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Abstract

More than 98 percent of the worldwide annual production of microprocessors ends
up in embedded systems – typically employed in goods of mass production, like cars,
appliances, or toys. Such embedded systems are subject to an enormous hardware-cost
pressure. System software for this domain has to cope not only with a broad variety of
requirements and platforms, but especially with strict resource constraints. To compete
against proprietary systems (and thereby to allow for reuse), a system-software product
line for embedded systems has to be highly configurable and tailorable. However, this
flexibility has to be provided in a way that meets the strict resource constraints.

The state of the art for the overhead-free implementation of fine-grained configurability
in system software is conditional compilation with the C preprocessor. However, this
approach leads to scattered and tangled code and does not scale up. At the same time,
the demands on configurability of system software are still increasing. AUTOSAR OS, a
new industry standard for automotive operating systems, requires configurability of even
fundamental architectural system policies, such as protection and isolation strategies.

This thesis evaluates aspect-oriented programming (AOP) as a first-class concept for im-
plementing configurability in resource-constrained systems. It shows that a well-directed,
pragmatic application of AOP leads to a much better separation of concerns in the imple-
mentation of configurable system software – without compromising on resource thriftiness.
Moreover, the suggested approach of aspect-aware operating-system development facilitates
providing even fundamental architectural policies as configurable features.

The suitability of AOP is evaluated with state-of-the-art operating systems from the
embedded-systems domain. The practicability of aspect-aware operating-system devel-
opment is validated by the design and development of the CiAO operating-system family,
which is the first operating system that has been designed and developed with AOP
concepts from the very beginning. CiAO combines a competitive implementation of the
AUTOSAR-OS standard with a highly configurable architecture.
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1.1. Motivation

About 98 percent of the annual world-wide production of microprocessors (around eight
billion units in 2000) ends up in an embedded system [Ten00]. Embedded systems are
special-purpose computers, often implanted into goods of mass production (such as cars,
appliances, or toys) where they run a very specific computing or control application. Such
embedded systems are subject to an enourmous cost pressure (a few cents can decide
over market success or failure), hence their hardware resources (in terms of CPU and
memory) are strictly constrained. An 8-bit microcontroller with a few KiB of memory is a
common setup.

The shortage on hardware resources has consequences on the design and implementation
of operating systems and other system software for this domain. System software for
embedded devices has to be easily tailorable for the very specific application running on
top of it. One way to achieve this is to design it as a software product line and ship it
together with some configuration tool. The application developer can then choose from a
fine-grained set of optional or alternative features to generate a tailored variant of the
system software for his specific application.

In the implementation of the system software, this flexibility has to be enforced in a way
that copes with the strict resource constraints. The state of the art to enforce fine-grained
configurability in the implementation of system software is conditional compilation
with the C preprocessor. The implementation of configurable features (for example, a
synchronization strategy) is embedded as #ifdef – #endif blocks into the implementation
of other features. However, the scattering of the code makes the implementation hard to
comprehend and maintain. Even worse: if several configuration options are implemented
this way, we quickly find ourself in "#ifdef hell” – a phenomenon describing the situation
that the code has become unreadable because of all those #ifdef blocks.1 Listing 1.1
shows a real world example from the eCos operating system [eCo]. Even though we have
to deal with only four configuration options in this example, the code is already very hard
to comprehend. The enforcement of configurability by means of conditional compilation
does not scale up.

Nevertheless the demand on functional variability in embedded operating systems is
constantly increasing. A good example is the new embedded operating-system standard
specified by AUTOSAR, a consortium founded by all major players in the automotive
industry in order to specify a system software stack for car applications. The AUTOSAR
OS standard [AUT06b] asks for configurability of all policies regarding temporal and
spatial isolation. To achieve this within a single kernel implementation is challenging. The
decision about such fundamental operating-system policies (like the question if and how
address space protection boundaries should be enforced) is typically made in the early
phases of operating-system development and deeply reflect in some of its fundamental

1The term “#ifdef hell” is common hacker jargon. Its first documented use can be found in a usenet posting
by BRIAN HOOK to comp.os.opengl from November 5th, 1993.
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Cyg_Mutex::Cyg_Mutex() {

CYG_REPORT_FUNCTION();

locked = false;

owner = NULL;

#if defined(CYGSEM_KERNEL_SYNCH_MUTEX_PRIORITY_INVERSION_PROTOCOL_DEFAULT) && \

defined(CYGSEM_KERNEL_SYNCH_MUTEX_PRIORITY_INVERSION_PROTOCOL_DYNAMIC)

#ifdef CYGSEM_KERNEL_SYNCH_MUTEX_PRIORITY_INVERSION_PROTOCOL_DEFAULT_INHERIT

protocol = INHERIT;

#endif

#ifdef CYGSEM_KERNEL_SYNCH_MUTEX_PRIORITY_INVERSION_PROTOCOL_DEFAULT_CEILING

protocol = CEILING;

ceiling = CYGSEM_KERNEL_SYNCH_MUTEX_PRIORITY_INVERSION_PROTOCOL_DEFAULT_PRIORITY;

#endif

#ifdef CYGSEM_KERNEL_SYNCH_MUTEX_PRIORITY_INVERSION_PROTOCOL_DEFAULT_NONE

protocol = NONE;

#endif

#else // not (DYNAMIC and DEFAULT defined)

#ifdef CYGSEM_KERNEL_SYNCH_MUTEX_PRIORITY_INVERSION_PROTOCOL_CEILING

#ifdef CYGSEM_KERNEL_SYNCH_MUTEX_PRIORITY_INVERSION_PROTOCOL_DEFAULT_PRIORITY

// if there is a default priority ceiling defined, use that to initialize

// the ceiling.

ceiling = CYGSEM_KERNEL_SYNCH_MUTEX_PRIORITY_INVERSION_PROTOCOL_DEFAULT_PRIORITY;

#else

// Otherwise set it to zero.

ceiling = 0;

#endif

#endif

#endif // DYNAMIC and DEFAULT defined

CYG_REPORT_RETURN();

}

Listing 1.1: Constructor of the eCos mutex class.
The mutex class Cyg_Mutex from the eCos operating system [eCo] is configurable for different prevention
strategies against priority inversion, which leads to “#ifdef hell” in the implementation.

“architectural” design decisions, which in turn have an impact on many other parts of the
kernel implementation. But now they shall be implemented as configurable features.

We need a better way to implement configurability in system software product lines.

Aspect-Oriented Programming (AOP) [KLM+97] is a promising candidate here. AOP
provides extra language means for a finer-grained separation of concerns, which could
help to escape the “#ifdef hell”. A specific strength of AOP is the separation of so
called “crosscutting concerns” – concerns, which affect the implementation of many other
concerns (Figure 1.1). With the help of AOP, it might become feasible to implement even
fundamental operating-system policies as configurable features.

1.2. Purpose of This Thesis

In this thesis, I evaluate the suitability of AOP as a first-class mechanism for the imple-
mentation of configurability in operating-system product lines for resource-constrained
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Figure 1.1.: Implementation of a “crosscutting concern” without and with AOP.
The bars represent source artifacts (e.g., classes); a concern is well modularized if it can be implemented by its
own, dedicated source artifacts. (a) Without AOP, the implementation of “crosscutting concerns” is spread over
the implementation artifacts of other concerns. (b) With AOP, the implementation of “crosscutting concerns”
can be separated into their own source artifacts, the aspects.

embedded systems. The overall goal is to show that a well-directed, broad-scale applica-
tion of AOP does significantly improve on the state of the art to implement configurability
in operating systems without disadvantages on the hardware cost side.

A positive effect on the maintainability and evolvability of operating system code by
AOP has already been shown on the examples of FreeBSD [CK03] and Linux [ÅLS+03,
FGCW05]. A previous thesis [Spi02] and several workshop papers [MSGSP02, SL04]
from my own group could furthermore show that AOP improves on the configurability in
the PURE embedded operating system [BGP+99b].

Despite all these promising results, the question if and how a broad-scale application of
AOP in the design and implementation of (embedded) system software yields similar
benefits by the bottom line is yet not completely answered:

1. The present studies focus on the qualitative effects of using AOP – the effects
on maintainability and configurability. Still missing, especially in the face of the
envisioned broad-scale application in the resource-thrifty domain of embedded
systems, is an in-depth analysis of the quantitative effects of AOP.

Questions: Which AOP language features induce an overhead with respect to CPU
and memory resources? Can we improve on that? Is the expressive power
of a general-purpose, feature-rich AOP language an affordable luxury for the
domain of resource-constrained embedded systems?

2. In the present studies, AOP was mostly used as a “last resort” to implement con-
figuration options that were otherwise not feasible. Still open is the question how
implementing configurability by aspects compares in general – qualitatively and
quantitatively – to the existing approaches, such as conditional compilation or
object-oriented programming.
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Questions: Can we achieve the same or better efficency and flexibility as with the
existing approaches? What are the idioms for implementing configurability by
aspects?

3. In the present studies, AOP was applied ex post to separate out a few concerns from
an existing kernel. Still open is the question what we could get if we design and
implement an operating-system kernel with aspects from the very beginning.

Questions: What are good design rules for aspect-oriented kernel design? What are
the benefits? Is it thereby possible to implement even fundamental architectural
policies as configurable features?

With this thesis I want to extend on the previous work, provide answers for the ques-
tions stated above, and advance the current state of the art by aspect-awareness in the
developement of configurable system software.

1.3. Title and Objectives

The title of this thesis is “Aspect-Awareness in the Development of Configurable System
Software”. According to the New Oxford American Dictionary [McK05], awareness is the
noun of the adjective aware, which means “having knowledge or perception of a situation
or fact”. In Merriam-Webster’s Online Dictionary2 we find: “AWARE [...] mean[s] having
knowledge of something [...] AWARE implies vigilance in observing or alertness in drawing
inferences from what one experiences.”

So awareness has two major connotations: (hard, fact-based) knowledge and (soft,
experience-based) perception. This thesis aims for a better knowledge and perception of
the issues of implementing configurability in resource-constrained system software by
AOP. This comprises objectives on three different levels, namely language, implementation,
and design:

Language level objectives: Show that by a careful design of the aspect language, highly
expressive, yet cost-neutral AOP is possible. Figure out which AOP features induce
what overhead and if and how this can be avoided.

Implementation level objectives: Show, based on this knowledge, that AOP compares
qualitatively and quantitatively very well to the state of the art for implementing
configurability in system-software product lines. Figure out enabling and preventing
factors for configurability by aspects.

Design level objectives: Show, based on this knowledge, that by understanding aspects
as first-class design elements in the development of a kernel it becomes possi-
ble to implement even architectural operating-system policies as configurable fea-
tures. Figure out idioms and rules to achieve aspect-awareness when developing an
operating-system kernel.

2http://www.merriam-webster.com/dictionary/aware
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1.4. Structure

This thesis is structured as follows:

Chapter 2: Background, Context, and State of the Art (pp. 9–45)
There are three topics that constitute the pillars and the context of this thesis:
system software for embedded systems, software product lines, and aspect-oriented
programming. In the second chapter, I provide an introduction into all three of them
and discuss the current state of the art.

Chapter 3: Problem Analysis and Suggested Approach (pp. 47–66)
State of the art for the overhead-free enforcement of fine-grained configuration
options is the preprocessor. However, this approach does not scale. At the same
time the demands on operating-system product lines are still increasing. In the third
chapter, I analyze the problems (illustrated by examples from eCos and AUTOSAR
OS), present my research assumption – that AOP improves on the situation – and
discuss my research approach to evaluate this.

Chapter 4: Language Level – Aspects Demystified: Evaluation and Evolution of AspectC++
(pp. 67–98)
I begin the evaluation on the language level of configurability. The fourth chapter
provides a detailed look “under the hood” of AOP in general and AspectC++ in
particular. This “demystification” is important to understand the qualitative and
quantitative impact of AOP language elements on the implementation of config-
urability in embedded system software. In the context of this thesis it also paved
the path to several improvements of AspectC++, including the new generic advice
concept and more efficient code generation patterns.

Chapter 5: Implementation Level – Aspects in Action: Practicing Configurability by AOP
(pp. 99–120)
Focus of the fifth chapter is the implementation level of configurability. I apply
AOP to practice by refactoring some of the problem-causing concerns found in the
eCos operating system from preprocessor-based configuration into a much cleaner
implementation based on aspects. The goal is to understand the preconditions and
circumstances under which the assumed benefits of AOP hold – respectively, can be
realized at all – when we use aspects on a larger scale to implement configurability
in system software for embedded devices.

Chapter 6: Design Level – CiAO Aspects: Aspect-Aware Operating-System Development (pp.
121–169)
The sixth chapter handles the design level of configurability. I present the idea of
aspect-aware kernel development by the example of the CiAO family of operating
systems. CiAO – the acronym stands for CiAO is Aspect-Oriented – is a highly con-
figurable operating-system product line I have designed and developed from scratch
with aspects as a first-class development concept. Thereby, CiAO combines config-
urability of even fundamental architectural properties with excellent granularity
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and variability.

Chapter 7: Summary, Conclusions, and Further Ideas (pp. 171–175)
In the seventh chapter I summarize and review my work and provide an outlook of
further ideas.

The seven main chapters are followed by two appendices that contain collateral material
closely related to the topics of this thesis.

Appendix A: AspectC++ (pp. 177–198)
In the first appendix I provide additional information about the AspectC++ language
and tools. This includes a general overview, some advanced application examples,
and a further analysis of the optimized code generation patterns developed in the
context of this thesis.

Appendix B: Case Study “WeatherMon” (pp. 199–218)
In the second appendix I describe the results of an additional case study. The goal
of the “WeatherMon” study was to evaluate AOP in comparison to OOP for the
development of a software product line for very small, resource-thrifty “deeply
embedded” systems. For this purpose, I designed, implemented, compared, and
evaluated AOP and OOP versions of an embedded weather-station product line
based on a small 8-bit microcontroller.

1.5. Typographical Conventions

Boldface indicates the introduction of a new term or, in some few occasions, the accentu-
ation of an important result. In some cases, the introduction of a term is postponed to
a following paragraph; in these cases the term yet to be introduced is typeset in italics,
which is also generally used as a stylistic means for text emphasis. Source-code identifiers
are typeset in monospace, identifiers that refer to concepts or conceptual features are
depicted in Sans serif and start with a capital. Tools or commands, such as the used
compiler, are depicted by SMALL CAPS.
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2
Background, Context, and State of the Art

In short, the goal of this work is to evaluate AOP as a means to increase the achievable
configurability in software product lines for embedded system software. Hence, there are
three topics that constitute the pillars and the context of this thesis: system software for
embedded systems, software product lines, and aspect-oriented programming. This chapter
provides a brief introduction into all three of them. It is brief, as I do not claim to be
comprehensive here – each of these topics comprises an area of research of its own. It is
an introduction (in contrast to a mere overview), as many of the definitions and points
under discussion reflect my own point of view – results from several years of work in
the field. The goal is to elaborate the principles and terminology that are important for
understanding this thesis.

The chapter is structured as follows: Section 2.1 introduces the target domain – system
software for embedded systems. It describes the typical properties and constraints of
embedded devices and their impact on the application of system software, especially
operating systems. Section 2.2 contains an overview of the engineering of software product
lines. In Section 2.3, I then introduce the basic principles and ideas of aspect-oriented
programming. Finally, the chapter is briefly summarized in Section 2.4.
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2.1. System Software for Embedded Systems

We start with a working definition for embedded systems:

An embedded system is a special-purpose system in which the computer is
completely dedicated to (and often also physically encapsulated within)
the device it controls.1

Unlike a general-purpose PC, which is meant to be usable for different tasks by means of
user-installable software, an embedded system is aimed at only one predefined tasks (or
a relatively small set of variations thereof). This leverages optimization and tailoring of
both hard- and software.

Embedded systems are ubiquitous – even though most people are not aware of their
omnipresence [Ten00]. We can find dozens of them in a modern car [Bro06]. They
control small devices such as MP3 players, cameras and wrist watches, appliances like
washing machines and fridges, but also airplanes and nuclear power plants. More than 98
percent of the world-wide annual processor production (in units) ends up in an embedded
system [Tur02, Ten00]. What most of us perceive as “computers” – PCs, laptops, servers,
and so on – makes up just a mere two percent of the computers in use.

2.1.1. Properties of Embedded Systems

The most notable commonality among embedded systems is, strangely enough, diversity.
The functional properties of devices controlled by an embedded system differ a lot – so
does the hardware used to implement the functionality. We refer to this as application
diversity and platform diversity.

• Embedded systems are applied to a large number of different application areas, each
with its own very specific requirements and constraints.

• There are dozens of different hardware platforms available to run embedded devices.
Many hardware platforms can furthermore be adapted and tailored with respect to
the specific application.

Nevertheless, many embedded systems share a set of nonfunctional properties and
requirements that are considered typical constraints for this domain. Important examples
are dependability, energy efficiency, and cost efficiency:2

• Many embedded systems run safety-critical processes and thus have to be depend-
able. Airplanes and nuclear power plants are just two examples of systems that may
cause disastrous consequences in the event of failure.

1compare, e.g., [Coo03, p. 12][Mar06, p. 1].
2compare, e.g, [Coo03, Mar06]

11



2. Background, Context, and State of the Art

Figure 2.1.: Market share of 4-bit to 32-bit CPUs and DSPs in 2002.
Depicted is the percentage turnover of the different CPU types in units and money. Even though 8-Bit microcon-
troller make more than 50% of the sold units, they account for less than 15% of the fiscal turnover .
(Graph adopted from [Tur02].)

• Many embedded systems are mobile systems that are powered by batteries. Com-
pared to other pieces of hardware, batteries are relatively expensive, heavy, and
bulky. Energy efficiency has a significant impact on the durability, weight, size, and
production cost of an embedded device.

• Embedded systems are often used in mass-produced goods – manufactured and sold
in millions. This leads to an immense pressure on the per-unit hardware cost; a
single cent can decide over market success or failure.3

Most relevant in the context of this thesis are application diversity, cost efficiency, and
platform diversity. I understand platform diversity as a consequence of the other two: Mass-
production imposes a demand for as-cheap-as-possible hardware, whereas the different
but predefined application-specific requirements facilitate the reduction of per-chip cost by
leaving out unnecessary functionality. Hardware vendors cope with the varying demands
of scale by offering different CPU types, from small 4-bit microcontrollers up to multi-core
32-bit and 64-bit number crunchers.

2.1.2. Hardware for Embedded Systems

The effects of the hardware cost pressure can be observed in the utilization of the available
CPU types. 8-bit and even 4-bit technology dominates CPU production in terms of
units (~70%), but yields only a very small portion (~15%) of chip industry revenues
(Figure 2.1). Device manufacturers seem to use it especially in areas of high-volume
mass production, as, according to a survey published by embedded.com [Tur05], 32-bit
technology is employed in nearly 60 percent of all embedded system developments.

3An expert from the automotive industry told me once that their procurement agents calculate and negotiate
per-unit hardware cost by the quarter of a cent.
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Type Flash SRAM IO Timer 8/16 UART I²C AD Price (e)

ATTINY11 1 KiB 6 1/- - - - 0.31

ATTINY13 1 KiB 64 B 6 1/- - - 4*10 0.66

ATTINY2313 2 KiB 128 B 18 1/1 1 1 - 1.06

ATMEGA4820 4 KiB 512 B 23 2/1 2 1 6*10 1.26

ATMEGA8515 8 KiB 512 B 35 1/1 1 - - 2.04

ATMEGA8535 8 KiB 512 B 32 2/1 1 1 - 2.67

ATMEGA169 16 KiB 1024 B 54 2/1 1 1 8*10 4.03

ATMEGA64 64 KiB 4096 B 53 2/2 2 1 8*10 5.60

ATMEGA128 128 KiB 4096 B 53 2/2 2 1 8*10 7.91

Table 2.1.: Features and prices of the 8-bit AVR ATmega microcontroller family.
Depicted is a selection of the > 70 available variants. Variants differ with respect to memory sizes (flash, SRAM),
number of digital IO pins (IO), number and width of hardware timers (Timer 8/16), serial interfaces (UART, I²C),
and number and width of analog to digital converters (AD).
(Wholesale prices taken from: Digi-Key product catalog, Summer 2006)

Figure 2.2.: Comparison of per-MiBit cost of NAND flash memory and SRAM.
SRAM is roughly 10 times more expensive than NAND flash memory. Depicted are the prices for Toshiba
chips with different capacities, but comparable packaging (TC55NEM208ATGN55L-ND, TC55W800FT55M-ND,
TC55VBM416AFTN55-ND, TC58V64BFT-ND, TC58DVM72A1FT-ND).
(Wholesale prices taken from: Digi-Key product catalog, Summer 2006)
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Embedded or Not Embedded?

Interestingly, the example for an embedded system mentioned most often is – at least in my
experience and among computer scientists – the cell phone. Is the cell phone a good example
for a typical embedded system?
Ten years ago, I would not have hesitated to say so. Cell phones were special-purpose
devices, aimed to provide a specific predefined task: mobile telephony. Ever since, however,
manufacturers have been extending their little gadgets with more and more functionality:
photography, gaming, schedule management, .... On top of that, the average cell phone today
even provides a Java Virtual Machine (JVM) to run arbitrary user-installable software. In fact,
cell phones have turned into general-purpose computers. Telephony is still there, but has
merely become a negligibility. Curiously enough, it is still implemented by dedicated hard-
and software components – embedded into, but well separated from the surrounding general
purpose computer. Network providers insist on this separation because of security and safety
concerns.
The issue, however, is not so much that cell phones fail my definition of embedded systems. It
is their perception as typical embedded systems. Many computer scientists are convinced to
do research “for typical embedded systems” when their work targets at devices with “just 64
MiB of RAM” and a “not so powerful JVM” – basically small PCs.
As DAVID TENNENHOUSE already stated: “Over the past 40 years, computer science has addressed
only about 2% of the world’s computing requirements” [Ten00].

Many CPU platforms are furthermore designed as hardware families comprising dozens
of (binary and pin) compatible microcontroller variants. Table 2.1 shows an excerpt from
the AVR ATmega microcontroller family, which offers more than 70 different variants,
all based on the same 8-bit RISC core. The amount of peripheral features has quite an
impact on the chip price. Especially the amount of SRAM is a significant cost driver.4

RAM is required for the run-time state of the system (e.g. stack space, global variables),
but, as Figure 2.2 shows, SRAM is about 10 times more expensive than flash memory
(ROM), which is used for program code and read-only data. Embedded system developers
consider RAM requirements as the critical source of hardware costs. Hence, software for
this domain has to be optimized with respect to low RAM utilization.

2.1.3. The Role of System Software

System software provides application developers with a higher-level interface than that
offered by the bare hardware. We understand the interface implemented by some system
software as a new virtual machine layer, that is, an abstract hardware (abstract processor,
abstract devices, ...) that specifies its own data abstractions (types) and instruction set
(system calls). This instruction set is internally implemented by programs (compiled or
interpreted) that use the instruction set offered by the next lower level. For instance, a

4For the sake of access time predictability and low energy consumption, SRAM is used in most embedded
systems, which is more expensive than the DRAM used in PC-like computers.
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middleware layer is built on top of an operating system layer, which in turn is built on an
instruction set architecture layer (such as Intel’s IA32), and so on.5

System software provides no business value of its own. Its sole purpose is to ease the
development and integration of applications, that is, to serve application developers
and integrators with a virtual machine layer that provides the “right” instruction set
(abstractions) for their particular problems. Of course, the whole idea of easing the
development pays off only if the system software is reusable for more than one application.
System software has to be general-purpose to create synergies.

