An Asynchronous Nonblocking Coordination and
Synchronization Protocol for a Parallel Robotic Control
Kernel

Philippe Stellwag, Wolfgang Schréder-Preikschat, Daniel Lohmann
{stellwag,wosch,lohmann}@cs.fau.de
Friedrich-Alexander University Erlangen-Nuremberg
Computer Science 4, Martensstrasse 1
91058 Erlangen, Germany

ABSTRACT

Over the last 25 years, performance improvements by the
steady increase of CPU clock frequencies were the driv-
ing factor for innovations in the domain of computation-
ally intensive embedded applications. Now the free lunch
is over [12] — developers have to parallelize their systems
in order to achieve further improvements by integration of
multi-core platforms. In embedded systems, this is even
more challenging than in the domain of desktop computers,
as safety properties and hard real-time constraints impose a
much stronger demand on determinism. In this experience
report, we present a concrete coordination and synchroniza-
tion problem for a double buffering procedure that arose on
our ongoing attempts to parallelize a robotic control kernel.
This double buffering procedure used by two tasks must as-
sure a consistent data flow without data losses. Therefore,
we approach a fast bounded wait-free solution, which does
not suffer from priority inversion.

1. INTRODUCTION

The doubling of the clock frequency of processors all two
years [8] was and is an important factor for the development
and integration of innovations (such as collision detection)
into a robotic control kernel (RC). For a few years, processor
manufacturers have been selling processors with more than
one execution core per die; they damped the rapid increase
of the clock frequency of single execution cores because of
physical restrictions like power consumption or development
of heat.

For the industry of robotic controls this means that ’the
free lunch is really over’ |12]. Innovations in the sector of
robotic controls are driven by raw processing power; leaving
out these innovations would inevitably lead to lost sales fig-

*This work was partly supported by the German Research
Council (DFG) under grants no. SCHR 603/4 and SCHR
603/7-1.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

EuroSys Workshop IIES *09, March 31st, 2009 Nuremberg, Germany
Copyright 2009 ACM 978-1-60558-464-5/09/03 ...$5.00.

ures. Hence, the existing RC software has to be decomposed
in order to be able to distribute it over multiple execution
units.

1.1 Contribution

Previous approaches of asynchronous communication as
described in Sec. only assure reading and writing valid
states. Thereby overwriting data, which was not fetched,
and multiple reading the same data can happen, which is
not acceptable in our scenario.

The subject of this paper is an asynchronous, bounded
wait-free [4] coordination and synchronization protocol, based
on a process consensus of two tasks. This protocol assures
valid state transitions for a continuous data flow. In our do-
main data losses are not tolerable, as they can lead to loss of
human life or damage to the environment. This restriction
is typical for the sector of safety-critical real-time embedded
systems.

The wait-free property of our protocol ensures that it does
not suffer from priority inversion; neither does it depend
on (potentially expensive) kernel objects. Furthermore, our
protocol uses a bounded wait-free process consensus mecha-
nism without the need of retry loops based on compare-and-
swap (CAS). We only use test-and-set (TAS) operations,
which is more deterministic than protocols based on retry
loops.

1.2 Outline

The paper is organized as follows: Sec. [2] contains the
problem analysis. This is followed by the description, dis-
cussion and evaluation of our asynchronous bounded wait-
free protocol in Sec. |3} Related work is shown in Sec. |4 We
summarize our results and experiences in Sec. [fland use this
to derive our goals for further research.

2. PROBLEM ANALYSIS

2.1 Overview

Our RC controls industrial production robots in, e.g., the
automobile industry. It communicates with interfaces, such
as the human machine interface (HMI), the programmable
logic controller (PLC) for cyclic or acyclic I/O, and the
drives for controlling the robotic axes, as illustrated in Fig.

Internally, the RC consists of three tasksﬂ which run

!There may more than three tasks, however, it is irrelevant
for the scope of this paper.

motion program
2% [decoter |
decoder
v [
Prep
preprocessor
> T
PLC l
¢ \||_motion control
& eo
interpolation
drives [2] v
(Sr? Servo |

Figure 1: RC interfaces to hardware and software
components

on a time-triggered preemptive real-time operating system
(RTOS) with priorities.

