will calculate the variability of individual expanded com-
pilation units. In this context variability means all possible
different token streams (the input for syntactic parsing) that
can be generated by the C Preprocessor (CPP) when prepro-
cessing a compilation unit. When the expression of a CPP

directive evaluates to true, the corresponding code will be
read and inserted into the resulting token stream. If the
expression evaluates to false, this code block is skipped and
not included in the token stream. It means that in theory, a
file with n different conditional directives (#if, #elif, etc.)
might consist of 2n different combinations.

Fortunately, many of these configurations cannot be com-
posed in practice. For example, the conditional blocks
defined by an #if directive and its corresponding #else

will never be enabled at the same time, because of the
exclusive semantic of #if-#else blocks. In order to cal-
culate the exact variability of each compilation unit, our
tool generates a formula like f : (x1, . . . , xn)→ {0, 1} where
x1, x2, . . . , xn are the Kconfig symbols used in CPP state-
ments. This formula is basically the conjunction of the
condition of each conditional block. These conditions are
in fact the conjunction of the expression where the Kcon-
fig symbols are used (e.g. CONFIG_SMT && CONFIG_X86) with
the structural constraints like nested blocks (implications of
the form (child ⇒ parent)). Another type of constraint is
imposed by the semantics of #if-#elif-#else block groups,
where for each block (B1, B2, . . . , Bn) of such group a depen-
dency of the form B1 ⇒ ¬(B2 ∨B3 ∨ . . . ∨Bn) is required.

After constructing such a boolean function, it can be trans-
lated into a binary decision diagram (BDD) so that further
analysis, like the calculation of the truth table, can be per-
formed very efficiently. The lines in the truth table of such a
boolean function that evaluate to true provide the set of valid
configurations of a compilation unit. We can then use this
set of valid configurations and crosscheck with the Kconfig
dependencies in order to discover combinations of features
that are allowed in the code base but not in the variant
model, the so called, zombie features.

Having both databases available will allow us to check ref-
erential integrity of configuration items. In order to check
semantic integrity, we transform the feature dependencies
of the Family Model Variability Databases into BDDs that
can be queried for satisfiability very efficiently. This way,
checking satisfiability for each single configuration option is
just a query against the BDD.

Checking semantic integrity with #ifdef-blocks that depend
on more than one configuration option is more challenging. In
a first step, we use the Implementation Variability Database
to identify all conditional blocks with more than one con-
figuration item and obtain the exact expression used in the
conditional block. The challenge here is that conditional
blocks may be influenced by configuration items both ex-
plicitly and implicitly. With explicit influence we mean that
the Kconfig symbol appears literally in the expression of the
preprocessor directive. Implicit influence happens either by
nested #ifdef directives or when the #define preprocessor
directive is used in a conditional block to define another
configuration item. The framework must consider all configu-
ration items (both implicit and explicit) for each conditional
block and calculate on this basis the conditional-compilation
path-coverage. Blocks that cannot be reached in any configu-
ration are then in violation with the semantic consistency
condition.

4. DISCUSSION
In the previous section, we have outlined our proposed tool
that will be part of a greater framework to assist managing
and verifying the variability in the Linux kernel. We hope
that our tool will be adopted by the various Linux commu-
nities involved with variability management and issues that
arise from it.

Especially targeted for driver developers, our framework
would be able to show what configuration derived variability
is actually used by a device driver. This would highlight the
variability points introduced for example by driver develop-
ers, but also indicate interaction with other features that
might have not been considered (yet) during the implemen-
tation of the driver. Depending on these additional variation
points, this can indicate that additional test cases need to
be considered.

Similarly, subsystem maintainers could use our tool during
reviews and integrations. While inspecting the Linux Guide-
lines for patch submission and review2 it turns out that 9 out
of 24 points deal with Kconfig related issues. These issues
are very hard to test and review; our framework can assist

2as found in the file Documentation/SubmittingPatches

here with visualizing and verifying the additional variation
points.

While we are convinced that our framework will be useful
for kernel maintainers, we need to consider if our approach
scales with the amount of variability in Linux. With Linux,
we are facing a variant model of about 8000 features. It
is well known that the size of BDDs is very sensitive to
the number and order of its variables, which may lead to
insufficient memory problems. However, our preliminary
results clearly show that the variability is not uniformly
distributed across the Linux source code, but variability hot
spots can be identified easily. Therefore, we will work on a per
compilation-unit basis in order to keep the BDDs reasonably
sized.