System software for embedded systems also has to cope with the specific properties of this
domain. Diversity of embedded applications and platforms imposes a large spectrum of
functional and nonfunctional requirements on system software. Hardware cost pressure
calls for meeting the specific requirements of each application exactly, that is, without any
overhead for unneeded functionality. Compared to the domains of “big” computing (PCs,
servers, mainframes), we have a broader set of potential requirements but smaller sets of
actual requirements. 6 As a consequence, developers of embedded systems can almost
never reuse existing system software “as is”, but have to customize or tailor it:

Customizing or tailoring is the activity of modifying existing system software
in order to fulfill the requirements of some particular application.

In the domain of embedded systems both terms are used mostly synonymously, so they
are in this thesis.

The practice of tailoring system software for a specific application has a history in the area
of operating systems. This is not surprising – cost and availability of hardware were major
problems of applied computing in the 1970s. In his article Designing Software for Ease of
Extension and Contraction, DAVID L. PARNAS, one of the pioneers in the design of reusable
operating systems, already wrote:

Some applications may require only a subset of services or features that other
applications need. These ’less demanding’ applications should not be forced to
pay for the resources consumed by unneeded features. [Par79]

The ease and extent to which some system software can be customized and tailored
for a specific purpose depends mostly on the variability and granularity offered by its
implementation:

Variability of system software is the property that denotes the range of func-
tional requirements that can be fulfilled by it.

Granularity of system software is the property that denotes the resolution of
which requirements can be fulfilled by it, in the sense that requirements
are fulfilled but not overfulfilled.

5compare [Tan06, pp. 2–13], but also [HFC76]
6compare [Ten00].
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Variability describes scalability with respect to features or functionalities. A piece of
system software offers the lowest variability if it fulfills the requirements of only one
specific application. A piece of system software offers the highest variability if it fulfills
the requirements for any potential application.

Granularity describes scalability with respect to hardware resources. A piece of system
software offers the coarsest granularity, if the induced overhead does not depend on the
actual application requirements, that is, if the overhead is same for any two applications.
A piece of system software offers the finest granularity if for any application the induced
overhead is not higher than the overhead induced by a best possible hand-crafted solution
for this particular application.

The extreme cases do not exist in real system software. Nevertheless both, variability
and granularity, are important properties. Variability reflects the theoretical reusability
of system software for different applications – which I described above as the major
motivation to develop discrete system software. Granularity reflects the practical usability
of system software in a domain with high hardware cost pressure.

General purpose operating systems, for example, offer quite high variability but only
coarse granularity. Windows or Linux fulfill all requirements to run a simple control loop
of some device. They also fulfill the requirements to concurrently execute a bunch of
multi-threaded server applications that are protected from each other by address space
boundaries, CPU time warranties and kernel capabilities. The system software overhead,
however, is almost the same in both cases; the requirements of the simple control loop
application are dramatically overfulfilled. This is the price of using a general-purpose
operating system that is meant to be a one-size-fits-all solution for all types of applications.

In the following we take a closer look on the role of operating systems in the embedded
systems domain today.

2.1.4. The Role of Operating Systems

The operating system is the lowest layer (and, thus, the fundamental building block)
in the system software stack for an embedded system. As a consequence, the demand
for application-specific operating systems is particularly high. This can be observed
in the diversity of the operating-system market: While the number of general-purpose
operating systems for PCs and server-like computers has undergone a strong consolidation
over the last two decades (eventually resulting in Windows, Linux, MacOS and a few
Unices), embedded application developers can select from a zoo of more than two hundred
available operating systems, most of which are real-time operating systems. 7

7This is an estimate; it is difficult to find reliably citable numbers for this. Published surveys – such
as [FSH+01] – are incomplete, so are the numerous lists that can be found online. However, at the
time of this writing (8-April-2007), Dedicated Systems Encyclopedia, lists 66 real-time operating systems
(http://www.dedicated-systems.com/encyc/buyersguide/products/Dir1048.html) – but their list includes
only commercial systems. Wikipedia lists 51 commercial (denoted as proprietary) and 23 open-source
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Figure 2.3.: Types of operating systems used in embedded system development – and reasons not to use one.
Depicted are the results from a survey performed by embedded.com in 2006 [Tur06]: (a) Nearly 44 percent of
all embedded systems either use no operating system at all (No OS, 28.7%) or depend on in-house developed
operating-system functionality (Proprietary OS, 15.1%). (b) An (assumed?) lack of need (85%) and general
concerns about the RAM/CPU resource overhead (30%) are the most frequently mentioned reasons not to use
an operating system.
(Graphs based on data taken from [Tur06].)

In spite of the broad supply, the utilization of existing operating systems is not yet state of
the art and rises only slowly. In his keynote at the embedded world exhibition (Nuremberg,
2004), WALLS reported that the operating-system functionality is proprietary or part of the
application code in more than 50 percent of all embedded system developments [Wal04].
In the more recent numbers published by TURLEY [Tur06] the proprietary operating
system / no operating system fraction has dropped below 44 percent (Figure 2.3.a); a fact
from which TURLEY concludes that the use of operating systems is “on the rise”.

Nevertheless, the number of embedded projects that do not employ existing operating
system functionality is still remarkably high. Why is that the case? According to TURLEY’s
report, the most mentioned reason was “a simple lack of need”, followed by concerns
regarding a thereby induced RAM/CPU overhead (Figure 2.3.b). While the second answer
emphasizes – once again – the hardware cost pressure, the vastly expressed “lack of need”
seems surprising. We can assume that it is, at least partly, expression of the engineers’
perception of operating systems. WALLS reported that engineers of embedded systems
tend to develop and maintain typical low-level operating-system abstractions (such as
hardware resource management or control flow coordination) as part of the application
instead of taking them from an existing operating system; a habit that presumably causes

real-time operating systems (http://en.wikipedia.org/wiki/RTOS). And still, there are many systems
missing on both lists: open-source and research systems – such as TinyOS [Ber, GLC05], PURE [BGP+99b],
EPOS [FSP99] – but also the various commercial implementations of domain-specific standards, such as
OSEK [OSE05], AUTOSAR [AUT06b], or µItron [Sak98]. We should perhaps understand this as another
indicator for the fact that the domain of embedded systems is broad and inhomogeneous.
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tremendous costs [Wal04]. One can argue whether some simple memory management or
the means to coordinate a few interrupt handlers already constitute a reusable operating
system. According to HABERMANN, who was another pioneer in the design of customizable
operating systems in the 1970s [HFC76], it clearly does. The more recent exokernel
idea [EKO95], moreover, explicitly reduces the operating-system’s responsibilities to the
management of hardware resources and leaves the implementation of strategies to the
concrete application.

However, these are academic arguments. In practice, the question of what is and what is
not an operating system is probably answered on the RTOS market. If embedded system
developers are willing to spend a lot of money on in-house and per-application devel-
opment of operating-system functionality, we can only conclude that existing operating
systems are not tailorable well enough or easy enough.

In the following, we take a closer look at the state of the art in implementing customizable
operating systems.

2.1.5. Implementation Techniques for Customizable Operating Systems

The key towards tailorability (and the more general customizability) are design concepts
and language means that provide a good support for granularity and variability in the
resulting operating-system implementation, that is, a good separation of concerns. In
their book “Operating System Concepts” SILBERSCHATZ and associates write:

Throughout the entire operating-system design cycle, we must be careful to sepa-
rate policy decisions from implementation details (mechanisms). This separation
allows maximum flexibility if policy decisions are to be changed later. [SGG05, p.
72]

Such complete separation between policies and mechanisms is, however, very difficult to
achieve – especially for system policies that have to be reflected in the implementation of
many mechanisms.

A lot of approaches for the design and implementation of customizable operating systems
have been suggested. The surveys published by FRIEDRICH and colleagues, DENYS and
associates, and TOURNIER [FSH+01, DPM02, Tou05] provide a good overview on the
topic. Most recent work concentrates on the implementation of dynamic adaptation
at run time; relevant in the context of this thesis are, however, approaches for static
customization and tailoring:

• Libraries – the operating system is provided as a library of functions that is tailored
by the linker at link time.

• Functional hierarchies and layers – the operating system is provided as a stack of
function layers; each layer presents an optional stage of expansion to the previous
layer.
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• Frameworks – the operating system is provided as an (object-oriented) framework;
its mechanisms and policies are to be customized by subtyping.

• Components – the operating system is provided as a set of components that can be
aggregated according to the rules of a component model.

• Preprocessor-based customization – the operating system is provided as a set of source
files that are customized by a preprocessor before compilation.

In the following sections, I discuss these approaches in further detail.

2.1.5.1. Libraries

The operating system is provided as a (linker) library. The library bundles a set of symbols
(functions and global variables) that represent the services provided by the operating
system. When the application is linked against the library, the linker includes only those
services in the resulting image that the application uses, either directly or indirectly
(via other user symbols); the code and global state that implements unused services are
automatically omitted and do not consume memory space in the resulting image. More
precisely: Included is the reflexive and transitive closure of referenced symbols calculated
from the application’s entry point (main()).

Libraries provide automatic granularity on the level of functions. Variability is possible in
the sense that the application developer might choose between different functions that
represent variants of the same functionality. The C standard library, for instance, provides
with memmove() and memcpy() two variants of the functionality to copy a block of bytes;
the latter one is optimized for cases where the source and destination blocks are known
to not overlap. The application developer, however, has no influence on internally used
mechanisms and polices of the library; so overall variability is relatively low.

The library approach works well if the library implementation does not exhibit internal
coupling, that is, if the functions of the library are self-contained and do not refer to each
other. A library should implement only mechanisms, but no policies – which often lead
to internal coupling.8 The very first operating systems were shipped as libraries. These
systems typically implemented just hardware abstraction and maybe a compiler. A more
recent example of a library operating system is the exokernel [EKO95], which intentionally
provides only mechanisms to let the application implement the policies. However, in
general it is challenging to design and implement a library in a way that does not suffer
from internal coupling.

8The GNU C library (on Ubuntu Linux 2.6.26-x86_64) is a good (well, bad) example for internal coupling:
Even if linked against an empty program (echo ’int main(){}’ | gcc - -xc -O6 -static), more than
470 KiB (!) of library code is included in the resulting image. The reason is the startup code of the C
library, which alreads installs the internal cleanup and error handling polices, which contain references
to many library functions ( atexit(), malloc(), printf(), ...), which in turn contain references to more
library functions, which ultimately causes the linker to always include a large part of the library into the
final image.
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The library approach is still very common in the domain of embedded operating systems,
but usually combined with one of the other approaches (especially preprocessor-based
customization which will be discussed in Section 2.1.5.5) for the sake of better granularity
and variability within the library. However, internal coupling can also be prevented by
design, which is the objective of the following approach.

2.1.5.2. Functional Hierarchies and Layers

The services provided by the operating system are designed as hierarchies of operating-
system functionalites bottom up from the hardware. The resulting graph, the functional
hierarchy [Par76b, HFC76], describes the functional dependencies between the differ-
ent operating-system functionalites – dependencies in the sense of “needs” or “has to
be present for”. The graph has to be acyclic; if some functionalities (indirectly) depend
on each other, this is considered as an indicator for the need of further decomposition
[HFC76]. The elements of a functional hierarchy are arranged in a stack of layers; each
layer represents bottom-up from the hardware a minimal extension of the previous layer,
that is, a new virtual machine layer.

Functional hierarchies and layered systems are a design approach to minimize the internal
coupling between operating-system functionalities. The approach itself makes no assump-
tion on how functionalites actually get implemented. The goal of an acyclic graph of
fine-grained functional dependencies is, however, quite challenging. The specification
of all operating-system functionalites has to be already complete; furthermore efficient
implementation means to postpone design decisions from lower layers to higher layers
are reqiuired. LISTER and EAGER diagnose that “Only a few real life operating systems
have actually exhibited this rather neat structure” [LE93, p. 7].

Early examples for layered systems are T.H.E. [Dij68, Par76b] and FAMOS [HFC76].
Probably the most consequent application of these design principles has been presented in
the PURE family of operating systems for deeply-embedded devices [SSPSS98, BGP+99a,
BGP+99b]. In the most recent PURE implementation, the layers of the functional hierarchy
are mapped to C++ classes. Each layer extends the previous layer by means of C++
implementation inheritance from the corresponding class; design decisions that are already
needed in lower layers but should not be bound there are postponed to higher layers by
means of C++ virtual functions. The Thread concept, for instance, is defined by a 14-level
class hierarchy in which each class implements a minimal extension to the previous layer.
The lowest layer already depends on a design decision, namely, which code the new
thread should execute. This decision is postponed to higher layers by representing it as
a virtual function. By its stringent adherence to the principle of minimal extension in the
design, PURE exhibits excellent granularity.

Functional hierarchies and layers are closely related to the idea of program families
[Par76a]. Each path through the dependency graph can be understood as one family
member of a family of operating systems.9 Program families are further elaborated in
Section 2.2.2.

9FAMOS [HFC76] is actually an acronym for FAMily of Operating Systems.
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2.1.5.3. Object-Oriented Frameworks

The operating system is provided as a framework. Compared to libraries, frameworks
provide additional means for customization, as they do not only define services that may
or may not be invoked by the application, but also a reference architecture for inter-
action between the (operating system) framework and the application [Joh97, Deu89].
Frameworks are often based on object-oriented concepts. In object-oriented frameworks,
the application developer can extend the representation of kernel-internal entities by
subclassing; kernel-internal behavior can be customized by method overriding.

Frameworks provide granularity on the level of classes. This is less fine-grained than with
libraries, as a class typically contains several methods and subclassing is an extension
mechanism only. An important factor is the number of virtual functions. These functions
are bound at run time, so it is usually not possible to detect and remove unused (dead)
code at compile time or link time. Hence, for the sake of granularity, a framework should
offer as few virtual functions as possible.

Variability is determined by the number of extensible classes and overridable methods. Even
internal state and behavior can be modified by subclassing and method overriding, often
in combination with design patterns such as factory method [GHJV95]. An important
factor is the number of virtual functions, as only in these points operating-system–internal
policies can be customized. Hence, for the sake of variability, the framework should offer
as many virtual functions as possible.

Object-oriented frameworks have a principle trade-off between granularity and variability,
caused by the fundamental binding and customization mechanism, which is subclassing
and overriding of virtual functions. As already mentioned, virtual functions cause a
general, nonnegligible overhead [DH96]. More overhead is induced by the fact that all
customizable policies and mechanisms have to be instantiated at run time. For these
reasons, the object-oriented framework approach has not become very popular in the
domain of ressource-constrained embedded systems.10 The best known example for
an object-oriented operating system framework is Choices [CIMR93]; the K42 system
[SKW+06] uses the object-oriented framework idea internally, but does not exhibit it via
its application interface.

2.1.5.4. Component Frameworks

The operating system is provided as a set of components that adhere to some component
model. Compared to objects and classes, components add another level of syntactical
abstraction as they make dependencies (in the sense of provides interfaces and requires
interfaces) more explicit and provide, via the component model, additional means to
analyze and customize the binding of and interaction between the units of abstraction.

10For small embedded systems, the cost of virtual functions and run-time instantiation of concepts can be
dramatical. The “WeatherMon” case study (Appendix B on page 199) contains a detailed analysis of these
costs.
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The unit of granularity is the component. Most component models support the hierachical
composition of components (nesting), so components can theoretically vary in size from
fine-grained (like a queue abstraction) to coarse-grained (like a complete file system).
Granularity can furthermore be improved by sophisticated means for intra-component
dead code analysis; this, however, depends on the component model.

The component is also the unit of variability. Components can be substituted by other
components adhering to the same interface. It is usually not possible to modify internal
parts of a component. This means that policies have to be externalized into their own
components to be customizable.

The component framework approach is often used in operating systems that target a
particular application domain. The Flux OSKit, for instance, is intended for the quick
prototypical construction of x86-based research operating systems [FBB+97, oU]. OSKit
focuses on the easy reuse of existing operating-system code, especially device drivers, from
Linux and FreeBSD by encapsulating them into components adhering to a COM-based
component model. Thus, OSKit components are relatively coarse-grained. Part of the
run-time overhead induced by late binding and the COM interface model is later removed
by an extra optimization tool [RFS+00].

A COM-like component model is also used in the THINK operating system framework
[FSLM02]. THINK is intended for the domain of (distributed) telecommunication routers,
so in THINK even the binding between components is represented by separate components,
which facilitates the customization of many policies. It remains open, however, how much
overhead is caused by the indirection over extra binding components.

A somewhat opposite strategy is exhibited by TinyOS, an operating system for deeply-
embedded sensor nodes [GLC05, Ber]. TinyOS exhibits its own component model with
its own implementation language called NesC [GLv+03]. For the sake of simplicity of
application development, certain policies are hard-coded and part of the component model
and the NesC language. Synchronization, for instance, is always done via a global interrupt
lock; threads are always nonpreemptable. This knowledge makes it possible to perform
very sophisticated dead-code analyses and other optimizations in the NesC compiler.
Thereby, TinyOS reaches excellent granularity even though the TinyOS components itself
are relatively coarse-grained (if compared to, e.g., PURE classes).

2.1.5.5. Preprocessor-Based Customization

The operating system is provided as a set of annotated source files that are transformed
on source-code level by some preprocessor before compilation. The source-code annota-
tions are given in their own language, the preprocessor language, and describe textual
transformations to be performed by the preprocessor on the annotated source code.

The most commonly used preprocessor is the C preprocessor (CPP), a macro processor that
is automatically invoked by C, C++, and Objective-C compilers. Depending on macro
definitions, source lines can be included or excluded from compilation by #if, #else,
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#endif block annotations – a mechanism that is also known as conditional compilation.
Furthermore, macro references in the source code are textually expanded to their definition
by the preprocessor, hence, part of the source code can be generated.

The preprocessor approach is fundamentaly different from the other approaches in two
respects:

1. The language to implement variability and granularity has no direct relation to the
(type system of the) general implementation language. Granularity and variability
does not depend on the kind and size of syntactical entities offered by the imple-
mentation language (functions, classes, or components), but can theoretically be
implemented across several syntactical entities on the level of source-code lines.

2. The preprocessor approach is mostly decompositional, whereas the other approaches
are mostly compositional. In the compositional approaches we start with a minimal
system that represents the intersection of all possible variants and add or substitute
units (functions, classes, components) to this system until all requirements are met.
With the decompositional preprocessor approach, the source code contains the union
of all possible variants and we customize the system by filtering out the unnecessary
parts.

The decoupling from the type system of the implementation language makes it possible
to implement very fine-grained granularity and variability. Moreover, the approach is
inherently overhead-free, as the customization is not based on abstraction mechanisms of
the programming language, which can induce some run-time overhead.

On the other hand, the decompositional nature of the preprocessing approach leads to
substential disadvantages regarding the understandability and maintainability of the code.
The source code gets bloated, as it has to contain all implementation variants, which are
scattered over the source base. The better the provided granularity and variability, the
worse are the bloating and scattering effects. Hence, the approach does not scale – it
quickly leads to the “#ifdef-hell” phenomenon already presented in Listing 1.1. We will
see more examples of this in Chapter 3.

Several papers emphasize the problems of preprocessor-based customization of software
[SC92, Fav97]. Nevertheless, the C preprocessor has to be considered as state of the art for
the implementation of overhead-free, fine-grained customizability [EBN02]. Application
examples from the operating systems domain include all variants and flavors of Linux
and BSD as well as the majority of embedded operating systems, such as FreeRTOS [FRT],
ProOSEK [Pro], Contiki [DGV04], or eCos [eCo].

2.1.6. From Customizing to Configuring of System Software

The decompositional nature of preprocessor-based customization has another interesting
consequence: All possible means of customization have to be provided explicitly by the
system-software developer. The set of macros that control the process of conditional
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compilation constitutes an interface to customization that predefines the (so far purely
declarative) properties of variability and granularity (Section 2.1.3). We understand this
as configurability of system software:

Configurability is the property that denotes the degree of pre-defined vari-
ability and granularity offered by a piece of system software via an explicit
configuration interface.

This is fundamentally different from the compositional approaches, where customization is
based on the aggregation, substitution, and extension of implementation entities – which is
theoretically open-ended and, thus, more flexible. However, the compositional approaches
require a profound knowledge about the system software and its implementation model.
Hence, from the viewpoint of an application developer, the explicit representation of
variability and granularity may be preferable.

Preprocessor macros are just one example for a simple configuration interface. The idea of
representing customizable system software by more abstract and problem-related features
gives rise to many questions regarding the identification, representation, and management
of configurability on a larger scale. These issues are addressed by the field of software
product lines.

2.2. Software Product Lines

The general idea of a product line is to exploit the commonalities between the different
yet similar sets of requirements customers express for products from a particular domain of
interest. Instead of developing an individual solution for each specific set of requirements,
a product line aims to provide (pre-manufactured) solutions for a whole problem domain.
The problem domain is spanned by the set of features that describe the commonalities
and differences between individual problems. WITHEY defines:

A product line is a group of products sharing a common, managed set of features
that satisfy the specific needs of a selected market. [Wit96]

In software product lines the products are software programs. Software product lines
offer the opportunity to create significant synergetic effects for the development of
similar software products as they drive systematic reuse [NC01]: Problem specifications,
development processes, design decisions, and component implementations can often be
shared for all features that are common among multiple products; thus, they have to
be undertaken only once. Ideally, only the variation points – features that distinguish
one software product from all others – induce extra development efforts. To achieve
these benefits in practice should be the ultimate goal of principles, methods, and tools for
software product-line engineering.
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Figure 2.4.: Problem–solution model of software product lines.
A software product line consists of a set of intentional problem specifications (the problem space), a set of
extensional solution descriptions, and a relation between both sets (the solution space). Thereby each instance
of the problem space (a specific problem) can be mapped to an instance of the solution space (the specific
solution). On the model level, the domain expert specifies the variability of the problem space by a formal
model of (abstract) features and dependencies. The architect/developer implements this variability (architecture
and implementation artifacts) in a solution space and also provides a formal mapping from implementation
elements to features. On the instance level, the application developer specifies the intended properties by a
selection of features (a configuration). This description is evaluated to derive the actual implementation (the
variant) for the application user.

2.2.1. Concepts and Terminology of Software Product Lines

As suggested by SIMOS [Sim95] and CZARNECKI and EISENECKER [CE00], among others, I
understand a software product line as a mapping from problems to solutions. A problem
denotes a set of requirements; a solution denotes an implementation that fulfills these
requirements. The problem space specifies the variability that can be found within
a domain of interest (the “selected market”), thus the set of all potential problems.
The solution space maps these potential problems to pre-manufactured components,
generators, or other means to implement them, thus to the actual solutions. Thereby, for
each specific problem covered by the problem space, a specific solution can be found
in the solution space.

The variability found within the problem space of a software product line is typically
operationalized as a set of selectable and configurable features. We call a selection
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of features that describes a specific problem a configuration. We call the resulting
implementation of a specific solution a variant.

The problem space is intentional; its elements are the domain-specific features (properties,
requirements) expressed by human stakeholders.11 The solution space is extensional,
respectively; its elements are executable computer programs, instruction sequences for
an imperative machine. Figure 2.4 illustrates the problem–solution model of software
product lines.