Prep: This task decodes, interprets and prepares the mo-
tion program. The motion program defines a sequence of
commands, which induces the robot to do something. The
acyclic Prep task is not subject to time constraints, but has
to adduce a certain flow rate to feed the Ipo task. Therefore,
the Prep task has the lowest priority. The prepared data,
the so-called blocks, is enqueued to a FIFO queue.

Ipo: The cyclic Ipo task is mainly responsible for motion
control and interpolation of blocks, which come from the
Prep task (over the FIFO queue). The Ipo task is dispatched
every 1.0 ms, which must be a multiple of the servo cycle.

Servo: The Servo task does fine interpolation and feed-
forward /position control. This task has the highest priority
in our RC. It works for one ipo cycle on the blocks that the
Ipo task has produced in the previous ipo cycle. The Servo
task is dispatched every 0.5 ms.

2.2 Status Quo

Communication among tasks takes place through global
objects located in shared memory. There is no memory pro-
tection; hence tasks can directly access the code and data
sections of other tasks.

In Fig. |2| the sequential task schedule is shown (one ipo
cycle consists of two servo cycles). The Servo task is dis-
patched every servo cycle. As it has the highest priority,
it cannot be preempted by other tasks and always runs to
completion inside the servo cycle. After that, the Ipo task
is dispatched from the underlying RT'OS. In our example in
Fig. the Ipo task can be preempted by the Servo task,
but it must run to completion within its ipo cycle, because
the calculation results must flow back to the next Ipo run.
The Prep task runs in unoccupied cycle time.

In the rest of this paper, we are looking at the communi-
cation object between Ipo and Servo task (also called actua-
tors) that is a static two-slot array. The ownership structure
of one slot element is for one ipo cycle attached to either the
Ipo (writer or W) and Servo (reader or R) task, respectively;
hence Ipo and Servo have exclusive access to their respective
slot for one ipo cycle (which consists of two servo cycles in
Fig. . The Ipo task writes the new position, velocity and
acceleration setpoints to its buffer slot, which the Servo task
then needs in the next ipo cycle to control the drives. New

Servo (R)
Ipo (W)

1 1

v

servo cycle

L
ipo cycle

Figure 2: today’s sequential task schedule

ownership of the buffer slots is negotiated in the first servo
cycle relating to a ipo cycle in context of the Servo task (see
arrows in Fig. . For our implementation of the status quo
this means an index variable that representing the slot ele-
ment for a task, has to be changed at the beginning of every
ipo cycle, so that both actuators can decide where to read
from or write into. Because the Servo task has the highest
priority in our system and always runs to completion, the
double buffering procedure of turn further this simple ’cir-
cular buffer’, which is executed in context of the Servo task,
is consistent for both tasks. After negotiating the ownership
structure, Ipo writes for the residual ipo cycle into its slot;
Servo reads from its slot, respectively.

2.3 Transition to SMP

Servo

U UL

1
1
i
1
1
L
Ipo |
1
1
1
1
1

Idle

Figure 3: parallel task schedule between Ipo and
Servo task

In the SMP version, both computationally intensive tasks
are executed on different processing elements (PE) alias exe-
cution cores and at closer cycle times, as illustrated in Fig.
Ipo and Servo work for one ipo cycle on their own blocks.
Now, we have to coordinate and synchronize this circular
buffer so that the following criteria are fulfilled:

Correctness. This seems to be a self-evident point, but
conventional locking strategies with mutexes, spinlocks or
semaphores suffer from multiple problems. The incorrect
use of locks can lead to unbounded priority inversion, starva-
tion, deadlocks, livelocks and race conditions. Additionally,
locks can lead to convoy effect and introduce jitter. Non-
blocking lock protocols, such as the priority inheritance or
priority ceiling protocol |6} |14], can induce high overhead in
time and space. The priority inheritance protocol [6] cannot
guarantee to be free from starvation.

Our protocol should give no reason for concurrency prob-
lems, such as deadlocks or pointer recycling. The pointer
recycling problem (also known as ABA problem) comes up

by using nonblocking techniques based on CAS |7, |15|. The
ABA phenomenon can lead to race conditions and hence
to corrupted data. Besides all that, our protocol must be
priority aware.