A first analysis with a self written tool based on sparse [10],
a framework for static analysis written for the Linux kernel,
shows that less than 10% of all files of the Linux kernel use
more then 2 different Kconfig symbols. When considering
expanded compilation units, we see that more than 85% of
all compilation units have at most 350 different symbols in
them. It is clear that we must also consider Kconfig symbols
that are not only explicitly named in a compilation unit but
come into effect indirectly. This can happen for example
when a compilation unit overrides a configuration item with
the #define preprocessor statement. Moreover, we need to
compute a global variable order so that partial computation
results can be reused. According to Mendonca et. al. [14], the
largest feature models that can be handled today have about
2000 features and 400 extra constraints. Still, we expect that
most compilation units in Linux will not exceed these limits,
if any.

Is this a language problem?
Could the problem have been avoided in the first place? In
many cases the usage of the C-Preprocessor is held responsi-
ble for maintenance problems in large software projects [19].
Would it be feasible to avoid the preprocessor in Linux? For
Linux, the answer is no. Operating systems need modular-
ization that is finer grained than provided by the plain C
language. This fact was already known during the design
and implementation of the C programming language [9], so
the C Preprocessor became part of every implementation
of C. With the conditional compilation feature, fragments
of a program can be modularized at a sub-statement level.
However, we identify two main issues with the approach
taken by the preprocessor: a) conditional blocks cannot take
any context into account, and b) the blocks are declared
anonymously and cannot be referenced from anywhere.

The first point is necessary for any form of generic implemen-
tation. While conditional blocks cannot handle this directly,
the common workaround for this limitation is to declare a
preprocessor macro that takes parameters and declare mul-
tiple, alternate implementations of the macro. Later, in
the C implementation, the macro is called like a function –
however parameters are bound by name to the macro code.
This workaround has limitations: First, the macro needs
to be declared in a single line, although line continuations
with the backslash (\) character are allowed. Second, most
implementations do not allow common debugging facilities
like setting a breakpoint or stepping through the macro code.

Third and most importantly, no type checking is done at all
during macro expansion. The lack of type support prevents
the C compiler from printing helpful diagnostic messages in
many cases of problems and thus leads to code that is hard
to maintain.

Modularisation of program fragments
So in the end, the decision to use the C Preprocessor for mod-
ularizing these fragments is based on technical circumstances.
While we envision compositional language approaches for
their technical handling like feature oriented programming
(FOP) [1], aspect oriented programming (AOP) [4] or compa-
rable languages, we should also consider the motivation for
introducing these parts in form of function fragments in the
first place. Linux is a very implementation driven project for
mainly two reasons. As indicated before, operating systems
are inherently implementation driven. Moreover, Linux is a
high traffic free-software project with a very active develop-
ment community. For these reasons, many optional features
of various kinds have been proposed and integrated into the
Linux code base.

However, there are many cases where two or more optional
features behave differently when they are selected at the same
time, compared to the case that only a single one is selected.
This problem has already been discussed by Batory et. al
as the optional feature problem [8, 11]. The proposed so-
lution is to modularize the features as derivatives, so that
the variant management system can select these derivative
modules according to the needs of the implementation in a
given configuration.

In Linux these derivatives are not modularized at all, but
scattered across the Linux source base using the C Preproces-
sor. Because nothing tracks the consistency of these modules
to the family models, unused derivatives become easily or-
phaned but still end up in the resulting product (the bootable
Linux kernel image). This can result in modules that can
be identified by preprocessor statements but can never be
enabled or disabled. For this reason, we call these undead
modules zombies.

5. RELATED WORK
Lotufo [12] analyzes the complexity of maintaining the Kcon-
fig files. An investigation of 29 stable versions of the Linux
kernel configuration options is presented. He concludes that
the complexity of the code for the configuration options
increases consistently, as well as the complexity of the result-
ing model. Interestingly, as we point out in this work, he
also suggests that reasoning capabilities should be added to
Kconfig.

Post and Sinz [16] present a technique called lifting that
converts all variants of a SPL into a meta program in order to
facilitate the application of verification techniques like static
analysis, or model checking. They evaluate their approach by
applying it into to the Kconfig files of the Linux kernel: The
Kconfig files were converted into C-code for analysis with a
source code checker, which reveals two new bugs attached to
uncommon configuration. This fact also supports the idea
that the Linux kernel should introduce reasoning capabilities
for its variant model.

Kästner et. al. [7] present an approach to check the syntactic
correctness of all variants of a software product line. They
present the tool CIDE which is able to analyze CPP-based
code among other languages. The concept of finding bugs
introduced by the use of CPP directives is similar to our
work, however, while CIDE focuses on syntactic errors, our
approach finds inconsistencies between the source code and
the variant model directly.

6. CONCLUSIONS
The mapping between the implementation of the variability
points in the source code and the family model is incomplete
and inaccurate. Our investigation of the Linux kernel shows
that the mapping between the implementation of the vari-
ability points in the source code and the family model shows
obvious inconsistencies. Our first probably inaccurate, but
conservative checks indicate over 300 real bugs that arise
from conditional compilation blocks which use configuration
options that are never defined in the Kconfig variant model.