2.2.2. History of Software Product-Line Engineering

It is remarkable that software product-line engineering has its roots in the work on oper-
ating systems in the 1970s [Dij68, Par72, Par76a, Par76b, HFC76]. The high complexity
of these systems – even in the first decades of electronic computing – was the motivating
factor for DIJKSTRA, PARNAS, HABERMANN, and others to develop fundamental concepts
of software engineering, such as modules, layers, hierarchies, levels of abstraction, and
program families. Whereas we accept most of these principles as natural today, the design
of related software programs as program families is still not that common. PARNAS

defines:

Program families are defined [...] as sets of programs whose common properties
are so extensive that it is advantageous to study the common properties of the
programs before analyzing individual members. [Par76a]

Note that PARNAS’ definition is about similarity between programs, that is, similarity
between solutions. In general, the early work focuses on what today we call the solution
space, that is, composition and decomposition techniques for program code. Program
families (also known as system families or product families) are one design concept to
implement the solution space of a software product line; the other techniques discussed
in Section 2.1.5 can serve the same purpose; this thesis evaluates AOP in this respects.

In the following decades, many additional methods to analyze and engineer software
product lines have been developed. Although additional techniques to implement the
solution space have been suggested as well (such as generators [Cza98]), there has been
a shift of focus from solution space eingineering to problem space engineering. Prob-
ably the first method in this direction was Draco by FREEMAN, which introduced the
idea of domain analysis [Fre87]. Later, KANG and colleagues introduced with Feature-
Oriented Domain Analysis (FODA) [KCH+90] – today an element of the SEI Framework
for Product Line Practice [NC01] – the notion of features as user-visible discriminating
elements between variants. Features as entities of the problem space were further gener-
alized by SIMOS with Organization Domain Modeling (ODM) [Sim95]. Other examples
of more recent methods include (but are not limited to): Family-Oriented Abstraction
Specification and Translation (FAST) [WL99], ProdUct Line Software Engineering (PuLSE)

11A more precise definition of the term feature follows in Section 2.2.3.
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C

f1 f2

(a) Mandatory features
f1 and f2 have to be in-
cluded if their parent fea-
ture C is selected.

C

f1 f2

(b) Optional features
f1, f2 can be included if
their parent feature C is
selected.

C

f1 f2

(c) Mandatory feature
f1 has to be included,
optional feature f2 can
be included if their parent
feature C is selected.

C

f1 f2

(d) Exactly one alterna-
tive feature f1 or f2

has to be included if the
group’s parent feature C
is selected.

C

f1 f2

(e) At most one optional
alternative feature f1 or
f2 can be included if the
group’s parent feature C
is selected.

C

f1 f2

(f) Not used.
Equivalent to (e).

C

f1 f2

(g) At least one cumula-
tive feature f1, f2 has to
be included if the group’s
parent feature C is se-
lected.

C

f1 f2

(h) Not used.
Eqivalent to (b).

C

f1 f2

(i) Not used.
Equivalent to (b).

Figure 2.5.: Syntactical elements of feature diagrams.
The concept C is defined by its features f1and f2. Features can either be mandatory (displayed as nodes with a
filled circle) or optional (displayed as nodes with an empty circle). Sub-features sharing the same parent node
(concept or feature) can either be ungrouped (first row), constitute a group of alternative features (displayed by
an arc over all edges leading to the group members, second row), or constitute a group of cumulative features
(displayed by a filled arc, respectively, third row). Some theoretically possible combinations (depicted in gray) are
not used as they are semantically equivalent to other constructs.

[BFK+99], Komponenten-BasieRte Anwendungsentwicklung (KobrA) [Atk01], CONfigu-
ration SUpport Library (CONSUL) [Beu03a], Process Integrated Modeling Environments
(PRIME) [PBvdL05], Evolutionary Software Product Line Engineering Process (ESPLEP)
[Gom04, Gom05], and Product Line Use case modeling for Systems and Software engineering
(PLUSS) [EBB05].

2.2.3. Specifying the Problem Space

As mentioned above, the entities used to specify the problem space are features. CZAR-
NECKI and EISENECKER define (in line with earlier approaches, such as ODM [Sim95]) a
feature as:

A distinguishable characteristic of a concept [...] that is relevant to some stake-
holder of the concept. [CE00, p. 38]

The explicit notion of stakeholders and the (for them) relevant characteristics of some
concept underlines the abstract and intentional nature of features. Features are given
in the terminology of the problem domain. The definition of the stakeholders and their
view on the intended products, which ultimately leads to the set of features that span the
problem space, is an important step of the domain analysis.
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Car

Car body Transmission

Automatic Manual

rationale:
Manual more energy efficient

Engine

Electric Combustion

Gasoline Diesel

Pulls trailer

composition rule:
Pulls trailer requires Combustion

Figure 2.6.: Example for a feature diagram.
The concept Car consists of the mandatory features Car body, Transmission, Engine, and the optional feature
Pulls trailer. The Transmission can be either Automatic or Manual; the Engine can be Electric, Combustion
(with the alternative sub-features Gasoline or Diesel), or both (effectively a hybrid). If the optional Pulls trailer is
chosen, however, an additional composition rule requires to choose a Gasoline engine as well (e.g., to ensure
the torque required to pull a trailer).
(Figure adapted from [CE99])

In FODA [KCH+90], the outcome of the domain analysis is the feature model. The
feature model defines and describes the abstract product, the concept, by its features and
their relationships. A FODA feature model consists of four key elements:

1. The feature diagram, a graphical representation of the hierarchical (tree-like)
decomposition of features with the concept as root node.

2. The feature definitions, which describe all available features.

3. The composition rules, which constrain feature combinations (and thereby possible
configurations). The feature diagram syntax already offers syntactical means to
specify certain composition rules, namely the indication whether or not some
feature is optional, alternative, or mandatory. Additional composition rules (those
that cannot be described by the feature diagram syntax) are given explicitly.

4. The rationales for features, annotations that indicate when to choose some feature
and when not.

The central element is the feature diagram. Figure 2.6 shows an example of a feature
diagram; Figure 2.5 explains the notation and the thereby expressible composition rules.12

Feature diagrams offer a compact and easy to comprehend presentation of possible
configurations, that is, of the problem space. We will see more examples for feature
diagrams in the subsequent chapters of this thesis.

12Throughout this thesis I do not use the original FODA notation [KCH+90], but the more pleasing notation
introduced by CZARNECKI in his PhD thesis [Cza98].

28



2.2. Software Product Lines

2.2.4. The Problem Space of Configurable Operating Systems

Understanding the embedded operating system as a software product line can pave the
path towards an easier and more problem-oriented way for customizing and tailoring of
operating-system functionality. There are, however, some particularities that have to be
considered.

In the literature, software product lines are mostly understood as a process model for
the development of reusable software. Even though every author has his own take on
the subject, there is a common agreement on what is called the reference process of
software product line engineering [BKPS04, CE00, GS04]. This process describes software
product line engineering by the two major activities of domain engineering and application
engineering. Essentially, domain engineering is “developing for reuse” whereas application
engineering is “developing with reuse” [CE00] around a common software platform.
Software product-line development is generally understood as an in-house development
process where both, domain engineers and application engineers, are on the same payroll
[GS04, p. 354] and feedback from the application engineers triggers evolution of the
software platform.

With system-software product lines the situation is different. In most cases an embedded
operating system is sold by some vendor to external customers, which use it for their
embedded applications and products. In this scenario, it is unrealistic that deriving
concrete variants (the “application engineering”) can be done on side of the operating-
system vendor. Instead, the customer – the developer of the actual embedded product
– has to become the “application engineer” of the operating-system product line.13 The
operating-system product line, or at least a part of it, is sold by the vendor and bought by
the customer as a whole – it is itself a product.

This has some consequences:

1. The “application engineers” (customers) can not be expected to have expertise in
operating-system development. They need extra guidance and tool support to derive
the concrete variants without having to deal directly with the operating system
plattform.

2. Because of the organizational distance between the vendor and the customers, the
operating-system engineers have to anticipate more of the potential requirements
application engineers might have.

The first issue can be addressed by representing all available options for customizing and
tailoring as features in the problem space. In the sense of the problem-solution model
of software product lines (Figure 2.4), an “application engineer” (customer) can then
customize and tailor the system by configuring it – that is, by selecting features from

13The requirements often change during the develoment of the embedded product. Furthermore, customers
want to protect their intellectual properties; if the vendor did the tailoring of the operating system, too
much information about the product had to be passed around.
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a representation of the feature model in some configuration editor. According to the
resulting configuration, an accompanying tool generates the customized and tailored
operating-system variant. This tool-based configuration approach is implemented, for
instance, by PURE (configured with PURE::VARIANTS), ProOSEK (TRESOS), and eCos
(ECOSCONFIG); also, the Linux kernel can be understood as a software product line with a
feature-based configuration in this sense [SSSPS07] (multiple configuration tools).

The second issue can be addressed by understanding the set of requirement-motivated
features only as a feature starter set [CE00] that is to be extended by additional features
– the more, the better. An important source for additional features is the design and
implementation process of the operating system itself. Once the core requirements have
been analyzed and set (top down), operating systems are usually designed and developed
bottom up – from hardware abstractions over operating-system abstractions up to the
kernel interface. Alongside this bottom-up process, additional options for variability
and granularity can sytematically be examined and, whenever feasible, made explicit as
additional features in the feature model.

Hence, in operating-system product lines we have features from two different sources:

1. Requirement-motivated features that are the outcome of a top-down domain analysis.
These features are motivated by concrete requirements (intentions), for instance
compliance to some operating system standard such as OSEK [OSE05], µITRON
[Sak98], or POSIX.

2. Implementation-motivated features are the outcome of a bottom-up design and
implementation process. These features represent additional configuration options.
They are motivated by common sense (of the implementing engineer who considers
them as useful) and the technical feasibility to provide them with no extra run-time
overhead and little implementation effort as extra configuration options.

Implementation-motivated features are often sub-features of requirement-motivated fea-
tures. A requirement-motivated context-switch feature could, for instance, relatively easily
be extended by additional configuration options for a further tailoring of the amount of
context information to be saved and restored (e.g., if floating point registers should be
included or not).

The result can be seen in the number of features offered by typical operating-system
software product lines. The PURE feature model contains more than 250 features, most
of which represent minimal extensions or variants of other features – fine granularity.
eCos offers alltogether more than 750 configurable features and compatibility to different
standards (µITRON, POSIX) – high variablity. The Linux kernel specifies even more than
3000 configuration options.

2.2.5. Implementing the Solution Space

The aim of the solution space is to provide application engineers with an actual imple-
mentation (variant) for any valid selection of features (configuration). The intentions
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expressed by the features selected in the configuration have to be transformed somehow
into an extensional representation, that is, some executable piece of software.

We implement the solution space by a repository of implementation assets and a family
model.

• The implementation assets are the elementary building blocks to implement vari-
ants. Implementation assets may be complete variants (programs), combinable
software units, or even “active elements”, such as meta-programs or generators that
have to be executed to generate configuration-dependent components or programs.

• The family model provides a mapping from each configuration to the set of imple-
mentation assets that together constitute the respective variant.

If the implementation assets are complete programs – one for each configuration – the
family model is a simple one-to-one mapping from configurations to programs. This is
feasible only if the product line offers very few configurations.

In the best case, the implementation assets are therefore arbitrarily combinable implemen-
tation units. Each unit implements exactly one feature; the family model is a one-to-one
mapping from features to units. A configuration thereby leads to a set of units which have
to be glued together (e.g., compiled and linked) into the respective variant.

Such an implementation of the problem space would be beneficial in many ways:

• It would lead to best possible synergies in the implementation of variants. The reuse
of feature implementations is maximized.

• It should lead to a good variability and granularity. The implementation itself
does not impair combining of features; variants do not contain any code related to
unneeded features.14

• It would lead to an implementation with good software-engineering–related prop-
erties, such as good maintainability, extensibility, traceability of requirements, and
so on. The one-to-one mapping from features (requirements) to implementation
artifacts leads to an optimal separation of concerns.

Again, separation of concerns is the key here – it is not the result, but the prerequisite
to achieve these benefits. Separation of concerns in software product lines means fea-
ture cohesion, that is, decomposition of mechanisms and policies into loosely coupled,
composable program modules.

Hence, in the end we are back to implementation techniques for customizability, some of
which have been discussed in Section 2.1.5 – with the small, but important difference that
these techniques are now transparent for the application developer.

Nevertheless, the implementation approach for configurability has a significant influence
on what economically can become a configurable feature in the problem space. With
14If the technique used for component glueing induces an extra overhead, as late binding in OOP does, it

could as well have a negative impact on granularity.
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Figure 2.7.: Implementation of a “crosscutting concern” without and with AOP.
The bars represent source artifacts (e.g., classes); a concern is well modularized if it can be implemented by its
own, dedicated source artifacts. (a) Without AOP, the implementation of “crosscutting concerns” is spread over
the implementation artifacts of other concerns. (b) With AOP, the implementation of “crosscutting concerns” can
be separated into their own source artifacts, called aspects.

the exception of PURE, the before-mentioned operating-system product lines all follow a
two-level approach. Coarse-grained configuration decisions (e.g., regarding the inclusion
of some device driver or other subsystem) are mapped to the abstractions of the imple-
mentation language – functions, classes, modules – and, hence, well separated in the
code. Fine-grained configuration options, however, are enforced with the preprocessor –
partly for efficiency reasons, partly because the configuration decision has an effect across
multiple implementation entities. This is often the case for policy decisions.

With the concept of aspects, the relatively new paradigm of aspect-oriented programming
aims to overcome some of these issues by offering extra language support for the clear
separation of such “problematical” concerns.

2.3. Aspect-Oriented Programming

Aspect-oriented programming (AOP) aims to improve the separation of concerns in
software by providing better means for the decomposition of software concerns into inde-
pendent modules and the composition of complex software systems from such modules
[KLM+97]. In particular, AOP tries to solve one of the most severe defects of object-
oriented programming (OOP): The inability to decompose concerns in a way that they do
not crosscut each other in their implementation. Often mentioned examples for concerns
that tend to crosscut the implementation of other concerns are synchronization, error
handling, and tracing. AOP offers means to encapsulate such “crosscutting concerns”
into their own modules, called aspects (Figure 2.7).
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2.3.1. The Problem of “Crosscutting Concerns”

The crosscutting between the implementation of two or more concerns usually becomes
manifest as scattered and tangled code in the source code base.

A concern implementation is scattered over the implementation of other
concerns if it is not encapsulated by its own artifacts, but its implementing
language entities (such as methods or fields) are distributed over the
modules or source artifacts of the other concerns.

A concern implementation is tangled with the implementation of some other
concern if they share the same language entities (such as being imple-
mented within the same set of methods).

Code scattering and code tangling basically describe the same phenomenon from different
perspectives. A concern that is implemented by adding one or two members to a large
number of classes has a scattered implementation. From the perspective of the affected
classes, the concern implementation is tangled with the implementation of the other
concerns implemented by these classes.

Tangling and scattering of feature implementations can become a major issue in the devel-
opment of highly configurable software product lines. As pointed out in Section 2.2.5,
separation of concerns – ideally a one-to-one–mapping from features to implementa-
tion components – is the key to the efficient assembly of variants. However, especially
fine-grained configuration options are often difficult to implement by own, separated
components.

2.3.2. Queue Example: Scattering and Tangling in a Simple Product Line

Figure 2.8 demonstrates this by the example of a (very simple) product line for a FIFO
data structure. The concept Queue (with mandatory operations enqueue() and dequeue())
can be configured with up to three optional or alternative features, namely Counting,
Thread safety, and Exceptions.
Albeit their simplicity, the implementation of these features overlaps with the basic Queue
implementation in a nontrivial way. It is difficult to separate them.

To implement the feature Counting, for instance, a new member variable int counter

has to be added to class Queue (line 8); it has to be initialized (line 14), incremented as
part of the enqueue() operation (line 25), and decremented after a successful dequeue()
operation (lines 45ff.). Furthermore, a new count() method has to be added to class
Queue to provide access to the counter value (lines 59ff.).

For the Thread safety and Exceptions features, the situation is similar: Their implementation
crosscuts the implementation of the basic Queue functionality (Figure 2.8.b).
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(a) Queue problem space Queue

Operations

enqueue() dequeue()

Counting

count()

Thread safety Error propagation

Return codes Exceptions

(b) Queue.h (C++ implementation)

1 #include "os/Mutex.h"
2 struct Item {
3 Item* next;
4 Item() : next(0){}
5 };
6 class Queue {
7 Item *first, *last;
8 int counter;
9 os::Mutex lock;

10 public:
11 struct InvalidItemError{};
12 struct EmptyError{};
13 Queue () : first(0), last(0) {
14 counter = 0;
15 }
16 void enqueue(Item* item) {
17 lock.enter();
18 try {
19 if (item == 0)
20 throw InvalidItemError();
21 if (last) {
22 last->next = item;
23 last = item;
24 } else { last = first = item; }
25 ++counter;
26 }
27 catch (...) {
28 lock.leave();
29 throw;
30 }
31 lock.leave();
32 }

33 Item* dequeue() {
34
35 Item* res;
36 lock.enter();
37 try {
38 res = first;
39 if (first == last) {
40 first = last = 0;
41 }
42 else {
43 first = first->next;
44 }
45 if (counter > 0) {
46 --counter;
47 }
48 if (res == 0) {
49 throw EmptyError();
50 }
51 }
52 catch (...) {
53 lock.leave();
54 throw;
55 }
56 lock.leave();
57 return res;
58 }
59 int count() {
60 return counter;
61 }
62
63 }; // class Queue

Figure 2.8.: Scattered and tangled code in the implementation of the Queue product line.
Depicted is a feature diagram describing the variability of a simple FIFO data structure and a corresponding
C++ implementation in the solution space. Feature nodes and source lines have been colored for the sake of
traceability; each feature accounts for the source lines shaded in the corresponding color. (a) The concept
Queue can optionally be extended by three features: Counting (bookkeeping of the number of enqueued
elements), Thread safety (execution of methods is serialized between independent threads), and Exceptions
(error propagation by throwing an exception; this is an alternative to the standard behavior of indicating fault
situations by a return code.) (b) The C++ class Queue implements the “deluxe variant” (configured with all
optional features) of the Queue concept. The implementation of Thread safety, Counting, and Exceptions is
scattered over and tangled within the implementation of the basic queue. Affected are all operations of the basic
queue implementation (enqueue(), dequeue()) as well as the static structure (elements) of the class Queue

itself.
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2.3.3. Dimensions of Crosscutting

We can categorize crosscutting between concern implementations by two dimensions.
The first dimension describes the space in which the crosscutting arises (structural space
vs. behavioral space). The second dimension the distribution of crosscutting (regular
overlapping vs. irregular overlapping).

2.3.3.1. Space Dimension

The space dimension describes where some concern implementations overlap. We distin-
guish between static crosscutting and dynamic crosscutting:

Static Crosscutting. The concern implementations overlap in the structural space of the
program; they share some of the entities that constitute its static structure.

In most languages, the static structure of a program is constituted by the types and
their relationships, so static crosscutting effectively comes down to sharing of types.

Dynamic Crosscutting. The concern implementations overlap in the behavioral space
of the program; they share events in the run-time control-flow that are augmented
with their behavior.

In most languages, the run-time control flow is specified by sequences of statements
that constitute the control-flow graph of the program. Dynamic crosscutting effec-
tively comes down to sharing edges in the control-flow graph (although this is a
somewhat simplistic description).

Static and dynamic crosscutting often go together. The implementation of each of the
optional or alternative features from our example (Figure 2.8.b), namely Counting, Thread
safety, and Exceptions, statically and dynamically crosscuts the basic Queue implementation.
The implementation of Counting, for instance, statically crosscuts with the implementation
of Queue by contributing members (member variable counter, method count()) to the
same type (class Queue). It furthermore dynamically crosscuts with the implementation
of Queue by augmenting the run-time behavior associated with the events “execution of
Queue:enqueue()” and “execution of Queue::dequeue()”.

2.3.3.2. Distribution Dimension

The distribution dimension describes how the overlapping between concern implemen-
tations is distributed over the space dimension. We distinguish between homogeneous
crosscutting and inhomogeneous crosscutting:

Homogeneous Crosscutting. There is a recurring and regular pattern in the overlapping
of concerns; some concern implementation template is effectively instantiated many
times and distributed over the space dimension where it overlaps with other concern
implementations.
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Inhomogeneous Crosscutting. There is no regular pattern in the overlapping of con-
cerns; specific parts of some concern implementation overlap with other concern
implementations in specific entites of the static structure (static crosscutting) or
specific run-time events (dynamic crosscutting).

The canonical example for a homogeneously (and dynamically) “crosscutting concern” in
the AOP literature is Tracing. Its intended behavior (print the method name at the begin
and end of any method execution) typically results in an implementation where the same
line of code is inserted at the begin and end of every single method.

In our Queue example (Figure 2.8.b), the implementation of Thread safety homogeneously
and dynamically crosscuts the implementation of Queue. The intended synchronization
by a mutex object makes it necessary to augment the execution of every method of class
Queue.15 If Thread safety should not only protect our class Queue, but all classes in the
system, it would also statically crosscut the implementations of other concerns. In this
case, the os::Mutex lock member would have to be inserted into every single class of the
system.

The implementations of Exceptions and Counting inhomogeneously crosscut the implemen-
tation of Queue. Their intended semantics makes it necessary to augment method-specific
behavior (how to test and report failures, if to increment or decrement the counter) to the
execution of each method of class Queue.

2.3.4. Concepts and Terminology of Aspect-Oriented Programming

The fundamental idea behind AOP to overcome the issues described in the previous section
is to separate the what from the where of concern implementations. Separation of what
and where means that the implementation of some concern (the what) does not have to
be specified at the (physical) place it augments the program in the space and distribution
dimensions. This is often referred to as quantification and obliviousness [EFB01] and
considered a fundamental property of AOP. FILMAN and FRIEDMAN write that:

the distinguishing characteristic of Aspect-Oriented Programming systems (qua
programming systems) is that they provide quantification and obliviousness.
Quantification is the idea that one can write unitary and separate statements
that have effect in many, nonlocal places in a programming system; obliv-
iousness, that the places these quantifications applied did not have to be
specifically prepared to receive these enhancements. [Fil01]

It is the quantification property that facilitates decoupling from the distribution dimension
and the obliviousness property that facilitates decoupling from the space dimension of
crosscutting.
15In fact we also have an overlapping between the implementations of Thread safety and Counting. The

presented implementation of Queue::count() is correct only under the assumption that loading and
storing of an int is performed by the CPU as an atomic operation. Otherwise, Queue::count() would have
to be synchronized by the mutex as well.
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“Crosscutting Concerns”

You may have noticed that I use the phrase “crosscutting concern” only in quoted form. In my
opinion “crosscutting concerns” do not really exist, despite the fact that they are mentioned
over and over again in the AOP literature.
First and foremost, concerns are intentional constructs. As such, we do not deal with them
directly, but only with some model (or representation) of them in some modeling language.
Hence, crosscutting is not a property of a concern, but has to do with some specific model of
it. In fact, crosscutting is a relationship between concern models. More precisely:

Crosscutting is a symmetrical relationship between the models of at least two
concerns that indicates an overlapping between these models.