No assumptions about timing. Assumptions about
timing information (such as that the Ipo task is not trig-
gered until Servo has defined the new ownership structure
for the next ipo cycle) do not scale well with more PE and
limit parallelism. Additionally, new cycles for such trival
coordination points would introduce complexity even if we
use a time-triggered RTOS. Furthermore, we have to keep
in mind that both tasks can access their slot elements in
parallel at any time.

Minimal overhead. The contention of this two-slot-
array is obviously very low, as there are only two actuators
accessing one of the two slot elements for one ipo cycle. The
taking of a new ownership decision at the beginning of ev-
ery ipo cycle must be coordinated so that both tasks come
to a bilateral consensus. This fact of minimal contention
gives raise to the design of a fast wait-free [4] protocol with
an optimistic synchronization strategy, without using expen-
sive locks. Minimal overhead is especially important for the
Servo task, which must guarantee short cycle times.

Minimal jitter. Jitter becomes noticeable on axes move-
ments and therefore is a critical point, even if a jitter intro-
duced by a coordination and synchronization protocol for a
circular buffer is very small. Hence, we have to monitor the
jitter introduced by our protocol.

In the next Section, we present an asynchronous process
consensus protocol for both actuators to decide into which
slot element Ipo can write new setpoints for one ipo cycle,
and Servo can read the setpoints for one ipo cycle, which
Ipo has produced in the previous ipo cycle.

3. ANASYNCHRONOUS BOUNDED WAIT-
FREE PROTOCOL

3.1 Idea

The idea is that both tasks must come to an agreement
about the slot which contains the latest data. Our protocol
does not need any helping schemes or CAS-based retry loops
typical for some wait-free protocols [13} |11} 2]. We only
require atomic TAS operations, which test and conditionally
write to a memory location and returns the old value.

In the following, we describe our mechanism of making a
chronologically asynchronous process consensus between the
Ipo and Servo tasks. The mechanism returns the slot index
that the caller can use to access its slot element for one ipo
cycle. Therefore, we use a shared three-slot array for both
actuators. The following different roles can be adopted by
every slot of the three-slot array:

Consented slot (C): Both tasks make an agreement
about this slot element that holds the latest setpoints from
the Ipo task. The Servo task reads only from this buffer slot,
which is called the consented slot. When the Servo task has
finished reading and requests new setpoints, this buffer slot
becomes ’safe’.

Last written slot (LW): Here the latest setpoints from
the Ipo task are located. If the Servo task asks for new
setpoints at the next ipo cycle, the state of this slot element
is changed to ’consented’.

Safe slot (S): This is the free slot element, where the

w R

508 _4ohs0s

"¢ “c |- “c |
; ™

s, ipojtick Is, v ['Lw

’ s, ’s, ’8

initial state consensus Telease written data

w R w R
y Sy ol il
~als, v [Puw

ipo k 1g¢ re 1¢c re

2 s, 2 g
—— > time

consensus release written data

Figure 4: Consensus between Ipo and Servo task.
Arrows indicate actuator’s affinity to one specific
slot, grey arrows symbolize a changed affinity re-
lated to the previous state.

Ipo task can write to.

If we talk about the state of a buffer slot, we mean the
role of this slot element dependent on contained data, illus-
trated as letters (C', LW, S) in Fig. [4]inside the buffer slots.
The arrows symbolize the affinity from actuators to a spe-
cific buffer slot. If an actuator changes its affinity to a slot
element, it must also change the role of its previous slot.

The time frame for state transitions mentioned above is
ensured by time-triggered tasks of the underlying RTOS. As
shown in Fig. [there is an initial state of the C buffer slot
(actually the LW slot element must be initialized so that
R can decide which is the C element). The two safe buffer
slots S1 and Sy arise out of C' implicitly. In the next ipo
cycle both tasks make a new asynchronous decision about
the new affinity to an appropriate slot. Because there is an
initial state of the C' slot element at the beginning (D), it
looks like R does not change the state of its affinity in @.
W chooses, e.g., the first safe slot element. After consensu
is made, W must release its written data at the end of this
ipo cycle and hence changes the state of its slot from S; to
LW (3. Once again, at the next ipo cycle W chooses, e.g.,
the first safe slot and R chooses this slot element, which
contains the latest written data @. At the end of this ipo
cycle the writer actuator releases its written data &. (And
so on for further ipo cycles.)