We believe that this number is only the tip of the iceberg and
expect that additional bugs from defined Kconfig items that
are never used in the source code remain undetected. Besides
these violations of referential integrity, we also believe that
more inconsistencies can be detected by checking for semantic
integrity, that is if the condition of a conditional block can
be satisfied in the Kconfig variant model for all branches that
is defined by the condition in the #if or #ifdef preprocessor
statement.

It is clear that the impressive amount of variability cannot
be checked by kernel developers manually in the source code.
We therefore propose a tool that accompanies Kconfig, but
represents the counterpart for kernel developers. This tool
will help kernel developers to check all consistency condi-
tions reliably. According to our estimations we are confident
that our approach is feasible for the impressive amount of
variability points in the Linux code base.

7. REFERENCES
[1] D. Batory. Feature-oriented programming and the

AHEAD tool suite. In 26th (ICSE ’04), pages 702–703,
2004.

[2] D. Beuche, A. Guerrouat, H. Papajewski,
W. Schröder-Preikschat, O. Spinczyk, and U. Spinczyk.
The PURE family of object-oriented operating systems
for deeply embedded systems. In 2nd (ISORC ’99),
pages 45–53, St Malo, France, May 1999.

[3] D. Beyer. Relational programming with crocopat, 2006.

[4] K. Czarnecki and U. W. Eisenecker. Generative
Programming. Methods, Tools and Applications. May
2000.

[5] E. W. Dijkstra. The structure of the
THE-multiprogramming system. Commun. ACM,
11(5):341–346, May 1968.

[6] A. N. Habermann, L. Flon, and L. W. Cooprider.
Modularization and hierarchy in a family of operating
systems. Commun. ACM, 19(5):266–272, 1976.

[7] C. Kästner, S. Apel, S. Trujillo, M. Kuhlemann, and
D. Batory. Guaranteeing syntactic correctness for all
product line variants: A language-independent
approach. In Proceedings of the 47th International

Conference Objects, Models, Components, Patterns
(TOOLS EUROPE), volume 33 of Lecture Notes in
Business Information Processing, pages 175–194.
Springer Berlin Heidelberg, June 2009.

[8] C. Kästner, S. Apel, S. S. ur Rahman, M. Rosenmüller,
D. Batory, , and G. Saake. On the impact of the
optional feature problem: Analysis and case studies.
2009.

[9] B. W. Kernighan and D. M. Ritchie. The C
Programming Language. 1978.

[10] Linus Torvalds. Sparse - a semantic parser for C.
http://www.kernel.org/pub/software/devel/sparse/,
2003.

[11] J. Liu, D. Batory, and C. Lengauer. Feature oriented
refactoring of legacy applications. In 10th (SPLC ’06),
pages 112–121, 2006.

[12] R. Lotufo. On the complexity of maintaining the linux
kernel configuration. Technical report, 2009.

[13] A. Massa. Embedded Software Development with eCos.
New Riders, 2002.

[14] M. Mendonça, A. Wasowski, K. Czarnecki, and D. D.
Cowan. Efficient compilation techniques for large scale
feature models. In GPCE, pages 13–22, 2008.

[15] D. L. Parnas. On the design and development of
program families. IEEE Trans. Softw. Eng.,
SE-2(1):1–9, Mar. 1976.

[16] H. Post and C. Sinz. Configuration lifting: Verification
meets software configuration. In ASE, pages 347–350,
2008.

[17] J. Sincero, H. Schirmeier, W. Schröder-Preikschat, and
O. Spinczyk. Is the linux kernel a software product
line? In F. van der Linden and B. Lundell, editors,
International Workshop on Open Source Software and
Product Lines (SPLC-OSSPL 2007), Kyoto, Japan,
2007.

[18] J. Sincero and W. Schröder-Preikschat. The linux
kernel configurator as a feature modeling tool. In
S. Thiel and K. Pohl, editors, SPLC (2), pages 257–260.
Lero Int. Science Centre, University of Limerick,
Ireland, 2008.

[19] H. Spencer and G. Collyer. #ifdef considered harmful,
or portability experience with C News. In 1992, June
1992.

[20] M.-A. D. Storey, K. Wong, P. Fong, D. Hooper,
K. Hopkins, and H. A. Müller. On designing an
experiment to evaluate a reverse engineering tool. In
Proceedings of the 3rd Working Conference on Reverse
Engineering, (WCRE’96), Monterey, California, USA,
November 8-10, 1996, pages 31–, November 1996.

http://www.kernel.org/pub/software/devel/sparse/

	Introduction
	Variability Management in Linux
	Problem Statement
	Our Contribution

	Problem Analysis
	Solution Outline
	Discussion
	Related Work
	Conclusions
	References