In theory, there might always be another modeling language in which the concerns would
not overlap. If, for instance, the object-oriented models of two concerns crosscut each other,
it might well be the case that this would not happen if using a functional programming
paradigm or a modeling based on state automata. Note, moreover, the word symmetrical in
the above definition: If A and B are models of concerns and A crosscuts B, then this implies
also that B crosscuts A.
Nevertheless, developers perceive crosscutting as an inherent property of certain concerns:
Tracing, for example, is said to be “a typical crosscutting concern”. This is probably a heritage
of the AOP model introduced with AspectJ [KHH+01b, KHH+01a]. By selling AspectJ as a
language extension to Java and aspects as an additional syntactic means to model concerns,
the relationship between concern models became asymmetrical: Aspects affect classes – and
not vice versa. Most concerns get still implemented as Java classes. Only if, for whatever
reason, this does not work, the new aspect construct is there as a back-up. This is substantially
different from the original idea of AOP, which considered all concern implementations as
equally important aspects [KLM+97], or the attempts around the Hyperspace-Approach,
which was intended to overcome the fixation on decomposing into classes – nicely described
by OSSHER and TARR as the “tyranny of the dominant decomposition” [TOHS99, OT00].
However, it might also be a reason that in fact we often have a “natural order” between
concerns: The core functionality and the business logic are considered as “first order concerns”,
issues like tracing and monitoring are understood as “second order concerns”. So even if the
crosscutting between their implementations (models) is symmetrical in principle, we perceive
only the “second-order concerns” as causing the trouble, hence, attribute the crosscutting to
them. It seems just natural to use the class construct to implement the “first order concerns”
and the aspect construct for the “problem-causing crosscutting second order concerns”.
After all, it is striking that the AspectJ model of AOP with its (conceptually not favorable)
asymmetrical relationship between classes and aspects has been so much more successful
than the other models. It is, as GREGOR KICZALES called it, “ more programmer compatible”
[KHH+01b].

2.3.4.1. Language Concepts

The most relevant AOP language concepts for this purpose are join point and advice. An
advice definition describes a transformation to be performed at specific positions in the
space dimension (the what). A join point denotes such a specific position in the space
dimension of the target program (the where). Advice, however, is not given to single
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join points, but to sets of join points called pointcuts. A pointcut describes a specific
distribution in the distribution dimension. Pointcuts are given by pointcut expressions,
sentences of a declarative join point description language that yield sets of join points
by reasoning and quantifying over the static structure or the dynamic control flow of the
program. Advice and pointcuts can be grouped (together with other elements, such as
state variables and methods) in class-like structures called aspects. An aspect thereby
implements a “crosscutting concern” in a well encapsulated manner.

2.3.4.2. Implementation Concepts

Eventually, the separated and encapsulated concern implementations somehow have to be
composed into the final program. This composition process is called aspect weaving, the
corresponding tool is the aspect weaver. Technically, the aspect weaver actually applies
the transformations specified as advice.

The process of aspect weaving can be compared to the process of (object-file) linking. As
with linking, a set of separated implementation modules is bound together into a single
module. A linker, however, collects and resolves symbol references, whereas much of the
composition work of an aspect weaver takes place on a sub-symbol level. This explains
the weaving metaphor.

Aspect weaving, as linking, can be performed at various stages in the life cycle of a
program. We distinguish between static weaving, which means weaving at build time,
and dynamic weaving, which stands for weaving after build time, respectively. Whereas
static weaving can (such as static linking) be applied as an overhead-free mechanism,16

dynamic weaving is in general much more expensive than dynamic linking. The reason is
the very fine level on which an aspect weaver performs its composition; a much larger set
of potential junction points (symbol references in the case of linking, join points in the
case of weaving) has to be maintained at load time or run time [LGS04]. It is possible to
reduce this overhead by a strict tailoring of the potential join points [SPLG+06], however,
this also limits the flexibility of aspects and still induces severe costs. I consider static
weaving as the more suitable approach for the domain of resource-constrained embedded
systems.

2.3.5. Queue Example: Solution Space Implementation with AspectC++

Listing 2.1 demonstrates the application of these concepts to overcome the issues in the
implementation of the Queue product line discussed in Section 2.3.2. The AOP-based
implementation uses AspectC++ [SGSP02, SLU05a, SL07, AC+], an AOP language ex-
tension to the C++ language. In the following, I give only a short overview of AspectC++
(you can find a detailed introduction into AspectC++ and the complete language ref-
erence in Appendix A). The example under discussion is the aspect LockingMutex from
Listing 2.1.c, which implements the Thread safety feature.
16We will see this in Chapter 4 of this thesis.

38



2.3. Aspect-Oriented Programming

(a) Queue.h
1 struct Item {
2 Item* next;
3 Item() : next(0){}
4 };
5 class Queue {
6 Item *first, *last;
7 public:
8 Queue () : first(0), last(0) {
9 }

10 void enqueue(Item* item) {
11 if (last) {
12 last->next = item;
13 last = item;
14 }
15 else
16 last = first = item;
17 }
18 Item* dequeue() {
19 Item* res;
20 res = first;
21 if (first == last)
22 first = last = 0;
23 else
24 first = first->next;
25 return res;
26 }
27 }; // class Queue

(b) Counting.ah
1#include "queue.h"
2aspect ElementCounter {
3advice "Queue" : slice class {
4int counter;
5public:
6int count() const { return counter; }
7};
8
9advice construction("Queue")
10&& that(queue)
11: before (Queue& queue) {
12queue.counter = 0;
13}
14
15advice execution("% Queue::enqueue(...)")
16&& that(queue)
17: after( Queue& queue ) {
18++queue.counter;
19}
20
21advice execution("% Queue::dequeue(...)")
22&& that(queue)
23: after( Queue& queue ) {
24if( queue.counter > 0 )
25--queue.counter;
26}
27}; // aspect ElementCounter

(c) Threading.ah
1 #include "mutex.h"
2 #include "queue.h"
3 aspect LockingMutex {
4 advice "Queue" : slice class {
5 os::Mutex lock;
6 };
7 advice execution("% Queue::%queue(...)")
8 && that(queue)
9 : around( Queue& queue ) {

10 queue.lock.enter();
11 try {
12 tjp->proceed();
13 }
14 catch(...) {
15 queue.lock.leave();
16 throw;
17 }
18 queue.lock.leave();
19 }
20 }; // aspect LockingMutex

(d) Exceptions.ah
1#include "queue.h"
2aspect ErrorException {
3advice "Queue" : slice struct {
4struct QueueInvalidItemError {};
5struct QueueEmptyError {};
6};
7advice execution("% Queue::enqueue(...)")
8&& args(item)
9: before(Item* item) {
10if( item == 0 || item->next != 0 )
11throw QueueInvalidItemError();
12}
13advice execution("% Queue::dequeue(...)")
14&& result(item)
15: after(Item* item) {
16if( item == 0 )
17throw QueueEmptyError();
18item->next = 0;
19}
20}; // aspect ErrorException

Listing 2.1: Implementation of the Queue product line using AspectC++.
Depicted is an alternative implementation of the solution space for the Queue product line from Figure 2.8. By
means of AOP, feature implementations could be separated into distinct artifacts. (a) Class Queue implements
the basic Queue concept with no optional features. (b, c, d) The optional features Thread safety, Counting, and
Exceptions are implemented by the aspects LockingMutex, ElementCounter, and ErrorException, respec-
tively. Each of these aspects gives advice to superimpose the implementation of the particular feature into class
Queue.
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As mentioned in the previous section, advice and join point are the fundamental language
concepts of AOP. Advice is given to sets of join points called pointcuts, which in turn are
specified by pointcut expressions. In AspectC++, pointcut expressions are made from
match expressions and pointcut functions. Match expressions are already primitive
pointcut expressions and yield a set of name join points. Name join points represent ele-
ments of the structural space, such as classes or functions. Technically, match expressions
are given as quoted strings that are evaluated against the identifiers of a C++ program.
The expression "Queue" in line 4, for instance, yields a name pointcut containing just
the class Queue. The expression "% Queue::%queue(...)" in line 7 yields a name pointcut
containing any overload of any function in the scope of the class or namespace Queue

whose identifier ends in queue. The percent sign (%) and the ellipsis (...) serve as
wildcards for any name/type and any number of arguments, respectively. In other words,
the expression evaluates to a name pointcut containing the methods Queue::enqueue()

and Queue::dequeue().

Events in the behavioral space are represented by code join points. Code pointcuts
are retrieved by feeding name pointcuts into certain pointcut functions such as call()

or execution(). The pointcut expression execution("% Queue::%queue(...)") in line 7,
for instance, yields all the events in the dynamic control flow where any overload of
Queue::enqueue() or Queue::dequeue() is about to be executed.

Name pointcuts are used to give advice to the structural space of the program. In
AspectC++, structural extensions are called introductions; syntactically, an introduction
is expressed as a slice of elements to be introduced into the classes specified by the
name pointcut. In lines 4–6, the LockingMutex aspect uses this mechanism to introduce a
member os::Mutex::lock into the class Queue.

Code pointcuts are used to give advice to the behavioral space of the program. In As-
pectC++, behavioral modifications are given as advice code to be triggered before, after,
or around (instead of)17 the code join points. In lines 7–19, the LockingMutex aspect uses
around advice to ensure that the introduced mutex is acquired and released around the
execution of Queue::enqueue() or Queue::dequeue(). For the sake of exception-safety, the
original event behavior is triggered inside a try-catch block in line 12. In AspectC++, the
original behavior can be invoked using the proceed() method from the join point API.
This API is transparently available inside an advice body and provides the advice code
with access to join-point–specific context or behavior.

As Listing 2.1 shows, not only the Thread safety feature, but also Counting and Exceptions
could be decomposed into their own, independent aspects. By means of AOP and As-
pectC++, the solution space of the Queue product line now offers a one-to-one mapping
from features to implementation components – an optimal separation of concerns.

17Around is more than before plus after as it possibly replaces the original behavior associated to the code
join point.
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2.3.6. History of AOP Languages

AspectC++ is just one example for an AOP language. The term Aspect-Oriented Program-
ming, as well as the notion of join points, advice, and aspects, was coined by the group
around CRISTINA VIDEIRA LOPES and GREGOR KICZALES. They originally introduced the
AOP idea independently from some specific language [KLM+97, Lop97]. However, AOP
became particularly popular after the introduction of AspectJ [KHH+01b, KHH+01a], an
AOP-extended version of the Java programming language.

AOP was not the first attempt to deal with the problem of crosscutting between concern
models. Nevertheless it is understood today as the general term for any such approach,
including earlier attempts. Newer attempts, moreover, mostly adapt or extend the AOP
model introduced by AspectJ. Hence, the history of AOP can be divided in a pre-AspectJ
and a post-AspectJ era.

2.3.6.1. Early AOP Languages

Most notable among the early approaches, which today are understood as the roots of
AOP, are Composition Filters, Subject-Oriented Programming, Adaptive Programming, and
the D Framework.

The Composition Filters model by AKSIT and BERGMANS was probably the first approach
that addressed the problem of dynamic crosscutting with declarative means. Declaratively
described, composable message interception filters made it possible to alter the message
passing between objects [ABV92, Ber94]. A little later, Subject-oriented Programming
(SOP) was suggested by HARRISON and OSSHER to address the problem of crosscutting
in software composition [HO93]. By the concept of subjects (which are basically sets
of type slices), SOP pioneered the idea of language support for static, inhomogeneous
crosscutting; some support to deal with dynamic crosscutting was also available by means
of method composition. SOP was later generalized by TARR, OSSHER and colleagues
to the Hyperspace Approach and the Hyper/J language, which advocate the idea of a
real multi-dimensional separation of concerns [TOHS99, OT00, OT01]. Approaches to
deal with specific kinds of crosscutting were suggested by LIEBERHERR, LOPES and col-
leagues. Adaptive Programming with the Demeter method was introduced to decouple
the implementation of object traversals from the actual class structures in complex class
graphs [Lie96], which can be understood as a specific form of inhomogeneous static
crosscutting. Later, the Demeter method was also applied with AspectJ [LLW03]. The
goal of the D Framework was to decouple synchronization and distribution concerns from
component implementations [Lop97]; for this purpose it particularly dealt with problems
of quantification and homogeneous dynamic crosscutting.
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2.3.6.2. Current AOP Languages

The introduction of AspectJ denoted a philosophical shift in AOP towards general purpose
aspect languages. An important goal of AspectJ was to increase “programmer compatibil-
ity”, that is, to make it easier for the average programmer to adopt AOP [KHH+01a]. So
AOP was now understood and sold as a language extension to some broadly used base
language. AspectJ is an upward-compatible super-set of Java; it extends Java (the base
language) by additional syntactic means for aspects, pointcuts and advice.

Current AOP approaches, that is, approaches introduced after AspectJ, mostly follow the
AspectJ philosophy, semantics, and terminology. Many of them adapted the concepts of
AspectJ to other (nonJava) language domains. AspectC++, which is used in this thesis,
is just one example. Besides many other Java-based approaches, the AOP community
has suggested AspectJ-like language extensions for C [CKFS01, GJ, NvGvdP08, Ada08],
Smalltalk [Hir03], C# and .NET [SP02, SSW02], PHP [Yu], Ruby [BF], Cobol [LS05a],
and many more. However, only few aspect languages are suitable for the domain of
resource-constrained embedded systems. I shall discuss these languages more extensively
in Chapter 4.

2.3.7. AOP in Operating Systems

Among the first who applied aspects to the domain of operating systems were COADY

and colleagues. In the α-kernel project, they retroactively analyzed the evolution of
four scattered OS concern implementations (namely: prefetching, disk quotas, blocking,
and page daemon activation) between version 2 and version 4 of the FreeBSD kernel
[CK03]. Their results showed that an aspect-oriented implementation would have led to
significantly better evolvability of these concerns.

Around the same time, MAHRENHOLZ, SPINCZYK and colleagues experimented with
AspectC++ in the PURE OS product line [MSGSP02, Spi02, SL04]. By application of
AOP, they could implement two previously hard-wired OS concerns (namely: interrupt
synchronization, driver execution model) as configurable features.

Not a general-purpose AOP language but an AOP-inspired language of temporal logic was
used by ÅBERG and associates to integrate the Bossa scheduler framework into the Linux
kernel [ÅLS+03]. Another example for a special-purpose AOP-inspired language is C4 by
FIUCZYNSKY and colleagues, which is intended for the application of kernel patches in
Linux [FGCW05].

Other related work concentrates on dynamic aspect weaving as a means for run-time
adaptation of operating-system kernels: TOSKANA by ENGEL and FREISLEBEN provides
an infrastructure for the dynamic extension of the FreeBSD kernel by aspects [EF05,
EF06]; YANAGISAWA and colleagues presented an approach for aspect-based dynamic
instrumentation in Linux [YKCI06].
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All these studies demonstrate that there are good cases for aspects in system software.
However, for a broader application to the resource-thrifty domain of embedded systems,
an in-depth analysis of the hardware cost impact of aspects is required. This is still missing.

Also remarkable is that all these studies are based on existing kernels. So far no study
exists that analyzes the effects of using AOP for the development of an operating-system
kernel from the very beginning. We can assume that AOP leads to even higher benefits in
such case, especially with respect to application-specific configurability of such a kernel.

2.3.8. AOP Critique

With its rise, AOP and the related language concepts have also been meeting with more
and more criticism that, for the time being, culminated in a widely noticed essay by
F. STEIMANN: “The Paradoxical Success of Aspect-Oriented Programming” [Ste06]. In
general, the critical examination of AOP shows two major movements:

1. It is not powerful enough – the “practitioners” point of view, which has been ex-
pressed by researchers from various disciplines who experimented with AOP for
the separation of concerns in existing software systems [ÅLS+03, HG04, SWK06,
FCF+06, EA06, HE07].

2. It is too powerful (that is, dangerous) – the “software engineers” point of view, which
has been expressed by researchers from the software engineering community who
analyzed the impact of AOP to modularity and modular reasoning [CL03, CSS04,
SGS+05, Ste06, KAB07, KAK08].

Even though seemingly contradictory (and, admittedly, a bit simplisticly summarized
above), both stances on AOP are valid from their perspective. They are mostly the result
of a different operationalization of the terms modularity and separation of concerns.

2.3.8.1. The “Practitioners” Perspective

The “practitioners” operationalize modularity primarily as source code modularity; sep-
aration of concerns comes down to keeping things separated in the code. Hence, they
concentrate their critique on (the limitations of) the AOP mechanisms. The general issue
in the above cited papers was that because of missing potential join points the aspect code
could not interact as densely as necessary with the base code to achieve the intended sep-
aration of concerns. As a consequence, some of the “practitioners” also propose new AOP
mechanisms to overcome the limitations for their particular situation, such as temporal
logic [ÅLS+03], statement annotations [EA06], or explicit join points [HE07].

2.3.8.2. The “Software Engineers” Perspective

For the “software engineers”, modularity is a much more fundamental concept, based
on PARNAS’ ideas of data encapsulation, information hiding, and well-defined interfaces
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[Par72].18 Separation of concerns means the ability to separately design modules during
the software development process. Hence, their critique concentrates on the methodology
behind AOP (but also attacks the AOP mechanisms for breaking encapsulation in an uncon-
trolled manner – “even worse than goto” [CSS04] – and for providing an expressiveness
that is rarely needed [KAB07]).

Especially the oblivousness principle postulated by FILMAN and FRIEDMAN (“Just pro-
gram like you always do, and we’ll be able to add the aspects later.” [FF00], see also
Section 2.3.4) is a frequent point of critique, as it has a negative impact on modular
reasoning [CL03, SGS+05, Ste06] and leads to interfaces between classes and aspects
(the potential join points that aspects can bind to) that are “implicit at best” [Ste06]. As
all attempts to make components more aware of aspects (to restore modular reasoning in
aspect-oriented programs) also lead to a loss of obliviousness, STEIMANN concludes that
“the problems of AOP cannot be fixed without giving up its distinguishing characteristics”
[Ste06]. The quantification principle (also postulated by FILMAN and FRIEDMAN [FF00],
compare Section 2.3.4) is generally less criticized, even though considered as “rarely
applicable” by some authors [KAB07].

Another point of critique is the irrelevance of aspects as an early design concept. In
another paper, STEIMANN points out that “literally all aspects discussed in the literature
are technical in nature: authentication, caching, distribution, logging, persistence, syn-
chronization, transaction management, etc.”, from which he concludes that aspects are (in
contrast to roles or classes) not a domain concept but “aspects of programming” [Ste05].

2.3.8.3. The Perspective Taken in This Thesis

The goal of my thesis is to evaluate the suitability of AOP for the implementation of
fine-grained configurability in the solution space of software product lines targeted a
specific domain – system software for resource-constrained embedded systems. Hence,
this thesis takes more the “practitioners” perspective. It is first and foremost about AOP
mechanisms – understanding their cost, limitations, and benefits:

Understanding something involves both understanding how it works (mechanism)
and what it’s good for (methodology). In computer science, we’re rarely shy about
grandiose methodological claims (see, for example, the literature of AI or the
Internet). But mechanism is important – appreciating mechanisms leads to
improved mechanisms, recognition of commonalities and isomorphisms, and
plain old clarity about what’s actually happening. (FILMAN et al in [FECA05])

I agree with STEIMANN’s opinion that aspects are generally not a (problem!) domain
concept, but “technical in nature”. However, that does not render AOP per se useless –

18It is a curiosum that this article from PARNAS (“On the criteria to be used in decomposing systems into
modules”) is also universally cited by the AOP community to motivate the need for aspects; a fact that
STEIMANN commented with: “My problem with citing Parnas’s work is that in my eyes it does not
accommodate the AOP form of modularity; if anything, it forbids it.” [Ste06]
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system software is very technical in nature, too; the above mentioned “technical” aspects
are dominant concerns of system software development! In the specification of AUTOSAR
OS [AUT06a], for instance, we can find the requirement OS093:

If interrupts are disabled and any OS services, excluding the interrupt services,
are called outside of hook routines, then the operating system shall return
E_OS_DISABLEDINT. [AUT06b, p. 40]

This requirement translates almost “literally” to an AspectC++ aspect:

aspect DisabledIntCheck {

advice call( pcOSServices() && !pcInterruptServices() )

&& !within( pcHookRoutines() ) : around() {

if( interruptsDisabled() )

*tjp->result() = E_OS_DISABLEDINT;

else

tjp->proceed();

} };

Nevertheless, my thesis also involves facets of AOP methodology. The idea of total
obliviousness, for instance, will be given up – however, we will see that the mechanisms
behind obliviousness remain nevertheless useful. The mechanisms for quantification will
be improved – and shape up as broadly applicable.

2.4. Chapter Summary

Embedded systems are special-purpose systems. They are ubiquitous, we can find them in
many different shapes in our everyday lives. They are typically applied to areas of mass
production – domains, in which the hardware cost pressure calls for a strict reduction of
functionality to what is actually needed. Hence, system software for embedded systems
has to cope with a huge set of potential requirements, but also with relatively small and
specific sets of actual requirements. It has to be easily customizable and tailorable. This
is especially true for the operating system. State of the art to implement fine-grained
customizability in operating system code is the C preprocessor.

Software product lines are a promising approach towards a higher-level understanding
and representation of customizability in embedded operating systems. The general idea
is to provide customers with a mapping from an intentional problem space describing
potential configurations to an extensional solution space that contains the actual software
variants. In practise, all these variants have to be implemented somehow, which ideally
would be done by a good separation of concerns in the implementation of features.

AOP aims at improving separation of concerns by extending other programming paradigms,
such as OOP, by another dimension of decomposition. It specifically provides developers
with a clear separation of the what and the where of concern implementation.
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3
Problem Analysis and Suggested Approach

Embedded system software should be easy to customize and tailor for different sets of
requirements. The notion of configurable features in software product lines paves a way
towards an intuitive, problem-centric view on fine-grained customization and tailoring.
However, as domain engineers of the system-software product line we eventually have to
implement all this configurability – while still maintaining run-time and memory efficiency
in the resulting code.

In this chapter I analyze the problems, present my research assumption – that AOP
improves on the situation – and discuss my approach to evaluate this.

I begin in Section 3.1 with the problem analysis, which is twofold. In the first part, I
analyze the limits of configurability by conditional compilation on the base of a real
operating system that reflects the current state of the art of operating-system product
lines. In the second part, I then motivate that we need even better configurability –
configurability of architectural system policies. I discuss in Section 3.2 why and how
AOP could help here and what are the open issues. This is followed in Section 3.3 by
the presentation of my research approach – the bottom-up evaluation of aspect-aware
operating-system development. Finally, I summarize the chapter in Section 3.4.
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State of the art to implement overhead-free and fine-grained configurability in system-
software product lines is the C preprocessor. As already mentioned in Section 2.1.5.5,
the major disadvantage of this approach is that the variant generation process is decom-
positional – the feature representation in the source code has to encompass all variants;
concrete variants are generated by filtering out the unneeded parts. Instead of separation
we have commingling of concerns. The resulting source code is bloated, difficult to read,
understand, and maintain. In the following, I illustrate what this actually means on the
example of eCos, a well-known operating-system product line for embedded devices.