The consensus procedure illustrated in Fig. [d]shows a sce-
nario, where the reader consensus always happens before the
writer consensus. Hence, there are two available safe slots
S1 and Sy for the writer. If the writer consensus happens
before the reader consensus, then there is only one available
safe slot S for the writer, because the writer must not use C'
(still used by the reader) or its last written slot LW (which
the reader has not fetched yet).

2The consensus actually is made about the C buffer slot.
Both actuators must have knowledge about C to perform
further steps.

(oS I N R

15

3.2 Implementation

volatile T Buffer [3];

volatile bool Sync = false;

volatile char LastWritten = 0;

volatile char ReaderPref/*erencex/;

volatile char WriterPref/*erencex/;

char Consented; /* reader’s state x/

Listing 1: shared data needed by our protocol

In the following, we take a look at the shared data needed
by our protocol. Apart from the three-slot buffer, we need
five control variables (see Listing, one synchronization bit
(Sync) for deciding which of the two actuators has passed
through the protocol first. LastW ritten contains the slot in-
dex of the homonymous buffer slot; Reader Pref and Writer-
Pref propose the slot index which the respective task would
prefer. Finally, we need the state of the Servo task (reader)
represented by the Consented control variable.

C index
8
> [0 1 2
£ 0|12 2 1
B 1|2 02 0
R 201 0 01

Table 1: retrieving the safe slot element
Listing [2] shows our asynchronous process consensus pro-
tocol. Both actuators call the corresponding consensus func-
tion and try to set the control variable Sync. If the reader
task needs new data it resets Sync. On concurrent execu-
tion of both functions, every actuator can directly identify
the consented buffer slot by using its own preference (if it
was the first actuator, which sets Sync). As both func-
tions return the consented buffer slot, both functions also
set their preference always to the LW slot element. The
point thereby is, that W can decide on basis of C' and LW
which is the corresponding safe slot element S using the
static permutator array inside writer() (see Table .
After the writer has finished, it must release its slot by
setting LastWritten to the safe slot element which it has
used.

J getReaderC. .. () | J getReaderC. .. ()

1 1
PE1 \ |

getWriterC... () I 77777777777 getWriterC... () I 77777777777777777777
1

release

release

Figure 5: protocol integration in our domain

LastWritten = Safe; /* release written data */

}

char getWriterConsensus () {
WriterPref = LastWritten;
if (TAS (&Sync, true)==false)
Consented = WriterPref;
else Consented = ReaderPref;
return Consented;

}

char getReaderConsensus () {
Sync = false;
ReaderPref = LastWritten;
if (TAS(&Sync, true)==false)
return ReaderPref;
else return WriterPref;

}

void reader () { /* Servo task */
char ConsentedIdx = getReaderConsensus();
READ_FROM Buffer [ConsentedIdx];

}

void writer() { /* Ipo task */
static const char Permutator [3][3] = { {1,2,1},
{2,2,0}, {1,0,0} };
char ConsentedIdx = getWriterConsensus();
char Safe = Permutator [ConsentedIdx][LastWritten];

WRITE_TO Buffer[Safel;

Listing 2:
protocol

our asynchronous process consensus

There are serveral further points of interest: Firstly, what
happens if W executes line 5 of our protocol simultaneously
while R executes the C-statement in line 117 At first glance,
there is a potential race condition. At a second view, a
race condition cannot happen, because a character variable
to encode the decimal numbers 0, 1 or 2 (which are the
only possible values for our control variables — apart from
Sync) is always one byte. A store instruction can always
do that atomically; that is either R had stored the value
of LastWritten to Reader Pref before W executes its store
instruction of line 5 or not. Both scenarios are consistent
per definition of our asynchronous protocol. This statement
is equally valid for concurrent execution of line 27 (release
written data) and line 11.