3.1.1. How Configurability Becomes Manifest in the Code – The eCos Case

eCos, the embedded Configurable operating system [eCo, Mas02] is an operating-system
product line for the domain of embedded systems. As such, eCos is available for a broad
variety of 16- and 32-bit microprocessor architectures (PPC, x86, H8/300, ARM7, ARM9,
. . . ) and used in many different application domains. eCos reflects the current state of
the art in many respects:

• more than 750 configurable features

• feature-based configuration process and tool

• kernel implementation in C++

• production system (as opposed to most research operating systems)

• well-known and broadly accepted in the embedded-systems community

In a survey performed by embedded.com in 2006, eCos takes position 12 on the list of the
most popular embedded operating systems [Tur06], which is the highest position among
open-source operating systems for small embedded devices.1

3.1.1.1. The eCos Configuration Process

eCos is shipped as a repository of components (the assets) and a feature-based configu-
ration tool called ECOSCONFIG (Figure 3.1). From a valid configuration, ECOSCONFIG

generates the variant of the operating system as set of headers and makefiles, which are
then used to compile the eCos-library. Against this library the final applications will be
linked.

Configuration decisions are enforced by a two-level approach: Each package selected in
ECOSCONFIG defines a set of source artifacts to be compiled into the eCos-library. This

1with “small” being defined as “without MMU”. Linux was ranked higher, but addresses a quite different
domain.
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is the first level of configuration; only selected packages become part of the eCos-library
(the actual variant). Fine-grained inter-artifact and intra-artifact configuration options are
then enforced by the preprocessor. Each of these options is represented as a preprocessor
macro. This is the second level of configuration. The macro CYGFUN_KERNEL_THREADS_DATA,
for example, enables thread-local storage support in the eCos kernel package. Overall,
more than 60 packages (TCP/IP, disk IO, µItron, POSIX, . . . ) offer a total of more than 750
configuration options; the kernel can be configured by about 100 configuration options.

3.1.1.2. Overview of the eCos Kernel

The eCos kernel is implemented by 5000 lines of C++ code and provides a rich set of
abstractions to develop and maintain multi-threaded, event-triggered applications. This
includes thread management, thread synchronization, and interrupt handling:

Thread management. At configuration time, the user can select among several priority-
based scheduling algorithms. All threads are preemptable; preemption can tem-
porarily be disabled by acquiring a global scheduler lock. Threads can optionally be
equipped with support for thread-local storage, exit handlers, stack validation, and
much more.

Thread synchronization. The eCos kernel offers all typical abstractions for thread syn-
chronization, such as mutex, semaphore, event, and message. Optional features
include, for instance, several protocols to prevent priority inversion problems.

Interrupt handling. eCos uses a classical two-level interrupt handling scheme: Low-
level interrupt service routines (ISRs) have the highest priority among all control
flows. ISRs are noninterruptable, nonpreemptable, and must not access kernel
state. Optionally, an ISR can trigger the delayed execution of a delayed service
routine (DSR). DSRs run under the control of the kernel; they may access kernel
state and also invoke (nonblocking) kernel services. DSRs are nonpreemptable, but
interruptable by ISRs. Technically, they are implemented as a facility of the thread
scheduler, which dispatches all pending DSRs before the control flow returns to
thread level. Hence, DSRs always have priority over threads.

Furthermore, the kernel implements several central kernel policies, among them tracing,
kernel instrumentation, and interrupt synchronization:

Tracing. To observe the control flow through the system, entrances to and exits from
system functions are recorded. Furthermore, it is possible to track values of func-
tion arguments, local variables and function results. Tracing is an optional and
configurable kernel policy; it can be disabled completely and the amount of context
provided in the output can be restricted.

(Kernel) Instrumentation. For monitoring and optimization purposes, the kernel em-
ploys means to log occurrences of various events, such as thread creation or mutex
locking. Instrumentation is an optional and configurable kernel policy; it can individu-
ally be enabled for several classes of kernel events.
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Figure 3.1.: Representation of Features in the ECOSCONFIG configuration tool

51



3. Problem Analysis and Suggested Approach

(Kernel) Synchronization. In order to guarantee the consistency of operating system
data structures, most kernel functions must run mutually exclusive to DSRs. Syn-
chronization is a mandatory and nonconfigurable kernel policy.

3.1.1.3. Analysis of Configuration Options and Kernel Policies

As already mentioned, eCos offers a high number of configuration options (features)
that may or may not be selected in ECOSCONFIG for the configuration of a concrete eCos
variant. In the code, these options are represented as preprocessor macros and enforced
by means of conditional compilation. Table 3.1 lists a selection of the available options
(thread and mutex configuration options) with their respective preprocessor macros.

Most configuration options affect multiple code locations. This holds true for all of the 12
analyzed options from Table 3.1, for which a total of 73 #ifdef blocks can be found in
the eCos source base: 39 for thread options and 34 for mutex options. In average, each
configuration option is spread over 6 places in the source code.

Furthermore, this spreading is not local to the scope of single classes, functions, or even
files. Figure 3.2 visualizes the distribution of the mutex configuration options over the
kernel source base. The implementation is scattered over the implementation of other
concerns, in this case the scheduler.

Even more problematic is how these configuration options actually become manifest in
the code. A typical example is the implementation of the Cyg_Mutex constructor. The
constructor implementation without any of the optional features would look as follows:

Cyg_Mutex::Cyg_Mutex() {

locked = false;

owner = NULL;

}

However, because of the decompositional nature of the preprocessor approach, the actual
constructor code had to be “enriched” by the implementation of the optional mutex
configuration options. Compare the easy-to-understand four lines of code with the real
implementation in Listing 3.1.a – the differences are dramatical. Besides all those #ifdef

blocks for the mutex configuration options, we can also find two lines of code related to
the configurable Tracing policy.

Optional kernel policies, namely Tracing and Instrumentation, are enforced by invoking
special preprocessor macros, such as CYG_REPORT_FUNCTION() and CYG_REPORT_RETURN(),
which have to be added by the developers to the implementation of each function. Depend-
ing on the actual configuration, these macros may be defined as empty statements. The
Synchronization policy, which is not configurable in eCos, is enforced by explicit acquisition
and releasing of a global kernel lock using the functions Cyg_Schedulder::lock() and
Cyg_Scheduler::unlock().

The Cyg_Mutex constructor implementation is special in so far as it is affected by only one
of the central kernel policies. The implementation of the Cyg_Mutex::unlock() function in
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#ifdef

configuration option blocks

th
re

ad
op

tio
ns

(8
)

CYGVAR_KERNEL_THREADS_NAME 3

CYGVAR_KERNEL_THREADS_LIST 4

CYGVAR_KERNEL_THREADS_STACK_LIMIT 7

CYGVAR_KERNEL_THREADS_STACK_CHECKING 6

CYGVAR_KERNEL_THREADS_STACK_MEASUREMENT 2

CYGVAR_KERNEL_THREADS_DATA 3

CYGVAR_KERNEL_THREADS_DESTRUCTORS 3

CYGVAR_KERNEL_THREADS_DESTRUCTORS_PER_THREAD 11

thread configuration options total 39

m
ut

ex
op

tio
ns

(4
)

CYGSEM_KERNEL_ SYNC_MUTEX_PROTOCOL 14

CYGSEM_KERNEL_ SYNC_MUTEX_PROTOCOL_INHERIT 5

CYGSEM_KERNEL_ SYNC_MUTEX_PROTOCOL_CEILING 10

CYGSEM_KERNEL_ SYNC_MUTEX_PROTOCOL_DYNAMIC 5

mutex configuration options total 34

Table 3.1.: Source code statistics for configuration option enforcement in eCos.
Listed is the number of #ifdef blocks in the C++ parts of the kernel code base (.cxx, .hxx, .inl files).

PROTOCOL CEILING INHERIT DYNAMIC

Figure 3.2.: Distribution of mutex configuration options in the eCos kernel source base.
Each bar represents a single C++ file (.hxx, .cxx, .inl) from the kernel source base. The height of a bar
represents the relative size of the file in lines of code; the colored areas represent lines of code taken by #ifdef

blocks for the respective configuration option. The slender bars represent source files which do not contain code
related to the analyzed configuration options.
[Bar graph created with AspectBrowser for Eclipse [Gri].]
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lines of code

policy # %

Tracing 336 6.5

Instrumentation 162 3.1

Synchronization 187 3.6

policy total 685 13.2

nonpolicy total 4520 86.8

kernel total 5205 100

Table 3.2.: Source code statistics for kernel policy enforcement in eCos.
Listed is the number and percentage of policy-related macro and function invocations in the C++ parts of the
kernel code base (.cxx, .hxx, .inl files).
[Lines of code counted with CCCC [Lit].]

Listing 3.1.b demonstrates that the situation can get even worse if a function is affected
by multiple configuration options and multiple kernel policies. Eight concerns (the plain
Cyg_Mutex implementation counts as one concern as well) are tangled with each other in
only 31 lines of code. The eCos developer employed even additional preprocessor macros
here to prevent the code from becoming more complicated due to further #ifdef nesting.

Whereas the mutex configuration options still affect relatively few functions and
files, the enforcement of the central kernel policies is distributed over the whole
kernel source base. Many functions in the kernel source base look like the func-
tions Cyg_Counting_Semaphore::post() (shown in Listing 3.1.c) or Cyg_Thread::sleep()

(shown in Listing 3.1.d). The global distribution of the central kernel policies is visualized
in Figure 3.3. Together, the three analyzed policies account for more than 680 lines (more
than 13 percent) of the kernel source, spread over 23 source files. Table 3.2 provides a
detailed breakdown of these numbers.

3.1.1.4. Discussion of Results

We diagnose that in eCos the implementation of configuration options and central kernel
policies is heavily scattered over the implementation of other kernel concerns. The source
code is bloated and hardly understandable; the examples from Listing 3.1 speak for
themselves. Especially the effects of implementing fine-grained configuration options
by means of conditional compilation seem to be disastrous for the source code quality.
A developer who has to maintain this code, or – heaven forbid! – even add a new
configuration option, literally finds herself in “#ifdef hell”.

So why did the eCos developers opt for this mechanism? We can only speculate on their
reasons. In my experience, however, embedded systems engineers frequently mention
two major reasons:
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Tracing Instrumentation Synchronization

Figure 3.3.: Distribution of policy enforcement in the eCos kernel source base.
Each bar represents a single C++ file (.hxx, .cxx, .inl) from the kernel source base. The height of a bar
represents the relative size of the file in lines of code; lines that account to the enforcement of some kernel policy
(i.e., contain a Tracing or Instrumentation macro invocation or a call to the lock() / unlock() Synchronization
methods) are depicted in the respective color. Due to scaling issues the image is not a hundred percent exact:
Occasionally, source lines that are close together, but contribute to different policies are mapped on the same
pixmap line, which is indicated by red color.
[Bar graph created with AspectBrowser for Eclipse [Gri].]

Flexibility. Configuration options tend to be crosscutting in their implementation with
other concerns on a very fine level of granularity. All of the analyzed thread and
mutex configuration options affect just one or two statements in each function;
however, are distributed over several functions, classes, and files (Table 3.1). Such
features are often not decomposable with the abstractions offered by the program-
ming language. With the preprocessor, developers can escape the expressiveness
limits of the language by going down to the level of text processing. The resulting
solutions are not nice – but nevertheless effective solutions.

Efficiency. Especially in the domain of embedded systems, the approach to enforce
configurability itself must not induce an extra overhead with respect to hardware
resources. Conditional compilation is inherently free of any overhead. So even
if the decomposition of some feature into, for example, classes, functions, and
object-oriented interfaces is possible, this might not be adequate because of the
additional overhead induced by these extra indirections.
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(a)

1 Cyg_Mutex::Cyg_Mutex() {
2 CYG_REPORT_FUNCTION();
3 locked = false;
4 owner = NULL;
5 #if defined(CYGSEM_KERNEL_SYNCH_MUTEX_PRIORITY_INVERSION_PROTOCOL_DEFAULT) && \
6 defined(CYGSEM_KERNEL_SYNCH_MUTEX_PRIORITY_INVERSION_PROTOCOL_DYNAMIC)
7 #ifdef CYGSEM_KERNEL_SYNCH_MUTEX_PRIORITY_INVERSION_PROTOCOL_DEFAULT_INHERIT
8 protocol = INHERIT;
9 #endif

10 #ifdef CYGSEM_KERNEL_SYNCH_MUTEX_PRIORITY_INVERSION_PROTOCOL_DEFAULT_CEILING
11 protocol = CEILING;
12 ceiling = CYGSEM_KERNEL_SYNCH_MUTEX_PRIORITY_INVERSION_PROTOCOL_DEFAULT_PRIORITY;
13 #endif
14 #ifdef CYGSEM_KERNEL_SYNCH_MUTEX_PRIORITY_INVERSION_PROTOCOL_DEFAULT_NONE
15 protocol = NONE;
16 #endif
17 #else // not (DYNAMIC and DEFAULT defined)
18 #ifdef CYGSEM_KERNEL_SYNCH_MUTEX_PRIORITY_INVERSION_PROTOCOL_CEILING
19 #ifdef CYGSEM_KERNEL_SYNCH_MUTEX_PRIORITY_INVERSION_PROTOCOL_DEFAULT_PRIORITY
20 // if there is a default priority ceiling defined, use that to initialize
21 // the ceiling.
22 ceiling = CYGSEM_KERNEL_SYNCH_MUTEX_PRIORITY_INVERSION_PROTOCOL_DEFAULT_PRIORITY;
23 #else
24 // Otherwise set it to zero.
25 ceiling = 0;
26 #endif
27 #endif
28 #endif // DYNAMIC and DEFAULT defined
29 CYG_REPORT_RETURN();
30 }

(b)

1 void Cyg_Mutex::unlock(void) {
2 CYG_REPORT_FUNCTION();
3 Cyg_Scheduler::lock();
4 CYG_INSTRUMENT_MUTEX(UNLOCK, this, 0);
5 if( !queue.empty() ) {
6 Cyg_Thread *thread = queue.dequeue();
7 #ifdef CYGSEM_KERNEL_SYNCH_MUTEX_PRIORITY_INVERSION_PROTOCOL_INHERIT
8 IF_PROTOCOL_INHERIT
9 thread->relay_priority(owner, &queue);

10 #endif
11 thread->set_wake_reason( Cyg_Thread::DONE );
12 thread->wake();
13 CYG_INSTRUMENT_MUTEX(WAKE, this, thread);
14 }
15 #ifdef CYGSEM_KERNEL_SYNCH_MUTEX_PRIORITY_INVERSION_PROTOCOL
16 IF_PROTOCOL_ACTIVE
17 owner->uncount_mutex();
18 #endif
19 #ifdef CYGSEM_KERNEL_SYNCH_MUTEX_PRIORITY_INVERSION_PROTOCOL_INHERIT
20 IF_PROTOCOL_INHERIT
21 owner->disinherit_priority();
22 #endif
23 #ifdef CYGSEM_KERNEL_SYNCH_MUTEX_PRIORITY_INVERSION_PROTOCOL_CEILING
24 IF_PROTOCOL_CEILING
25 owner->clear_priority_ceiling();
26 #endif
27 locked = false;
28 owner = NULL;
29 Cyg_Scheduler::unlock();
30 CYG_REPORT_RETURN();
31 }
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Mutex configuration options

PROTOCOL

CEILING

INHERIT

DYNAMIC

(c)

1 void Cyg_Counting_Semaphore::post() {

2 // Prevent preemption

3 Cyg_Scheduler::lock();

5 CYG_INSTRUMENT_CNTSEM( POST, this, 0 );

6

7 count++;

8 if( !queue.empty() ) {

9 // The queue is nonempty, so grab the next

10 // thread from it and wake it up. The waiter

11 // will decrement the count when he is awakened.

12 Cyg_Thread *thread = queue.dequeue();

13 thread->set_wake_reason( Cyg_Thread::DONE );

14 thread->wake();

15 CYG_INSTRUMENT_CNTSEM( WAKE, this, thread );

16 }

18 // Unlock the scheduler and maybe switch threads

19 Cyg_Scheduler::unlock();

20 }

eCos kernel policies

Tracing

Synchronization

Instrumentation

(d)

1 void Cyg_Thread::sleep() {

2 CYG_REPORT_FUNCTION();

3 Cyg_Thread *current = Cyg_Scheduler::get_current_thread();

4 CYG_INSTRUMENT_THREAD(SLEEP,current,0);

5 // Prevent preemption

6 Cyg_Scheduler::lock();

7 // If running, remove from run qs

8 if ( current->state == RUNNING )

9 Cyg_Scheduler::scheduler.rem_thread(current);

10 // Set the state

11 current->state |= SLEEPING;

12 // Unlock the scheduler and switch threads

13 Cyg_Scheduler::unlock();

14 CYG_REPORT_RETURN();

15 }

Listing 3.1 (both pages): Source code examples from eCos.
Depicted are four functions from the kernel and their pollution by optional mutex configuration options
(PROTOCOL, CEILING, INHERIT, DYNAMIC) and kernel policy enforcement (Tracing, Synchronization, In-
strumentation). (a) The default constructor of the Cyg_Mutex class is heavily tangled with the code of optional
features and the enforcement of the Tracing kernel policy; only four of the 30 lines of code are taken by the plain
Cyg_Mutex::CygMutex() implementation. Note that the code is even more complicated than is indicated by the
coloring. Technically, some lines have to be accounted to more than one configuration option because of #ifdef
nesting – which is, however, not displayable with the applied coloring scheme. (b) Similar situation in the
implementation of Cyg_Mutex::unlock(), which additionally contains code for the enforcement of the kernel
policies Synchronization and Instrumentation; only nine out of 31 lines of code belong to the plain mutex imple-
mentation; the eCos developers prevented nesting of #ifdef blocks in this function by extra IF_PROTOCOL_...

macros, which expand to specific if statement if the feature DYNAMIC is chosen. (c, d) Examples for the en-
forcement of kernel policies in eCos. Depicted are the implementations of Cyg_Counting_Semaphore::post()
and Cyg_Thread::sleep(), which are tangled with the implementation of the Tracing, Instrumentation, and
Synchronization kernel policies.
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So we have qualitative (flexibility, expressiveness) and quantitative (efficiency) reasons
that generally speak for preprocessor-based enforcement of configuration options. In
this cost-sensitive domain, quantitative arguments even dominate qualitative arguments;
preprocessor-based configuration is even applied if some other solution were possible, but
less run-time or memory efficient – despite all the problems this causes.

We need a better way to implement configurability!

3.1.2. Going Ahead – The Case for Configurable Architecture

The issues identified in the preceding section are caused by the aim of the eCos designers
to provide a highly configurable operating system. Yet it is remarkable what remains not
configurable. Tracing and Instrumentation are implemented as configurable kernel policies,
whereas the enforcement of Synchronization is hard coded and mandatory.

On first sight this seems to be a sensible and plausible design decision. Tracing and Instru-
mentation are “truly optional” features. Tracing is related to development and debugging
activities, and rarely needed in production systems; Instrumentation is only occasionally
useful. Synchronization, in contrast, is a “most fundamental responsibility” of any operating
system kernel [LE93, SGG05, Tan07, Sta08] – a feature that is always needed.

However, as PARNAS already stated:

I know of no feature that is always needed. When we say that two functions are
almost always used together, we should remember that "almost" is a euphemism
for "not". [Par79]

In fact, there are good cases for understanding Synchronization as an optional (and even
configurable) feature. In eCos, it is employed to ensure consistency of kernel state that is
accessed from thread level as well as from interrupts (DSRs). However, in the embedded-
systems domain we have application cases in which only interrupts but no threads are
used – or vice versa. In these cases, Synchronization would not be required – a clear case
for nonoptimal granularity.

Variability with respect to Synchronization can be important as well. An impressive example
for this lesson was the extension of the Linux kernel with support for symmetric multi
processing (SMP). Originally, Linux implemented a simple synchronization strategy similar
to eCos;2 consistency of kernel state was ensured by what later became known as the “big
kernel lock” [BC01]. The first kernel release that supported SMP hardware was version
2.0. However, because of the coarse-grained kernel synchronization scheme it performed
badly in SMP environments. To improve the performance, a switch towards a fine-grained
synchronization strategy was unavoidable. Hundreds of device drivers, file systems, and
other kernel components had to be adapted – a process that took three kernel releases
and several years to complete. The current 2.6 kernel series now applies fine-grained

2The runrun variable in “Lions’ Commentary on UNIX 6th Edition with Source Code” from 1976 is probably
the earliest documented reference of this synchronization strategy.
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locking in all parts of the system if running on SMP hardware and corse-grained locking if
running on a single processor machine. Synchronization has become a configurable policy.

3.1.2.1. Nonfunctional Properties

In both examples, eCos and Linux, the nonoptimal synchronization strategy has no direct
influence on the functionality or correctness of the operating system. All applications
worked well on kernel-2.0 SMP machines – only that the perfomance could have been
better. An application that does not employ threads works perfectly on eCos – only that
the event latency is higher than necessary. How a kernel implements Synchronization is
completely transparent to the application – but can have quite an effect on nonfunctional
properties:

Nonfunctional properties of a software system are those properties that do
not describe the principal task or functionality of the software, but can be
observed by end users in its run-time behavior.

Performance and latency are just two examples for nonfunctional properties. Other impor-
tant examples in the domain of embedded operating systems are memory requirements
and robustness; this list is open and also depends on the viewpoint of the stakeholder.3

Independently from this viewpoint, we can, however, say:

1. Nonfunctional properties are emergent properties. They are neither visible in the
code nor in the structure of certain components, but emerge from the orchestration
of system components and applications into a complete system.
(Performance and latency are obviously not only determined by the chosen synchro-
nization strategy; they are the result of many design decisions as well as the specific
characteristics of the application.)

2. Nonfunctional properties can be mission-critical.
(A system that provides perfect functionality but works terribly slow is not accepted
by users; a software update for some embedded device that would provide great
new functions, but does not fit in the available memory is just unusable.)

In Section 2.2.3, I introduced the concept of a feature in a software product line with the
definition from CZARNECKI and EISENECKER, who define a feature as [CE00, p. 38] “a
distinguishable characteristic of a concept [...] that is relevant to some stakeholder of the
concept.” Many nonfunctional properties would match this definition. Nevertheless, we
cannot provide them as features in the problem space of an operating-system product line
– it is not possible to find an extensional representation for them in the solution space.
Emergent properties are inherently indecomposable. The consequence is that they can
only be influenced indirectly.

3We have discussed some more hardware-related nonfunctional properties in Section 2.1.1.
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3.1.2.2. The Role of Architecture

If nonfunctional properties emerge from the orchestration of system components and
application characteristics, we can theoretically influence them indirectly via the feature
selection. Theoretically, as the feature selection is usually determined by the concrete
functional requirements. If the application requires preemptive multithreading, we cannot
configure our operating system for nonpreemptable threads to improve the memory
footprint and context switch performance.

To influence nonfunctional properties, we need features that are like Synchronization. That
is, we are looking for features that:

1. are transparent to the application and

2. have a significant influence on certain nonfunctional properties.

These two conditions are met by many of the fundamental policies that define how an
operating-system kernel is internally structured and organized. The set of these archi-
tectural policies constitutes what is generally called the architecture of an operating
system [LE93]. Synchronization can be considered as an architectural policy. Other impor-
tant policies are the applied mechanisms for Isolation and Interaction. The following list
describes these policies with some of their variants and the nonfunctional properties they
are expected to have an effect on:

Synchronization. If the kernel supports concurrent/parallel execution of control flows,
concurrent data access must not lead to race conditions. Synchronized access to
data may be implemented by blocking, nonblocking, or wait-free algorithms. The
implementation may be based on special hardware support such as atomic CPU
operations, transactional memory, or software algorithms. Locks may be allocated
on a coarse-grained or fine-grained base. The chosen kernel synchronization strategy
can have a noticeable influence on latency and performance.

Isolation. The different components of an operating system may have access to the whole
system state or to well-isolated subsets only. Components may be isolated by design
through type-safe programming languages, by hardware support (segmentation or
address spaces via memory-protection units (MPUs), memory-management units
(MMUs), or translation lookaside buffers (TLBs)) – or even by distributing them
across hardware boundaries. Isolation may cause additional requirements on data
alignment, sharing and interaction. The chosen isolation strategy can have a
significant effect on memory requirements, robustness, and performance.

Interaction. System services may be invoked and interact with each other by plain proce-
dure calls, inter-process procedure calls (LPCs), remote procedure calls (RPCs), or a
generic message passing mechanism. Interaction may imply implicit synchroniza-
tion, data duplication or (in the case of RPCs) even fail on occasion. The chosen
interaction strategy often goes in line with Isolation. The chosen interaction strategy
can have a significant influence on latency, memory requirements, performance, and
robustness.
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Common architectures and philosophies for the design of operating systems, such as
microkernel or monolith, can essentially be broken down to these three policies. Typical for
a microkernel-based system is the fine-grained isolation of all system components into their
own address spaces, interaction between these components via messages, and implicit
synchronization due to the sequential processing of messages; a monolith instead applies
a single address space for all system components, which interact with each other via
plain procedure calls, and have to be synchronized explicitly via some synchronization
mechanism; characteristical for a reflexive kernel is that interaction between system
components is routed over an extra mediator; and so on. From the functional perspective
of the application, however, all this makes no difference [LN79]. Architecture is an
all-embracing, transparent policy.

What we can say, however, is that architectural policies generally reflect a trade-off with
respect to different nonfunctional properties. It is, for instance, commonly accepted that
the isolation of every system component into its own address space (as in microkernel
operating systems) improves robustness – at the price of higher memory requirements
and reduced performance. Even though these effects may be more or less distinctive
[HHL+97] – there always is a trade-off. If the penalties are significant, acceptable, or
observable at all depends solely on the application and its particular workload.

Hence, there is no such thing like “the best policy” for all cases. Even the fine-grained
implementation of Synchronization that Linux now applies on SMP systems may not be
optimal in all cases. The additional locks reduce the probability of lock contention at
the price of a (small) memory and run-time overhead. This leads to great performance
benefits on massive-parallel workloads that lead to many input–output operations, which
otherwise would suffer badly on lock contention. However, lock contention would not be a
problem with a CPU-intensive application that employs only one thread per processor and
performs only very few input–output operations. In such cases a coarse-grained locking
scheme would perform better – even on an SMP system.

Architectural policies should become configurable features!

3.1.2.3. The AUTOSAR Case

Recent developments in the domain of automotive system software present us another
motivating case for the understanding of architectural policies as configurable features.
The automotive industry is in the beginning of a transition phase from the OSEK operating
system standard (OSEK OS) to its successor AUTOSAR OS. The AUTOSAR OS standard
prescribes features that essentially require the configurability of Isolation and Interaction.

The OSEK consortium4 was founded in 1993 by the German automotive industry to
develop what later became the leading standard for system software in automotive
applications [OSE]. Central element is the OSEK OS standard [OSE05], a detailed

4OSEK is an abbrevation for “Offene Systeme und deren Schnittstellen für die Elektronik im Kraftfahrzeug”,
which can be translated as “open systems and their interfaces for automotive electronics”.
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AUTOSAR OS

OSEK OS

Resources

BCC2, ECC1, ECC2

Priorities

1 task per priority n tasks per priority

Multiple activations

BCC2, ECC2

Extended tasks

ECC1, ECC2

Schedule tables

class1–class4

Protection

Timing

class2, class4

Memory

class3, class4

Service

class1–class4

Figure 3.4.: AUTOSAR OS scalability classes and OSEK OS conformance classes.
The feature diagram depicts the variability defined by the AUTOSAR OS scalability classes, respective OSEK OS
conformance classes. OSEK OS (left branch) predefines variability and granularity by two basic conformance
classes (BCC1 and BCC2, only support for basic tasks) and two extended conformance classes (ECC1 and
ECC2, support for basic and extended (=preemptable) tasks) [OSE05, p.14]. AUTOSAR OS extends on the
variability of OSEK OS by additional scalability classes [AUT06a, p. 21]; class1 is the basic configuration,
consisting of OSEK OS + Schedule tables + Service protection; scalability classes 2–4 describe extension
stages regarding the protection policies Timing protection and Memory protection.

specification of an event-triggered real-time operating system. OSEK OS provides a
standardized API with abstractions for control flows (tasks), synchronization (events,
resources), interrupt handling (ISRs), and so on. OSEK OS aims at best-possible resource
frugalness and is inteded for small 8-bit to 16-bit microcontrollers. For the sake of
granularity, the standard requires an OSEK OS implementation to support four different
extension stages of the operating system called conformance classes, which differ from each
other in the support of Extended tasks (preemptable tasks), Resources, Multiple activations
(of tasks), and different priority models. These conformance classes can be understood as
different configurations of an operating-system product line (Figure 3.4, left branch).

The great success of OSEK triggered the foundation of AUTOSAR5, a new and international
consortium of car manufacturers that aims at the development of a successor of the OSEK
standards [aut]. Central element is again the operating system specification, AUTOSAR OS
[AUT06a, AUT06b], which extends OSEK OS by new features and abstractions. Besides
support for time-triggered task activations (Schedule tables), AUTOSAR OS specifically
adds new means for the isolation of faults, which are subsummized under the term
protection facilities [AUT06a, pp. 13ff]. Besides parameter and context checking for
operating-system services (Service protection), this particularly includes measures for the
temporal and spacial isolation of tasks and ISRs (Timing protection and Memory protection).

The motivation behind this is the idea of microcontroller consolidation; software from
different vendors, which so far has always been running on dedicated 8-bit and 16-bit
hardware, should be integrated on fewer, but more powerful 32-bit microcontrollers. With
respect to robustness, safety, and – ultimately – liability, this requires means for strong

5AUTOSAR stands for AUTomotive Open System ARchitecture
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isolation in the hardware and the operating system. At the same time, however, AUTOSAR
OS should remain usable for small stand-alone systems. To reflect this extra variability
and granularity, AUTOSAR OS extends OSEK OS by four additional extension stages called
scalability classes, which differ from each other in the support of Timing protection and
Memory protection (Figure 3.4).

Essentially, the AUTOSAR-OS specification thereby suggests configurable architectural
policies as a means for the configurability of the trade-off between the nonfunctional
properties memory requirements, performance, latency, and robustness.

3.1.3. Problem Summary

State of the art to implement configurability of fine-grained features and kernel policies in
operating-system product lines for embedded systems is the C preprocessor. However, this
approach does not scale up:

Problem 1: The implementation of fine-grained configuration options by means of condi-
tional compilation results in commingling of concerns; the scattered #ifdef cascades
make the code hard to read, understand, and maintain. The situation gets worse
the more configuration options are provided.

The “#ifdef hell” in the source code of eCos is an impressive example here – it clearly
demonstrates how implementing configurability solely by means of conditional com-
pilation hits its limits. At the same time, however, even eCos is yet not configurable
enough:

Problem 2: For the sake of variability regarding nonfunctional properties, architectural
policies should be provided as configurable features.

The developments around AUTOSAR OS show us that – besides all fundamental advan-
tages – there already is concrete need for configurability of architectural kernel policies
in embedded operating systems. This, however, is challenging to implement. Architec-
tural policies have to be reflected in basically every part of a kernel implementation;
they crosscut with the implementation of all other kernel concerns. The distribution of
Synchronization in the eCos source base is a good example – and yet it reflects just one
variant of this policy. Other variants, such as fine-grained or waiting-free synchronization,
would probably affect other parts of the kernel.

The goal of a configurable architecture makes it neccessary to push the current limits for
the implementation of configurability in embedded system-software product lines.

3.2. Is AOP the Solution?

Both problems are essentially problems of crosscutting concern implementations. AOP
provides extra language support for these kind of problems; hence, AOP is a promising
candidate for a solution that pushes the current limits of configurability:
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1. Fine-grained configuration options typically crosscut inhomogeniously with the
implementation of other concerns in the structural and behavioral space. A clear
separation of the what and the where of a concern’s implementation should make it
possible to implement them using aspects instead of conditional compilation – and
thereby reach separation of concerns.

2. Architectural policies typically crosscut homogeniously with the implementation of
many other concerns in the behavioral space. The flexible match mechanism and
the quantification principle should make it possible to separate them into aspects –
and thereby reach their configurability.

With respect to the first point we have, however, to be perfectly aware of the reasons why
conditional compilation is the state of the art for the implementation of configurability:
flexibility and efficiency. It is yet open if there is an aspect language that is expressive and
efficient enough for the implementation of fine-grained configuration options in such a
cost-sensitive domain.

With respect to the second point there are many open issues. Architectural policies do
not only become manifest in a crosscutting implementation, but tend to subtly influence
the whole development process of operating-system components. They lead to implicit
assumptions about side effects, execution contexts, and more. It is totally open if – with
or without AOP – operating-system components can be implemented in an architecture-
transparent manner.

Hence, I have to answer questions regarding the qualitative and quantitative dimension of
implementing configurability by AOP:

The qualitative dimension of configurability describes what can be made
configurable at all – theoretically (with respect to the expressiveness of the
underlying implementation mechanism) and practically (with respect to
development efforts).

The quantitative dimension of configurability describes the cost of the con-
figuration mechanism with respect to hardware resources.

The goal of aspect-awareness in the development of configurable system software is
to show to what extend a well-directed, broad-scale application of AOP does improve
on the state of the art to implement configurability in embedded operating systems
(qualitative dimension) without disadvantages on the hardware cost side (quantitative
dimension).

3.3. Suggested Approach

Analyze the quantitative and qualitative effects of a broad-scale application of AOP for
the implementation of configurability in operating-system product lines for resource-
constrained embedded systems. Evaluate thereby, if AOP is suitable as a first-class
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mechanism for the implementation of configurability in the domain of embedded system
software.

Handle the topic bottom-up on three different levels: language, implementation (of config-
urability), and design (for configurability). We require an overall benefit with respect to
the qualitative and quantitative properties on each of these levels, as higher levels depend
on the success in the lower levels.

3.3.1. Language Level

In order not to run into similar problems as with OOP, it is necessary to think about
the cost effects of AOP before applying it to the domain of embedded system software.
First and foremost, this has to be reflected in the design of the AOP language itself. An
AOP language for this domain has to provide expressiveness and run-time cost efficiency.
Ideally, using AOP language concepts to separate otherwise tangled and scattered concern
implementations does not lead to an overhead.

Questions: Which AOP language features induce an overhead with respect to CPU and
memory resources? Can we improve on that? Is the expressive power of a general-
purpose, feature-rich AOP language an affordable luxury for the domain of resource-
constrained embedded systems?

Objectives: Show that by a careful design of the aspect language, highly expressive, yet
cost-neutral AOP is possible. Figure out which AOP features induce what overhead
and if and how this can be avoided.

3.3.2. Implementation Level

State of the art to implement configurability is the C preprocessor – which is flexible and
efficient, but does not at all provide separation of concerns. Ideally, AOP provides better
means for the separation of concerns without disadvantages regarding flexibility and
efficiency.

Questions: Can we achieve the same or better flexibility and efficiency as with the
existing approaches? What are the idioms for implementing configurability by
aspects?

Objectives: Show that AOP compares qualitatively and quantitatively very well to other
approaches for implementing configurability in software product lines for embedded
systems. Figure out the idioms and patterns to achieve configurability by aspects in
such product lines.

3.3.3. Design Level

Compared to procedural or object-oriented programming, AOP offers new and very
different means for encapsulation and separation of concerns into software modules.
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Being a relatively young paradigm, there is still only few experience on how and when to
use this extra expressive power. So far, attempts to apply AOP to the domain of operating
systems have always been based on existing operating system kernels. This led to a
perception of AOP as a "better patch technology" to bring configurability or extensions
into obstructed subsystems. The benefits would possibly be much higher if aspects were
used as a primary design concept from the very beginning.

To evaluate and assess the chances offered by AOP towards a higher quality of configura-
bility in system software, it is therefore necessary to think about configurability by aspects
from the very beginning. The goal is an aspect-aware design that takes real advantage of
AOP by achieving configurability of even architectural policies.

Questions: What are good design rules for aspect-aware kernel design? What are the
benefits? Is it thereby possible to implement even architectural system policies as
configurable features?

Objectives: Show that AOP can lead to the better configurability of policies in an
operating-system kernel. Show that configurability is even possible for architectural
operating-system policies. Figure out methods and rules to achieve aspect-awareness
when designing an operating-system kernel.

3.4. Chapter Summary

The goal of this chapter was to analyze the problems of implementing configurability in
system-software product lines for embedded applications. The problem is twofold.

Firstly, conditional compilation – the state of the art for the implementation of fine-grained
configurability – leads to commingling instead of separation of concerns. This does not
scale, takes us to “#ifdef hell”, and has already hit its limits. We need a better approach.

Secondly, configurable operating systems are yet not configurable enough – they do not
provide configurability of architectural policies. Even though these policies are transparent
to the application, they influence important nonfunctional properties and, thus, should be
understood as configurable features. This makes it necessary to push the limits for the
implementation of configurability in embedded system software even further.

Both problems are essentially problems of crosscutting, so aspect-oriented programming is
a promising candidate for a remedy. It is, however, still open if AOP can compete qualita-
tively – but especially quantitatively – with the existing approaches. It is furthermore open
if it thereby becomes really possible to implement architectural policies as configurable
features.

To answer these questions, I suggest to analyze and evaluate the suitability of AOP for
the implementation of configurability bottom-up on three levels of increasing abstraction:
language level, implementation level, and design level.

The remaining parts of my thesis reflect this bottom-up approach. We start in the next
chapter, Chapter 4, on the language level.
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4
Language Level – Aspects Demystified:
Evaluation and Evolution of AspectC++

The expressive power of a programming language has a significant influence on the
productivity of developers and the quality of the resulting software. This has already been
stated by DIJKSTRA in the early 1970s:

“[...] the language or notation we are using to express or record our thoughts are
the major factors determining what we can think or express at all!” [Dij72]

High-level languages that offer more and better abstractions help to concentrate on the
actual problem to solve [McC04, p. 62ff]. System developers, however, have always
taken an ambivalent stance on high-level programming paradigms. Even though they
embrace extra expressive power, system developers generally are concerned about the cost
of such luxury: memory footprint, performance impacts, and a general loss of control over
the resulting code. An in-depth analysis of such effects is crucial to assess the trade-off
between cost and benefits of a new approach such as AOP.

In this chapter I provide a look “under the hood” of AOP in general and AspectC++ in
particular. This “demystification” – basically a technical operationalization of the terms
obliviousness and quantification – is an important contribution to understand the impact
of the language level to the qualitative and quantitative properties of configurability. In
the context of this thesis it also paved the path to several improvements of AspectC++.

The chapter opens in Section 4.1 with a general discussion on aspect languages for
our domain: basic requirements, costs to expect, and criteria for choosing an aspect
language. For AspectC++ these requirements triggered the development of the generic
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advice concept, which I introduce in Section 4.2. This is followed in Section 4.3 by an
in-depth cost analysis of all AspectC++ language constructs, which also led to significant
code generation improvements. All language level results are then discussed and related
to the dimensions of configurability in Section 4.4. Finally, I give an overview on further
related work in Section 4.5 and briefly summarize the chapter in Section 4.6.

Related Publications

The ideas and results presented in this chapter have partly also been published as:

[LBS04] Daniel Lohmann, Georg Blaschke, and Olaf Spinczyk. Generic advice: On the
combination of AOP with generative programming in AspectC++. In G. Karsai
and E. Visser, editors, Proceedings of the 3rd International Conference on Generative
Programming and Component Engineering (GPCE ’04), volume 3286 of Lecture
Notes in Computer Science, pages 55–74. Springer-Verlag, October 2004.

[LS05b] Daniel Lohmann and Olaf Spinczyk. On typesafe aspect implementations in
C++. In F. Geschwind, U. Assmann, and O. Nierstrasz, editors, Proceedings of
Software Composition 2005 (SC ’05), volume 3628 of Lecture Notes in Computer
Science, pages 135–149, Edinburgh, UK, April 2005. Springer-Verlag.
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4.1. General Considerations

The goal of this thesis is to analyze the applicability of AOP towards an increased config-
urability of features in system software product lines for embedded devices. In Chapter 2
we learned that our target domain entails some specific constraints – constraints that
should be taken into consideration when thinking about aspect languages and tools for
this domain.

4.1.1. AOP Fundamentals: A Recap

The major goal of AOP is to separate the what from the where of concern implementations
(Section 2.3.4). This is motivated by the problem of crosscutting, which can be observed
in the fact that the implementations of many concerns (what) are not well localized, but
spread over (where) the implementations of other concerns (Section 2.3.1).

Crosscutting is a two-fold phenomenon with a space dimension and a distribution dimen-
sion (Section 2.3.3). An AOP language has to provide obliviousness and quantification
(Section 2.3.4) to facilitate the decoupling of an actual concern’s implementation (what)
from its application alongside these dimensions (where).

On the syntax level the what is given by advice; the where is reflected by the concept of a
pointcut, which is a set of join points given as a pointcut expression in a join point description
language (Section 2.3.4). The join point description language provides declarative means
to reason over the space and distribution dimensions of the program.

Most AOP languages follow the philosophy, terminology and semantics of AspectJ with
its explicit notion of aspects – special implementation entities that are superimposed
into the entities (e.g., classes) of the base program. Like AspectJ, these languages are
usually implemented as an (upward-compatible) extension to some existing base language
(Section 2.3.6).

Aspects are technically applied by a process called aspect weaving; the corresponding tool
is the aspect weaver. We distinguish between static weaving (at built-time) and dynamic
weaving (at run-time). Because of the nonnegligible overhead of dynamic weaving, this
thesis focuses on static weaving (Section 2.3.4.2).

4.1.2. Requirements on an Aspect Language for System Software

An aspect language for system software has to reflect the following general requirements:

Support for obliviousness and quantification, as the AOP-style of separation of con-
cerns is the motivation to use AOP anyway. Hence, the language should support the
typical AOP features that are required to achieve obliviousness and quantification.
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Platform independence, as platform variety is a major criterion of our target domain
(Section 2.1.2). This is, strictly speaking, not a language issue, but a question of
tools, especially compiler back-ends.

Minimal overhead in the resulting code, as thriftiness with respect to hardware resources
is another major criterion of our target domain (Section 2.1.1). The overhead, if
any, must be acceptable even for small systems with only few KiB of memory.

We have already learned that, for practical reasons, most AOP languages are implemented
as an extension to some existing base language. In these cases, the general requirements
have to be reflected in both the base language and its AOP extension. This is obvious for
the latter two (platform independence and minimal overhead). In the following we will
see, however, that the base language also has a significant influence on the achievable
expressiveness of its AOP extension, that is, on obliviousness and on quantification.

4.1.2.1. Support for Obliviousness

Conceptually speaking, obliviousness denotes the fact that concerns implemented by the
base program can be oblivious of the concerns implemented by aspects – even though
they overlap in the space dimension. Technically speaking, obliviousness suggests that the
base code does not have to be prepared in any way to be (later) affected by aspects.

First and foremost, obliviousness requires a declarative join point description language
that provides means for the aspect developer to specify the relevant join points by
reasoning over the base program in the space dimension. Ideally, we would be able
to reason with this language over the semantics of the base program. Technically, however,
the reasoning can only be based on syntactic entities or run-time states of the base
program to which we, the programmers, attribute some semantics. Hence, an intended
set of join points with respect to the program’s semantics (such as, “activate advice
in aspect ConnectionMonitor when a client connects”) has to be mapped by the aspect
developer to an expression over concrete identifiers and run-time states of the base
program (such as, “activate advice in aspect ConnectionMonitor when the constructor of
class ClientConnection is invoked”).

Effectively, the result is an inversion in the way control-flows are specified. I consider
this inversion of control-flow specifications by advice as the fundamental mechanism
behind obliviousness. Figure 4.1 illustrates it by the example of two components P and
C. With function or method calls, control-flow relationships can only be established in
the direction of knowledge (P invokes method in C) =⇒ (P knows C); hence, P can not be
oblivious of C.1 With advice, it becomes possible to specify control-flow relationships in
the opposite direction of knowledge (P invokes advice in C) =⇒ (C knows P).2

1If using late binding, P does not have to know the concrete C – but nevertheless that there is some C.
2Because of quantification (see Figure 4.2.b) it is even not necessary that there is some P – advice-based

binding is inherently loose. Precisely spoken: (P invokes advice in C) =⇒ (C knows P) && (P does exist).
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Figure 4.1.: The mechanism behind obliviousness: inversion of control-flow specifications by advice.
At run time, event producer P shall invoke event consumer C. (a) With function calls, the control-flow
relationships is in the direction of knowledge; it has to be established by event producer P, for which P has to
know C. (b) With advice, the control-flow relationship is in the opposite direction of knowledge; it can be
established by the event consumer C, for which C has to know P. (The diagram notation is further explained
in Section 6.3.2 on page 129.)

The fact that join points are yielded by reasoning over the base program means that
obliviousness is influenced by the base program itself. Even though the base program (in
principle) does not have to be aware of aspects, it nevertheless implicitly exhibits – by its
structure and nature – the set of potential join points that are available to the aspects.3

The better the concerns of the base program are reflected in its syntactic entities, the
stronger is the semantics of these potential join points and, thus, the expressiveness of
pointcut expressions.

This is where the demand for a syntactically rich base language with a powerful type
system comes into consideration. Programs written in a multi-paradigmatic language, such
as Ada or C++, usually provide more structure – and thereby more potential join points
– than those written in a simpler language, such as C. The additional syntactic concepts
of “rich” languages enable the programmer to express more of the concerns and their
relationships in the program structure. The above mentioned client connection concern,
for instance, would usually be implemented in C++ or Java as a class ClientConnection,
derived from a more general Connection class. Thereby functions, state variables and
relationships related to the concern are implicitly grouped. They are visible and verifiable
on the type level and pointcuts can be used to reason about this knowledge. In C,
the programmer might use explicit naming conventions to indicate an equally strong
semantic relationship between a set of functions and a set of state variables. However,
such idiomatic conventions are difficult to develop, often not followed thoroughly, and,
according to a recent study by BRUNTINK and colleagues, a fragile and imprecise base for
pointcut expressions [BvDDT07].

3In AOP literature, exhibited join points are often called join point shadows [HH04, MKD04]; however, I
prefer to denote them as potential join points.
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Figure 4.2.: The mechanism behind quantification: implict per–join-point instantiation of advice.
(a) The aspect weaver implicitly instantiates the advice per join point yielded by the wildcard pointcut expression
over the unknown (and possibly empty) set of components P1...n. (b) Loose coupling by inversion (cf.
Figure 4.1). Implicit instantiation per–join-point takes place even if the pointcut expression specifies exactly one
join-point; it is not an error if P is not present. (The diagram notation is further explained in Section 6.3.2 on
page 129.)