Moreover, what happens while R executes line 10 and the
writer actuator executes its atomic test-and-set operation
using a memory barrier? Also an assignment of a boolean
value to a processor register is an atomic instruction. If W
executes its T'AS operation R cannot make further progress
because of the memory barrier of the T'AS implementation.
Hence no race condition can occur. It also does not matter
if R executes line 10 before or after W executes line 3. The
reader actuator is responsible for resetting Sync by the next
call.

Finally, if both actuators try to execute their TAS op-
eration in parallel, then one T'AS will return ¢true because
the other actuator had set Sync before. Then this actuator
returns the slot index, which the other actuator prefers.

3.3 Integration

The integration of our protocol into the RC is straight-
forward. Both, the Ipo and the Servo task must call their
consensus function at the beginning of every ipo cycle, de-
picted in Fig. [[] Both functions return the consented index
slot which is the slot element where Servo read from. The
reader actuator can directly use this index to read its buffer
slot. The Ipo task must perform an indirection over the
static permutator array to decide which is the safe slot ele-
ment. At the end of every Ipo run, Ipo must release its slot
element by setting LW to the used buffer index.

Because Servo calls the getReaderConsensus() function
only every second servo cycle, as illustrated in Fig. [two
consecutive Servo runs introduce two different runtimes. But,
every Servo run based on even- or odd-numbered servo cycles
are strictly deterministic on C-statement level. If the Ipo
task releases its buffer slot always in the second servo cycle
related to one ipo cycle, as illustrated in Fig. [5} then Servo
can call its get ReaderConsensus() function every servo cy-
cle to eliminate this kind of jitter. Such a second function
call does not change the read consensus if LW did not change
in the meantime. Otherwise this procedure would introduce
a time restriction for the Ipo task as opposed to our goals
defined in Sec. 2.3

3.4 Evaluation

For an evaluation of our protocol, we compared it to a
standard implementation using a semaphore to signal the
Servo task that Ipo had produced new blocks and had set the
slot index for Servo, respectively. Therefore, we additionally
need a spinlock to protect the slot index, which contains the
last written data for the next ipo cycle. Additionally, we
measured the status quo implementation.

As hardware environment we used an octacore PC with
two Xeon E5440 quadcore processors, at 2.83 GHz clock fre-
quency, 256 KB L1 cache per core for instructions and data,
6 MB L2 cache per core pair (that is 12 MB per CPU) and
1333 MHz FSB. Today, our RC kernel running on differ-
ent powerful Intel processors. Hence, we are using two of
Intel’s E5440 for an appropriate test enviroment, even if a
Xeon processor creates too much heat to integrate it to our
embedded system.

On the mentioned hardware platform we implemented a
test environment on Windows XP, in which we trigger two
highest priority threads on the basis of the multimedia timer
with a minimal resolution of 1 ms. We distribute the two
threads to different idle cores with a common 2nd level cache
and validated our implementation with Intel’s Thread Pro-
filer. Only the multimedia timer and the semaphore func-
tions P and V use corresponding system calls.

To interpret the results shown in the next Section, we
have to keep in mind that the cores, which execute our pe-
riodic threads, do not have to deal with incoming IRQs,
because we have set the IntAffinity boot option in boot.ini
to force interrupts to the highest numbered execution core.
The jitter arises from cache effects. Furthermore, it depends
on the strategy how changes in the cores’ caches are writ-
ten back (e.g., write-through, write-back). We analyzed the
influence by Windows in appropriate sequential test scenar-
ios, which is insignificant compared to a hard real-time op-
erating system. Furthermore, because of the out-of-order
execution of the E5440 processors, we had to flush the pro-
cessor pipeline before reading out RDTSC [9] to get suit-
able measured values. The CPUID instruction was used to
flush the pipeline, which introduces some jitter (min = 220,
max = 284, 0 = 12, ¢, =~ 0.05) against what is remaining
in the pipeline.

For collecting our measured values, we used the 64-bit
model-specific register RDTSC. The summary of 1,000 two-
way protocol calls is shown in Table [2l We measured C++
implementations of the protocols mentioned above. On the
reader’s side the measured values represent line 18 and on
writer’s side line 24-25 of Listing [2} respectively.

As shown in Table [2] the status quo implementation ex-

ecutes the double buffering procedure completely on Servo
side. Here, the two threads run on one execution core. This
implementation has a little dispersion about the mean (see
coefficient of variation ¢, = o/avg * 100% =~ 5%). The re-
sults also show that we have reduced the CPU cycles (based
on average or median) on Servo side compared to the status
quo. But, what is much more interesting on real-time sys-
tems, we also increased the cache-based outlier dramatically
(see coefficient of variation ¢,). On Ipo side, our protocol
introduces much less jitter.

status our impl. with
quo protocol | semaphore
Ipo side: min ./. 416 5.955
max .. 1.062 39.138
avg ./ 920 9.848
med ./ 917 8.199
ol /. 61 5.449
Co ./ ~ ™% ~ 55%
Servo side: min 709 305 2.430
maz | 1.041 1.461 22.244
avg 713 586 5.288
med | 709 390 4.156
o 34 322 4.346
¢ | ~5% | ~55% ~ 82%

Table 2: runtimes of our protocol based on needed
clock cycles

The standard semaphore implementation is not very effi-
cient relating to costs for CPU cycles, priority awareness and
in particular jitter. Moreover, any semaphore implementa-
tion is not leading to a fully concurrent execution of both
tasks and may be expensive, because of context switches
introduced by needed system calls. Furthermore, the mea-
sured values of this implementation highly depend on oper-
ating system details. This makes the results not fully com-
parable.

The costs in time for our protocol are really small com-
pared to the whole runtime of the Servo and the Ipo task.
The converted clock cycles in Table [2| show that on Ipo
side our protocol takes ~ 375 nsec. at maximum on the
mentioned hardware platform, that is a rise of 100 percent.
On Servo side, we have increased the costs in time from
~ 368 nsec. at maximum to ~ 516 nsec (rise of ~ 40%).
However, we have approximately doubled the utilizable pro-
cessor power of the RC by cutting it into two nearly inde-
pendent parts.

4. RELATED WORK

Some former work on the area of asynchronous communi-
cation from Chen and Burns [1] caches the writer consensus
to improve situations, where the writer is faster than the
reader. Such a situation does not happen in our field of ap-
plication. Furthermore, such an approach does not work for
our scenario, because if the actuators overtake each other
by calling their consensus functions, it leads to Servo loos-
ing data or Ipo overwriting data, respectively. This means,
we need consistent state transitions. Chen and Burns use
the state, which was last written until new data has been
written. Or they overwrite data, which the reader actuator
has not fetched yet. However, our protocol was inspired by
their work.

A generalized (n + 2)-slot mechanism for n reader actua-
tors is presented in [2] using atomic CAS instructions. The

mechanism uses a process helping scheme, which induces
more overhead and jitter. As mentioned, Chen and Burns [2|
1] have a different understanding of data sharing and hence
their work is not suitable in the same manner for our sce-
nario. Similarly, Peterson [10] proposes a wait-free process
helping schema. In [11] Huang et al. presented a transfor-
mation mechanism that takes advantage of temporal char-
acteristics (e.g., slower and faster reader) of the system to
reduce both time and space overhead of some single-writer,
multiple-reader algorithms.

Kane presented in [5] a nonblocking buffer mechanism
for real-time event message communication. However, the
reader must possibly check the update counter multiple times,
which is modified by the writer actuator. Therefore, Kane’s
protocol is generally lock-free, but not wait-free.

S. SUMMARY AND FUTURE WORK

We have shown an approach to coordinate and synchro-
nize access to a shared three-slot buffer by using an asyn-
chronous, bounded wait-free process consensus protocol. The
wait-free property ensures that our protocol does not suf-
fer from priority inversion, because no locks are used. It is
also resistant to common pitfalls of lock composition such as
deadlocks, starvation or convoy effect. Furthermore, we did
not use any kernel objects or operating system-dependent
system calls in our protocol, hence no expensive context
switches are introduced and the protocol is independent of
the underlying RTOS. In Sec. we have shown that a
standard implementation with semaphore introduces much
more jitter than our wait-free protocol.