4.1.2.2. Support for Quantification

Conceptually speaking, quantification denotes the fact that concerns implemented by
aspects can be oblivious of the distribution dimension, that is, the number of join points in
which they overlap with the base program. Technically speaking, quantification suggests
that advice code does not have to be prepared with respect to the number of join points it
affects.

First and foremost, quantification requires a concept for quantors in pointcut expres-
sions to specify a (potentially open) set of related join points. Most join point descrip-
tion languages support wildcard symbols in identifier signatures for this purpose. In
AspectC++, for instance, the match expression "% ClientConnection::%(...)" would
match all member functions of the class ClientConnection, with % being an identifier wild-
card symbol, and the triple dots ... being a list wildcard symbol. This match expression
might be used in a tracing aspect that logs transactions with clients on method-level. If
a method is added to, changed in, or removed from class ClientConnection, the tracing
aspect would not be affected; it always transparently quantifies over all methods of class
ClientConnection.

Advice quantification over a set of join points can be understood as an implicit instantiation
of the advice execution, performed by the aspect weaver for each join point. I consider this
implicit per–join-point instantiation of advice as the fundamental mechanism behind
quantification. Figure 4.2.a illustrates it by the example of an aspect C that gives advice to
an (unknown) set of components P1...n by using a wildcard match expression. The weaver
actually instantiates this piece of advice for every matching join point – which in turn
depends on the actual presence of the components P1...n in the base program.
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Note that implicit per–join-point instantiation of advice does even apply when we do
not use quantors in pointcut expressions. This is depicted in Figure 4.2.b on another
example for the inversion of control-flow specifications by advice. Essentially it means
that advice-based control-flow specifications are always loosely coupled.

In most cases, the advice code depends in some way on the affected join point’s context to
implement the intended concern. From a tracing aspect, for instance, we would expect that
it does not just print out “I was here”, but some useful contextual information, such as the
name and signature of the method and its actual parameter values. However, at the same
time, the advice implementation has to be oblivious of this kind of context information –
otherwise it would not be quantifiable over methods with different signatures. This means
that the advice definition of our tracing aspect has to be polymorphic; it has to use, but be
invariant with respect to, join-point–specific context. Support for advice polymorphism
is crucial for quantification.

Advice polymorphism involves two requirements, one of which has to be reflected in the
aspect language whereas the other affects the base language. The aspect language has to
provide language means for join-point–specific context retrieval in advice code. This
can be support for free context variables in the join point description language. Another
common approach is to provide a join-point API that is implicitly available in advice
definitions and can be used to request contextual information. Both approaches have their
pros and cons; consequently many aspect languages implement both.

The computations performed by the advice code have to be invariant with respect to the
join point context as well. This requires type polymorphism in the base language. To
print out the actual parameters of method invocations in our tracing aspect, for instance,
an interface to transform values of any type into their string representation is needed. In
Java this is trivial: toString() is part of the polymorphic root interface java.lang.Object;
every potential argument type of a function can be converted into its string representation
via toString(). C, on the other hand, offers only very limited means for polymorphism –
and therefore only limited support for quantification.4 C++ is somewhat in-between as it
provides compile-time type polymorphism, which is – as we will see in Section 4.2 – a
technically challenging, but sufficient mechanism to implement advice polymorphism.

4.1.2.3. Support for Platform Independence

Conceptually speaking, platform independence of a programming language means that
programs written in this language should finally be executable on any instruction set
architecture (ISA). If the ISA is computationally complete, this is the case as a matter of
principle. Hence, we understand platform independence as a technical measure; it denotes
for how many ISAs the necessary tools (weaver, compiler, ...) are actually available.

4Note that the “generic” sprintf() would not come as a rescue. Neither is its format specifier language
extensible for new types, nor does C provide any mechanism to deduce the correct format specifier from
the static or dynamic type of an expression.
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From the viewpoint of an aspect language designer, the goal of platform independence
suggests reusing existing tools as much as possible. Most aspect weavers transform
the programs written in the aspect language into a platform-independent intermediate
representation for which broad tool support is already available. This transformation
could either take place on the level of source code (source-to-source weaving) or, in the case
of virtual platforms such as Java or .NET, on the level of byte code (byte-code weaving).

For the (nonvirtual) platforms used in the domain of embedded systems, source-to-source
weaving to some commonly used base language, such as Ada, C, or C++ would ensure
good platform independence.

4.1.2.4. Support for Minimal Overhead

Conceptually speaking, minimal overhead of a programming language means that the
hardware resource requirements of any program written in this language should be “as
low as possible”. In the embedded-systems domain a minimal overhead is especially
important with respect to RAM utilization (Section 2.1.2).

Minimal overhead is a theoretical measure that is hardly possible to assess. However, some
language and compiler properties are known to be beneficial with respect to hardware
resource utilization and, thus, a general suitability for the embedded systems domain.
This includes the general demand for a low base overhead by applying a strict pay-as-
you-use semantics with respect to high-level language constructs and run-time library
support. Another such property is to do whatever can be done at compile-time instead of
run-time, which suggests static weaving and compilation and a language that focuses
on static typing.

4.1.3. The Expected Cost of Aspects

Having understood the general requirements on an AOP language for system software
development, we can now elaborate on the cost one would expect for the extra expres-
siveness offered by AOP. In the following, I take a look on the cost of AOP from an “ideal
weaver” perspective, that is, under the assumption of having an ideal static weaver for a
statically typed and compiled base language. The goal of this assumption is to increase
our understanding on how an AOP language for our domain should be designed and how
its features should be used.

4.1.3.1. Static Crosscutting

For advice given to join points in the structural space (introductions), we do not expect
any overhead. In a statically typed and compiled language, advice-induced transformations
of the static program structure have to be performed at build-time anyway. It does not
matter if transformations like adding a field to some class have been performed manually
by a human developer or automatically by an aspect weaver.
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4.1.3.2. Dynamic Crosscutting

For advice given to join points in the behavioral space of the program (code advice),
it depends on the type of the join points. Conceptually, join points in the behavioral
space are always evaluated at run-time, as they describe events in the running control
flow. Technically, however, many of them can be evaluated at weave-time, as the event
occurrences are unambiguously connected to specific positions in the code. Hence, we
have to distinguish (from the technical point of view) statically evaluable pointcuts from
not-statically evaluable pointcuts:

Statically evaluable pointcuts. Obviously evaluable at weave-time are execution point-
cuts, which describe the execution of some function and can be connected to the first
and last statement of a function. Many aspect weavers also evaluate call pointcuts,
which represent a call to some function on the caller’s side, at weave-time.5 Also
evaluable at weave-time is any kind of scoping based on static type information,
such as within pointcuts, which describe all join points in the lexical scope of some
language entity.

Not statically evaluable pointcuts. Besides statically evaluable pointcuts there are, how-
ever, pointcuts that a static weaver cannot (always) evaluate at weave-time. A
common example are cflow pointcuts, which describe the event of being in the
control flow of some function. On the implementation side, this requires some extra
effort, such as maintaining a “cflow-counter” in the running program that has to be
incremented, decremented, and tested at various positions. Obviously not evaluable
at weave-time is any kind of filtering that is based on the run-time type, such as
target pointcuts, which filter call join points by the run-time type of the callee.

For advice given to statically evaluable pointcuts we expect no run-time overhead – an ideal
aspect weaver should be able to completely inline the advice functionality into the target
program. For advice given to not-statically evaluable pointcuts we expect some run-time
overhead – even an ideal aspect weaver could not avoid this overhead in all cases.

4.1.3.3. Join-Point–Specific Context Retrieval and Advice Polymorphism

In all but trivial cases, advice needs access to some join-point–specific context to fulfill
its purpose. Examples for join-point–specific context are the parameter values passed
to the intercepted function, or a human-readable representation of the function’s name
and signature. Access to join-point–specific context might lead to additional overhead.
This is obvious if the advice implementation uses context information that is specifically
generated by the aspect weaver, such as the string representation of the affected function’s
name and signature. It is less obvious if the advice code accesses information that
should be available in the current context anyway, such as the arguments passed to the

5This has implications on the semantics of the aspect language itself, namely that calls through function
pointers are not considered as call join points.
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affected function. For the sake of polymorphic advice, this information has to be provided
through a generic interface – an additional level of abstraction that might induce an
overhead. If advice polymorphism is based on static typing, an ideal aspect weaver should
be able to optimize this in the woven code by substituting invocations of the generic
interface with direct context access. By analyzing the advice code, an ideal aspect weaver
would furthermore tailor the amount of provided context information to what is actually
requested (“pay as you use”).

4.1.4. Aspect Languages for Embedded System Development

Dozens of aspect languages have been proposed by researchers and practitioners (compare
Section 2.3.6). So, after all these considerations: Which one is “best” for our domain of
embedded systems and the goal to increase configurability of system-software product
lines? There is, of course, no silver bullet. However, the discussion in the previous sections
should have made two points evident:

1. Our major requirements on an aspect language – obliviousness, quantification, plat-
form independence, and minimal overhead – are mostly determined by properties
of the underlying base language. Hence, the base language is an ideal first-line
discriminator for the suitability of an aspect language for the domain of embedded
systems.

2. An ideal static aspect weaver could implement most AOP features without any extra
overhead. Hence, tool support for static weaving is another good discriminator for
the suitability of an aspect language for our domain.

In the following, I use the base language perspective to discuss the applicability of aspect
languages to the domain of embedded systems, and for each base language I give a brief
overview on the available AOP extensions with static weaving support.

4.1.4.1. Java-based Aspect Languages

Java as a base language offers very good support for obliviousness and quantification
in AOP extensions, but only limited platform independence and not at all a minimal
overhead:

• Due to its strong type system and the OO approach, Java programs generally offer
many potential join points with strong semantics – which supports obliviousness.

• Advice polymorphism – and hence quantification – is supported by a polymorphic
type system. All types are inherited from the common java.lang.Object base
interface. Polymorphic behavior beyond the services offered by java.lang.Object is
supported by Java’s run-time type reflection capabilities.
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• Platform independence, however, an often-cited strength of Java programs (“write
once, run anywhere”), is actually very limited. For many platforms used in the
embedded systems domain a JVM is not available.

• This is mainly caused by the fact that Java’s run-time support induces an unacceptably
high base overhead. Even the more tailorable J2ME (Java 2 Micro Edition) is way
too big for most 8- and 16-bit microcontroller platforms. As J2ME drops run-time
type reflection – which is required to reach quantification – it is furthermore not as
a good base for AOP as is Java’s Standard Edition.

Overall, Java-based AOP approaches are inapplicable to the domain of small, embedded
systems, because Java induces too high an overhead. This is a pity from the AOP
perspective – the most mature AOP approaches are available for the Java domain. AspectJ
[KHH+01b, KHH+01a] clearly is the reference for AOP with respect to language and tools;
and besides AspectJ many other AOP language extensions have been proposed for Java,
such as Hyper/J [OT00, OT01], DemeterJ [LLW03], CaesarJ [AGMO06], Josh [CN04],
and LogicAJ [KRH04, KR06]. This list is by no means complete; however, as Java-based
approaches can be ruled out for our target domain I shall not discuss them in further
detail.

4.1.4.2. C-Based Aspect Languages

C as a base language offers minimal overhead and excellent platform independence,
but lacks the necessary properties to achieve obliviousness and quantification in AOP
extensions:

• C is well known as the language of choice if it comes to minimal overhead.

• For this very reason it is by far the most common language in the domain of
embedded systems. Mature tool support is available for every hardware platform.

• However, compared to other languages, C programs tend to have a relatively
coarse-grained structure. Even the module concept is not part of the language, but
idiomatically emulated outside of it with a preprocessor and the file system. All
this remarkably reduces the amount of syntactical information that determines the
initial set of potential join points, which limits obliviousness.

• As a relatively low-level language, C has a rather primitive type system. Polymorphic
types or reflection are not supported, hence quantification is technically difficult to
reach.

Overall, the situation with C is exactly the opposite as with Java: C fits well into the
specific requirements of the embedded systems domain, but limits obliviousness and
quantification too much to consider it as a good base language for AOP.

Nevertheless, several approaches have been suggested to bring aspects into the C language
domain [Ada06, Ada08]. Billions of lines of existing C code are a strong argument
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for AOP with C – even if the resulting expressiveness remains behind the Java-based
approaches. AspectC by COADY and colleagues, for instance, neither supports introductions
nor offers the required language means for quantification, but has successfully been used
to factor out four scattered operating-system concerns (prefetching, disk quotas, blocking,
and page daemon activation) from the FreeBSD kernel to improve their evolvability
[CKFS01, CK03].

The fact that a weaver for AspectC is still missing has recently been the driving factor
for the development of other general purpose AOP languages for C with static weaving
support: Mirjam and WeaveC by DURR, NAGY, and colleagues [Dur, NvGvdP08], Aspicere
and Aspicere2 by ADAMS [Ada, Ada08], and ACC by GONG et al [GJ, GJ08]. At the time of
this writing (June 2008) most of these languages are still at an early yet rapidly evolving
state, maybe with the exception of Mirjam and the corresponding WeaveC weaver back-
end, which successfully have been applied to industrial-strength projects [NvGvdP08].

Interesting are the different strategies to overcome C’s inherent limitation with respect to
quantification: ACC attempts to mimic AspectJ as far as possible and provides a run-time
type reflection mechanism for function arguments in its join-point API. However, run-time
type reflection in an inherently not run-time–typed language has only limited value with
respect to quantification; I will elaborate on this in more detail in Section 4.2 on the
example of AspectC++. Mirjam and Aspicere, on the other hand, escape to an external
logic language. In these languages the match and advice expansion mechanism is built on
Prolog. The resulting aspect languages are less “AspectJ-like” and very different from their
base language. This probably makes it more difficult to teach and use them, however,
effectively overcomes the C deficiencies with respect to polymorphic advice.

Not a general-purpose AOP language extension for C, but an AOP-inspired language of
temporal logic was used by ÅBERG and colleagues to integrate the Bossa scheduler frame-
work into the Linux kernel [ÅLS+03]. The C4 approach by FIUCZYNSKI and associates
uses AOP concepts to extend C with language means for a “semantic patch system” for
the application of patches to the Linux kernel [FGCW05]. The idea of “semantic patches”
in Linux device drivers is also an objective of the Coccinelle project and its Semantic Patch
Language (SmPL) by PADIOLEAU et al [LMU05, PLM06, PLMH08]. The focus of SmPL is on
specifying context-sensitive patches for collateral changes in Linux, such as a modifications
of the kernel API that otherwise had to be caught up manually in hundreds of device
drivers. In a sense, SmPL thereby provides obliviousness and quantification for source
code transformations, even though the authors do not directly relate their approach to
AOP.

4.1.4.3. C++-Based Aspect Languages

C++ as a base language offers minimal overhead, good platform independence, as well
as good support for obliviousness and quantification in AOP language extensions:

• C++ offers a C-like minimal overhead. Even though certain language features (such
as virtual functions, exception handling, and run-time type information) do induce
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an overhead, C++ applies strict “pay as you use” with respect to these extended
features.

• Tool support is available for most platforms, including many 8- and 16-bit microcon-
troller architectures.

• Compared to C programs, C++ programs tend to be structured more fine-grained
and to generally provide a better separation of concerns. By classes, namespaces,
templates, and inline functions, C++ offers many additional syntactical concepts
for this purpose; the type system is sophisticated and strict. This promises good
support for obliviousness.

• Run-time polymorphism and type reflection in C++ is less sophisticated than in
Java, as there is no common root class and only class types with virtual functions are
polymorphic at run-time. However, C++ offers compile-time polymorphism over all
types, including the built-in primitive types, by templates and overloading. With
traits [Mye96, Ale00], it furthermore supports compile-time reflection. Thereby, all
means required for advice polymorphism, and hence, quantification, are available.

Overall, C++ combines the benefits of C – general applicability to our domain – with the
most benefits of Java regarding the achievable level of obliviousness and quantification.

Nevertheless, only very few aspect languages based on C++ and with static weaving
support have been proposed. Most of them actually belong to the group of early AOP
approaches from the pre-Java (and pre-AspectJ) time (compare Section 2.3.6.1): Compo-
sition Filters [ABV92], Subject-Oriented Programming [HO93], and Adaptive Programming
[Lie96] all were originally applied to C++. However, they have barely been maintained
since then and do not reflect the fundamental improvements the C++ language has
experienced in the following decade, eventually resulting in the ISO/IEC 14882:2003
standard (ISO-C++) [Ins03].

Besides AspectC++, which is used in this thesis, there is only one other approach that
claims to offer AOP with static weaving support for C++: XWeaver by ROHLIK and
colleagues [RPCB04, XWe] is a (conceptually base-language–independent) approach for
AOP-style source code transformations. Aspect and pointcut definitions are given in
their own XML-based dialect, the AspectX language. Pointcuts do not yield points in the
behavioral or structural space of a program, but nodes in an XML-based representation of
its source code; advice describes transformations to be performed in these points; it is even
possible to introduce new comments by advice. The authors motivate this unusual take
on AOP with the specific demands of safety-critical systems. The software development
process for safety-critical systems often requires formal reviews of the (woven) source
code; hence, aspect developers should have full control over the resulting source code,
including all “aspects” of its readability, which includes formatting and commenting. In
fact the source-code–centric take of XWeaver has conceptually more in common with the
“semantic patch” approaches for C discussed in the previous section than with general-
purpose AOP. Technically, it works similar to frame processors (such as XVCL [JZ01] or
Angie [Del05]).
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Java C C++ Ada

support for obliviousness ++ − ++ ++
support for quantification ++ −− ++ +
platform independence ◦ ++ + +
minimal overhead −− ++ ++ +
AOP tool support ++ ◦ + −−

Table 4.1.: Comparison of Base Languages for AOP in System Software.
Depicted is the suitability of the analyzed base language alongside the requirements from Section 4.1.2.
[Scale: (very bad) −− , −, ◦, +, ++ (very good)]

4.1.4.4. Ada-Based Aspect Languages

Ada as a base language offers good platform independence, minimal overhead, as well as
good support for obliviousness and quantification:

• Even though compiler support for Ada is not as broadly available as is for C++ or
even C, Ada is highly accepted in certain domains of embedded system development,
especially avionics.

• The language’s focus on static typing supports minimal overhead.

• Ada has an even stricter type system and module concept than C++, thus, generally
supports obliviousness.

• The expressive power of Ada is comparable to C++, including means for (static)
polymorphism, which helps with respect to quantification.

However, even though Ada is an interesting candidate for AOP, aspect languages based on
Ada are just not available. In fact, I am not aware of even a single attempt to bring AOP
ideas into the Ada domain.

4.1.5. Summary

The base language has a most significant impact on the obliviousness, quantification,
platform independence, and minimal overhead properties of an aspect language for our
domain. Table 4.1 depicts the results from the evaluation of Java, C, C++, and Ada with
respect to these criteria: C++ is the most promising candidate. Compared to C, C++
provides significantly more expressiveness – which is necessary to reach obliviousness and
quantification. Compared to Java, C++ provides the efficiency and platform independence
required for our domain. In combination with an ideal static weaver, AOP based on C++
should be implementable as a (mostly) overhead-free mechanism. Hence, AspectC++
should be an ideal candidate to evaluate AOP for the development of configurable system-
software product lines for resource-constrained embedded devices.

Essentially, AspectC++ was choosen for this thesis as it is the one and only available AOP
language extension for C++ with static weaving support. However, before applying it to
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my research objectives (cf. Section 3.2), I had to further extend, evaluate, and improve
the AspectC++ language and code generation. This will be detailed in the following two
sections (Section 4.2 and Section 4.3).

4.2. Generic Advice

In Section 4.1.2.2, we learned that support for polymorphic advice is a crucial property
to achieve quantification with an aspect language. In the context of this thesis, I could
significantly improve AspectC++’s support for advice polymorphism by extending the
join-point API with additional compile-time context information. Beginning with AC++-
0.9, polymorphic advice can be implemented with compile-time genericity on the base of
C++ templates and static overloading. Such generic advice facilitates highly reusable and
efficient aspect implementations.

4.2.1. Generic Advice – Motivation

Compared to languages like Java and C#, the C++ language has a less powerful run-
time type system, but a more powerful compile-time (static) type system. C#, while
still being a statically typed language, implements a unified type system where even
primitive value types offer the interface of the one and only root class System.object. In
Java all class types derive from Java.lang.Object. Due to auto-boxing it is possible in
both languages to pass value type instances as object references. Basically, Java and C#
allow the programmer to treat “everything as an object” at run-time.6 This facilitates the
development of “type-generic code”, in the sense that such code can deal with objects of
any type at run-time.

In C++ there is no such common root class and the C++ run-time type information
(RTTI) system offers only a very limited set of run-time services. On the other hand, C++
implements a static type system that offers static genericity by operator and function
overloading, argument-dependent name look-up, and C++ templates. In general, the
C++ philosophy is to use genericity at compile-time, while Java and C# advise genericity
at run-time.7

4.2.1.1. Advice Polymorphism with Dynamic Typing

Type genericity is particularly important for the development of aspects, which typically
are intended to be broadly reusable and applicable. In Section 4.1.2.2, we had the
example of a tracing aspect that should log all actual parameter and result values of

6Actually, it is the Smalltalk language that carried the “everything is an object” idea to the extremes.
However, Smalltalk does not offer a static type system.

7This is even true with Java generics introduced in the Java 5, which are basically a syntactic wrapper
around the “treat everything as an object” philosophy.
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method invocations – independently of the actual method’s signature. In AspectJ this
is supported by a run-time join-point API for advice implementations, which offers a
unified interface to access a join point’s context information. This information includes the
number of parameters, the argument and return values (as Object), and (via the interface
of Object and Java’s reflection capabilities) their run-time types.

AspectC++ offers a similar mechanism to retrieve the number, types, and values of an
affected function’s arguments at run-time. The AspectC++ join-point API is accessible
from advice code via the pointer JoinPoint* tjp and provides some methods for this
purpose: tjp->args() returns the number of arguments, tjp->arg(i) returns the memory
position (void*) holding the value of an argument, and tjp->argtype(i) a C++-ABI-V3
conforming string representation of an argument’s type.8

4.2.1.2. The Issue

The string-based run-time representation of argument types serves informational purpose,
but is otherwise of only limited value. It cannot be used as a type in the sense of language
syntax. It does not help, for instance, to print out an actual parameter value to std::cout.
For this purpose, the void pointer returned by tjp->arg(i) would have to be cast to the
corresponding static C++ type of the parameter:

advice methods() : before() {

std::cout << "before " << tjp->signature() << ", called with:";

for( int i = 0; i < tjp->args(); ++i ) {

const char* type = tjp->argtype(i);

if( std::strcmp( type, "i" ) == 0 )

std::cout << " " << *static_cast< int* >( tjp->arg( i ) );

else if( std::strcmp( type, "d" ) == 0 )

std::cout << " " << *static_cast< double* >( tjp->arg( i ) );

else if( std::strcmp( type, "RK3Foo" ) == 0 )

std::cout << " " << *static_cast< const Foo* >( tjp->arg( i ) );

...
else std::cout << " <unknown type>";

}

std::cout << std::endl;

}

The necessary mapping from run-time string representations to the corresponding compile-
time C++ type casts requires a huge if-cascade – and will even fail if some argument
type was forgotten or simply unknown when the aspect was developed. Even though
there had been attempts to extend C++ by a more sophisticated meta-object protocol
[Chi95]: The C++ language is just not designed for run-time reflection; it does not fit
into the C++ philosophy.