The implementation and usage of our protocol is very sim-
ple compared to a standard implementation with semaphore
and does not limit the parallel execution of the writer and
reader task, because the protocol consensus functions can
be called without presettings about timing which is asyn-
chronous.

In our application domain of RC, buffered processing of
shared data takes place in many places. Latency and jit-
ter that arise by buffered processing on shared resources are
mostly much smaller than synchronous access to shared re-
sources. We will investigate more of the domain-specific
problems that arise by parallelization of such a mid-size
software project. Many nonblocking methods, in partic-
ular generic ones, such as software transactional memory,
have been blamed for being only research toys [3|. Such
an approach only displaces the common pitfall of resource
contention in a SMP system on a lower level. Resource con-
tention introduces latency and jitter, which is not suitable
for real-time application. In the field of robotic control ker-
nel used in industrial production robots in, e.g., automobile
industry, there is no range for using such approaches, yet.

We will concentrate our research on pragmatic nonblock-
ing coordination and synchronization methods to ensure valid
and efficient data sharing in a multi-core environment for
such real-time applications. In our point of view, high-grade
application knowledge is needed to minimize resource con-
tention. This leaves room for further research activities.

6. REFERENCES
[1] J. Chen; A. Burns. Asynchronous data sharing in
multiprocessor real-time systems using process
consensus. 10th Euromicro Workshop on Real-Time
Systems, December 1997.

2]

3]

[4]

J. Chen; A. Burns. A fully asynchronous reader/writer
mechanism for multiprocessors real-time systems.
Technical report, YCS-288, Department of Computer
Science, University of York, 1997.

C. Cascaval; C. Blundell; M. Michael; H. W. Cain; P.
Wu; S. Chiras; S. Chatterjee. Software transactional
memory: why is it only a research toy? ACM Queue,
6(5), September 2008.

M. P. Herlihy. Wait-free synchronization. ACM
Transactions on Programming Languages and
Systems, 11(1):124-149, January 1991.

K. H. (Kane) Kim. A non-blocking buffer mechanism
for real-time event message communication. Real-Time
Systems - The International Journal of Time-Critical
Computing Systems, 32(3):197-211, March 2006.

R. Rajkumar; L. Sha; J. P. Lehoaky. Real-time
synchronization protocols for multiprocessor. in Proc.
of Real-Time Systems Symposium, pages 259-269,
1988.

M. M. Michael. ABA prevention using single-word
instructions. Technical report, IBM Research Division,
RC23089 (W0401-136), January 2004.

G. E. Moore. Cramming more components onto
integrated circuits. Electronics Magazine, 38(8), April
1965.

J. Muir. Using the rdtsc instruction for performance
monitoring. Technical report, Intel Corporation, 1997.
G. L. Peterson. Concurrent reading while writing.
ACM Transactions on Programming Languages and
Systems, 5(1):46-55, 1983.

H. Huang; P. Pillai; K. G. Shin. Improving wait-free
algorithms for interprocess communication in
embedded real-time systems. USENIX Annual
Technical Conference, pages 303-316, 2002.

H. Sutter. The free lunch is over. Dr. Dobb’s Journal,
30(3), March 2005.

H. Sundell; P. Tsigas. Space efficient wait-free buffer
sharing in multiprocessor real-time systems based on
timing information. in Proc. of RTCSA 2000 in Cheju
Island (South Korea), December 2000.

V. Yodaiken. Against priority inheritance. Technical
report, FSMLabs, July 2002.

P. Tsigas; Y. Zhang. A simple, fast and scalable
non-blocking concurrent fifo queue for shared memory
multiprocessor systems. in Proc. of the 13th ACM
Symposium on Parallel Algorithms and Architectures,
pages 134-143, 2001.

	Introduction
	Contribution
	Outline

	Problem Analysis
	Overview
	Status Quo
	Transition to SMP

	An Asynchronous Bounded Wait-Free Protocol
	Idea
	Implementation
	Integration
	Evaluation

	Related Work
	Summary and Future Work
	References