8This representation of types is known from the mangled symbol names emitted by many C++ compilers
(see http://www.codesourcery.com/cxx-abi/abi.html#mangling).
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To cope with the C++ philosophy, advice polymorphism in AspectC++ should better be
based on static typing. This leads to the concept of generic advice:

“We call advice a generic advice, if its implementation depends on join-point–
specific static type information.” [LBS04]

The key to generic advice is a compile-time join-point API.

4.2.2. Extending the Join-Point API for Generic and Generative Programming

To support the implementation of generic advice code, the AspectC++ join point API had
to be extended. Table 4.2 lists an excerpt from the join-point API with those parts and
extensions that are relevant for the implementation of generic advice.9

4.2.2.1. Support for Generic Programming

The upper part in Table 4.2 (compile-time join-point API) provides compile-time type
information, which can be used to instantiate generic code by advice. The lower part
(run-time join-point API) uses these types to provide a type-safe interface to the dynamic
join point context. These methods are bound at compile-time, but called at run-time.

The most important extension is the function Arg<i>::ReferredType *arg(), which offers
a type-safe way to access argument values:

advice methods() : before() {

...
std::cout << " " << *tjp->arg< 0 >(); // print 1st paramter value

std::cout << " " << *tjp->arg< 1 >(); // print 2nd paramter value

...
}

As the call to tjp->arg< 0 >() returns a typed pointer to the argument value of the first
argument, no casting is required. The compiler determines (and can even inline) the
correct output operator by overload resolution and argument-dependent name look-up. If
no compatible version of the operator can be found, a compile-time error is thrown. The
result is an efficient and type-safe generic advice implementation.

However, for this type-safe access the argument index has to be bound (hence known) at
compile-time. It is no longer possible to use a simple for-loop to iterate over the actual
sequence of arguments at run-time. In fact, the advice implementation sketched above is
still not very generic: Even though we are now flexible with respect to the actual argument
types, we can apply the advice only to functions with a specific number of arguments.
To become more flexible, we have to move the process of iterating over the sequence of
arguments from run-time to compile-time as well. This can be achieved by means of C++
template meta-programming.

9You can find the complete join-point API in the AspectC++ quick language reference in Appendix sec-
tion A.3.7.
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(a) compile-time join-point API

element description kind

That object type (object initiating a call) typedef

Target target object type (target object of a call) typedef

Arg<i>::Type

Arg<i>::ReferredType

type of the i th argument of the affected function

(with 0≤ i < ARGS )

typedef

Result result type of the affected function typedef

ARGS number of arguments enum

value

JPID unique numeric identifier for this join point enum

value

JPTYPE numeric identifier describing the type of this join

point

enum

value

(b) run-time join-point API

element description kind

That *that() returns a pointer to the object initiating a call or

0 if it is a static method or a global function

method

Target *target() returns a pointer to the object that is the target

of a call or 0 if it is a static method or a global

function

method

Arg<i>::ReferredType *arg() returns a typed pointer to the argument value

with compile-time index i

template

method

Result *result() returns a typed pointer to the result value or 0 if

the function has no result value

method

Table 4.2.: Extensions to the AspectC++ join-point API for generic advice.
Depicted is an excerpt from the AspectC++ join-point API with all elements relevant for generic advice. (a) El-
ements of the compile-time join-point API reflect the complete signature of a function or method call or execution;
they are provided to advice code as members of the join-point–specific type JoinPoint. (b) Elements of
the run-time join-point API provide type-safe access to the actual values related to a function or method call or
execution; they are provided as methods to be invoked for the JoinPoint instance pointer tjp.

Excursus: C++ Template Meta-Programming

C++ templates are a Turing-complete functional language of its own which can be
exploited for static meta-programming [Vel95, CE00, p. 407]. A C++ template meta-
program works on types and constants and is executed by the compiler at compile-time.

A language is Turing-complete if it provides a case discrimination and a loop construct.
In the C++ template language, case discrimination is realized by template specialization.
Loops are implemented by recursive instantiation of templates. These language features, in
conjunction with nontype (int) template parameters, are the building blocks of template
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meta-programs.10 This is demonstrated in the most popular (and simple) example for a
template meta-program:

// recursive definition of fac; termination by specialization for 0

template< int N > struct fac { enum{ res = N * fac< N - 1 >::res }; };

template<> struct fac< 0 > { enum{ res = 1 }; };

// calculate factorial at compile-time

const fac_5 = fac< 5 >::res;

The fac<N> template calculates the factorial of the passed integer constant N as an enum

value res at compile-time – by recursive instantiation of itself. The recursion is terminated
by a template specialization for fac<0>.

4.2.2.2. Support for Generative Programming

The extended compile-time join-point API provides adequate support to iterate in a similar
way with template meta-programs over the sequence of argument types related to some
join point. This facilitates generative programming techniques based on C++ templates
[CE99, CE00, Ale01] to generate the statically typed advice code according to the affected
function’s signature at compile-time. Such generative advice can be understood as an
advanced form of generic advice.

The key is to provide the sequence of argument types in a “meta-program–friendly” way.
For this, the argument types are not represented as explicit elements (Arg1, ..., ArgN) in the
join-point API, but indirectly via the Arg<i> template. The AC++ weaver has to generate
this template as member of the JoinPoint type and specialize it for each parameter. The
following shows an excerpt of the JoinPoint type generated by AC++-0.9 for a call from
main() to a function that receives a bool and an int& value as parameters:11

struct TJP_main0 { // typedef’ed to JoinPoint inside advice body

...
enum { ARGS = 2 };

template <int I> struct Arg {};

template <> struct Arg<0> {

typedef bool Type; typedef bool ReferredType;

};

template <> struct Arg<1> {

typedef int & Type; typedef int ReferredType;

};

...
};

10Strictly speaking, nontype template parameters are not mandatory for the Turing-completeness of the C++
template language. They “just” make template meta-programming practicable; we thereby can use the
built-in C++ support for integer arithmetics.

11This code was generated for VISUALC++ as a back-end compiler. Because of subtle differences in the
interpretation of what the C++ standard says about template specializations in class or namespace scope,
slightly different code must be generated for G++. You can find a G++ example in Listing 4.2.
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Each specialization of the Arg<i> template defines type aliases to the actual parameter’s
type “as is” (Type) and with all reference modifiers removed (ReferredType). Additionally,
the number of arguments (ARGS) is provided as a compile-time constant. The default
(not specialized) implementation of the Arg<i> template remains empty. This ensures that
a compile-time error is thrown if an advice implementation tries to use a nonexistent
argument (not within the range of 0≤ i < ARGS).

Because of this “meta-program–friendly” structure, it is now possible to move the iteration
over the function arguments to a compile-time loop and thereby make the advice code
truly generic. The result is a reusable tracing aspect that supports quantification over
arbitrary join points:

#include <iostream.h>

template< class TJP, int N > struct printer {

static void print( TJP* tjp ) {

std::cout << " " << *tjp->template arg< TJP::ARGS - N >();

printer< TJP, N - 1 >::print( tjp );

}

};

template< class TJP > struct printer< TJP, 0 > {

static void print( TJP* tjp ) { /* do nothing */}

};

aspect Tracing {

pointcut virtual methods() = 0;

advice methods() : before() {

std::cout << "before " << tjp->signature() << ", called with:";

printer< JoinPoint, JoinPoint::ARGS >::print( tjp );

std::cout << std::endl;

}

};

Of course, tracing of parameter values is not the only useful application of generative
advice – it is just an example. The caching example in Appendix section A.2.2 demonstrates
a sophisticated application of generative advice for the implementation of a reusable and
efficient caching aspect.

4.2.3. Example: Checking for Invalid Object Identifiers in AUTOSAR OS

The aspect ServiceProtection_InvalidObjectCheck in Listing 4.1 implements a part of
the architectural policy Service protection in AUTOSAR OS (see Section 3.1.2.3), namely
the test for an invalid system object identifier.12 AUTOSAR-OS services (API functions)
take the system object they should work on as first parameter and shall return with the
E_OS_ID error code if the object identifier does not refer to a valid instance. However,
depending on the service, the parameter refers to either a task, or resource, an application
12The example has been taken from the implementation of the CiAO operating system, which we will further

discuss in Chapter 6.
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1 aspect ServiceProtection_InvalidObjectCheck {

2 pointcut affectedServices() = "% AS::ActivateTask(...)" || "% AS::ReleaseResource(...)" ...;
3 advice execution( affectedServices ()) : around () {

4 if( *tjp->arg<0>() < (OSObjectTraits< Arg< 0 >::ReferredType >::MAX) ) {

5 tjp->proceed(); // valid object id, proceed

6 }

7 else {

8 *tjp->result() = E_OS_ID; // invalid object id, return error code

9 }

10 }

11 };

// default implementation (raises a compile-time error if no specialization can be found)

template< typename T > struct OSObjectTraits { /* MAX *not* defined */ };

// type-specific specializations (examples)

template <> struct OSObjectTraits< TaskType > { enum{ MAX = cfOS_NUMBER_OF_TASKS }; };

template <> struct OSObjectTraits< ResourceType > { enum{ MAX = cfOS_NUMBER_OF_RESOURCES }; };

...

Listing 4.1: Test for invalid system objects in AUTOSAR OS with generic advice.
The aspect InvalidObjectCheck employs generic advice to be independent from the actual object type; all
type-dependent code (the maximum value to check for) has been externalized into traits classes.

mode, alarm, or ISR, a counter or schedule table, or an OS application. ActivateTask(), for
instance, takes a task (TaskType) as first parameter, whereas ReleaseResource() takes a
resource (ResourceType). Withouth generic advice it would be necessary to define one
piece of advice per object type for the validation, as the test depends on the parameter
type. With generic advice it is possible to deal with all object types by a single piece of
advice. Only the actually type-dependent part has to be implemented on a per-type basis
(the maximum identifier value, which is here provided by traits classes [Mye96, Ale00]).
Depending on the type of the first argument, the compiler selects the fitting specialization
of the OSObjectTraits< type > template (line 4).

A further advantage of the solution with generic advice is robustness. If the API gets
extended and the advice affects a service that uses a so far unknown object type a compile-
time error is thrown. A solution without generic advice (one distinct piece of advice per
object type) always bears the danger that this situation is silently missed.

4.2.4. Summary

With generic advice, AspectC++ now supports a concept for advice polymorphism that
fits well into the philosophy of the C++ language. Generic advice facilitates reusable,
type-safe, and efficient aspect implementations on the base of quantification over static
types. We will see more examples in Chapter 6.
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4.3. AspectC++ Overhead

Cost efficiency in the generated code is a major goal of AspectC++. Therefore, the
AspectC++ weaver AC++ follows a source-to-source weaving approach with generation
of code patterns that (1) do not use “expensive” C++ language elements (such as RTTI
or exceptions), and (2) can be well optimized by current C++ compilers. But how well?

In this section, I present the results of a detailed cost evaluation of code generated by
AC++-1.0PRE1. My goal with this evaluation was to get an in-depth understanding of
the cost induced by every AspectC++ language feature, and to set this in relation to what
we would expect from an “ideal weaver” (Section 4.1.3).

The evaluation was originally performed with AC++-0.9. It revealed some unexpected
overhead, mostly caused by deficiencies in the optimization capabilities of current back-
end compilers. Partly, however, I was able to overcome these deficiencies by suggesting
alternative, more “optimizer-friendly” code generation patterns. The outcome of the first
evaluation eventually led to the implementation of AC++-1.0PRE1, which applies the
new code-generation patterns.

4.3.1. Code Generation of AC++

The static AspectC++ weaver AC++ transforms AspectC++ code (C/C++ code with
AspectC++ language elements) into C++. Advice is transformed into member functions
of the corresponding aspect, which in turn is transformed into C++ class. Listing 4.2
demonstrates these transformations for a simple aspect that gives before-advice.

At first sight, the output of AC++ seems to be surprisingly huge and over-complicated.
The generated code is, however, not intended for reading by a human developer, but
tweaked for flexibility and for an optimizing C++ back-end compiler.13 An advice method,
for example, is not called directly, but routed over an extra forward-declared invoke_xxx()

inline-function (line 67). This detour makes it possible to place the aspect definition
behind all class definitions in the translation unit. Only thereby the aspect itself can use the
classes affected by it, for instance use them with member variables or method parameters.

4.3.2. Benchmarks

To evaluate the overhead induced by the AC++-generated code for various AspectC++
language features, I conducted a study with a large series of microbenchmarks. In these
microbenchmarks the overhead of applying some functionality (incrementation of a global
variable) by advice is compared to a hand-written “tangled” solution. The condensed
results are depicted in Tables 4.3, 4.4, 4.5, and 4.6. All benchmarks were performed

13The most relevant optimizations the C++ compiler has to support are: (1) function embedding for functions
that are explicitly marked as inline and (2) local alias analysis for structure and array parameters, which
is required to prevent unnecessary copies of the join-point context (tjp).
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(a) translation unit Test.cpp

volatile int global;
struct B {
int bar(int a, int b) {...}

};
struct A {
int foo(B &b) {
return b.bar(47, 11);

} };

(b) aspect header jpapi.ah

extern volatile int global;

aspect jpapi {
advice call("int B::bar(int, int)")
: before () {
global = *tjp->arg<1>();

}
};

(c) woven translation unit Test.acc

1 class jpapi;
2 template <class JoinPoint>
3 inline void invoke_jpapi_a0_before (
4 JoinPoint *tjp);
5 volatile int global;
6 struct B {
7 int bar(int a, int b) {...};
8 };
9 struct A {

10 int foo (B &b) {
11 return __call_foo_0_0(
12 this, &b, 47, 11);
13 }
14 struct TJP_foo_0_0 {
15 typedef int Result;
16 typedef ::A That;
17 typedef ::B Target;
18 ...
19 template <int I, int DUMMY = 0>
20 struct Arg {...};
21 template <int DUMMY>
22 struct Arg<0, DUMMY> {
23 typedef int Type;
24 typedef int ReferredType;
25 };
26 template <int DUMMY>
27 struct Arg<1, DUMMY> {...}
28
29 void **_args;
30 template <int I>
31 typename Arg<I>::ReferredType *arg(){
32 return (typename
33 Arg<I>::ReferredType*) _args[I];
34 } };

35 static inline int __call_foo_0_0 (
36 ::A *srcthis, ::B *dstthis,
37 int arg0, int arg1)
38 {
39 AC::ResultBuffer< int > result;
40 void *args_foo_0[] = { (void*)&arg0,
41 (void*)&arg1 };
42 TJP_foo_0_0 tjp;
43 tjp._args = args_foo_0;
44 invoke_jpapi_a0_before<TJP_foo_0_0>(
45 &tjp);
46 ::new (&result) int (dstthis->bar(
47 arg0, arg1));
48 return (int &)result;
49 }
50 }; // struct A
51
52 class jpapi {
53 public:
54 static jpapi *aspectof () {
55 static jpapi __instance;
56 return &__instance;
57 }
58 template<class JoinPoint>
59 void __a0_before (JoinPoint *tjp) {
60 global=(int)tjp->template arg<1>();
61 } };
62
63 template <class JoinPoint>
64 inline void invoke_jpapi_a0_before (
65 JoinPoint *tjp)
66 {
67 ::jpapi::aspectof()->__a0_before (tjp);
68 }

Listing 4.2: Code transformation performed by ac++-1.0pre1 (example).
(a) Translation unit Test.cpp with classes A and B; A::foo() calls B::bar(). (b) Aspect header jpapi.ah. The
aspect jpapi gives before advice for all calls to B::bar() and uses the join-point API to retrieve the value of the
second parameter passed to B::bar(). (c) Woven translation unit Test.acc. The aspect jpapi has been trans-
formed into a C++ class jpapi (lines 52–61), the advice into a member function jpapi::_a0_before() (line 59).
The original call to B::bar() has been replaced by a call to the generated wrapper function A::_call_foo_0_0()

(line 11). Furthermore, a corresponding join point class TJP_foo_0_0 has been generated that encapsulates
the join-point–specific static and dynamic context. In the wrapper function (lines 35–49), an instance tjp

of TJP_foo_0_0 is created, initialized (lines 40–42), and passed as template argument to the before-advice
invocation function invoke_jpapi_a0_before() (line 44), which retrieves the aspect instance and calls the
generated advice method (line 67). Finally, the call to the original B::bar() is performed (line 46).
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(a) G++-3.3.5 cycles stack code

advice type abs ∆ abs ∆ abs ∆

tangled 4 0 4128

ex
ec

ut
io

n before 6 2 0 0 4128 0

after 6 2 0 0 4128 0

around 6 2 0 0 4128 0

around-0.9 23 19 56 56 4192 64

ca
ll

before 6 2 0 0 4128 0

after 6 2 0 0 4128 0

around 6 2 0 0 4128 0

around-0.9 23 19 56 56 4192 64

(b) ICC-9.0 cycles stack code

advice type abs ∆ abs ∆ abs ∆

tangled 0 0 6372

ex
ec

ut
io

n before 0 0 0 0 6372 0

after 0 0 0 0 6372 0

around 0 0 0 0 6372 0

ca
ll

before 3 3 0 0 6356 0

after 3 3 0 0 6356 0

around 3 3 0 0 6356 0

Table 4.3.: AspectC++ microbenchmark incrementer.
Cost (clock cycles, stack and code bytes) of incrementing a global int variable either in the body of a function
void f() (tangled) or by giving advice (before/after/around for call/execution join points) to the same function.
∆ denotes the difference to tangled. (a) Results with G++-3.3.5 and AC++-1.0PRE1 (AC++-0.9 for case
around-0.9). (b) Results with ICC-9.0 and AC++1.0PRE1.
[Measurements were performed on an Intel PIII E (“Coppermine”) machine running at 600 MHz under Linux 2.6
in single user mode. Cycles were measured with rdtsc for 1000 iterations and averaged over 100 series (σ <
0.1%). Used G++ optimization flags: -O3 -mpreferred-stack-boundary=2 -fno-align-functions -fno-align-jumps
-fno-align-loops -fno-align-labels -fno-reorder-blocks -fno-prefetch-loop-arrays. Used ICC optimization flags:
-O3]

with AC++-1.0PRE as weaver and G++-3.3.5 as back-end compiler. The G++ compiler
from the GNU compiler collection (gcc) is of particular interest for our domain, as it
is available for a large number of hardware platforms, including many 8-bit and 16-bit
“embedded platforms”. To get an impression of the “gcc impact” in the results, however,
most benchmarks were repeated with Intel’s ICC-9.0 as back-end compiler. Even though
ICC is not available for any typical “embedded platform”, the results with this compiler
are of a theoretical interest, as ICC is known to be one of the best optimizing compilers
available today.

For each benchmark, the consumed CPU time (clock cycles), dynamic memory consumption
(stack, bytes), and static memory consumption (code/data) were measured.14

4.3.2.1. Simple Advice for Parameterless Functions

The base overhead of applying advice to a parameter-less function is low (benchmark
incrementer, Table 4.3). With G++-3.3.5 and AC++-1.0PRE1, advice invocation takes
only 2 cycles, independent from the type of advice (before, after, around), the join point
type (call/execution), and even the number of aspects giving advice to the join point

14The data numbers were measured, but are omitted in Tables 4.3, 4.4, and 4.5, as the AspectC++ features
under observation in these benchmarks do not contribute to data.
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(a) G++-3.3.5 cycles stack code

# aspects abs ∆ abs ∆ abs ∆

ex
ec

ut
io

n 1 6 0 4080

2 5 -1 0 0 4080 0

3 6 1 0 0 4096 16

ca
ll

1 6 0 0 4096

2 5 -1 0 0 4096 0

3 6 1 0 0 4096 0

(b) ICC-9.0 cycles stack code

# aspects abs ∆ abs ∆ abs ∆

ex
ec

ut
io

n 1 3 4 6424

2 2 -1 4 0 6340 -84

3 3 1 4 0 6340 0

ca
ll

1 4 0 0 6324

2 5 1 0 0 6340 16

3 9 4 0 0 6340 0

Table 4.4.: AspectC++ microbenchmark multiaspect.
Scaling of cost (clock cycles, stack and code bytes) if 1–3 aspects give around-advice to the same call or
execution join point. ∆ denotes the difference to the previous line. (a) Results with G++-3.3.5. (b) Results
with ICC-9.0. For methodical details see Table 4.3.

(benchmark multiaspect, Table 4.4). The size of the text segment (code) also remains
stable, the increase by 16 bytes in one case was caused by linker alignment of the affected
section.

The benefit of the improved code generation patterns for around-advice in AC++-1.0PRE1
become visible when comparing these numbers to the around-0.9 line in Table 4.3.a. With
AC++-0.9, around-advice is noticeably more expensive than with AC++-1.0PRE1. This
cost is caused by the call of the original function in tjp->proceed(): In the AC++-0.9
implementation, the context is passed via a stack-allocated data structure containing all
parameters and a function pointer to invoke the original function later. This explains
the extra stack overhead. Moreover, calls via function pointers do not get inlined by
most back-end compilers, which explains the CPU overhead. In AC++1.0PRE1, the
implementation of tjp->proceed() has been improved so that the original function is
called directly, which better supports inlining by the back-end compiler. You can find a
detailed comparison of the code generation differences in Appendix section A.4.

The ultimate result is that around-advice now induces exactly the same – very low –
overhead as before- or after-advice. These results fit well with our expectations regarding
the overhead of simple advice for statically evaluable pointcuts, as yielded by the call()

and execution() pointcut functions (Section 4.1.3). The good results for around-advice
are nevertheless notable – in AspectJ the cost of around-advice is significantly higher than
for before-/after-advice [DGH+04].

With ICC as back-end compiler, the variation in the results is higher, but in most cases
they are even better than the G++ results. For example, in the simple incrementer test
scenario there are cases in which there is no or sometimes even a “negative overhead”. The
compiler was able to generate semantically equivalent code with fewer or better-ordered
instructions in these cases.
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(a) G++-3.3.5 cycles stack code

jpapi abs ∆ abs ∆ abs ∆

plain 5 16 3968

that() 7 2 20 4 3968 0

target() 8 3 20 4 3968 0

result() 11 6 16 0 3968 0

n
=

1 plain 13 24 3968

arg<0>() 13 0 24 0 3968 0

n
=

2 plain 13 32 3984

arg<1>() 13 0 32 0 3984 0

(b) ICC-9.0 cycles stack code

jpapi abs ∆ abs ∆ abs ∆

n
=

0

plain 9 16 6372

that() 8 2 20 4 6372 0

target() 11 3 20 4 6372 0

result() 7 6 16 0 6372 0

n
=

1 plain 14 24 6404

arg<0>() 14 0 24 0 6404 0

n
=

2 plain 17 32 6420

arg<1>() 17 0 32 0 6420 0

Table 4.5.: AspectC++ microbenchmark jpapi.
Cost (clock cycles, stack and code bytes) of a member function call to some member function void C::f(n)
(with n := number of int arguments) for which some advice is given which either does not use the join-point API
(plain) or calls a join-point API function (that(), target(), ...). ∆ denotes the difference to the corresponding plain
line. (a) Results with G++-3.3.5. (b) Results with ICC-9.0. For methodical details see Table 4.3.

4.3.2.2. Simple Advice for Parameterized Functions

For advice given to functions with parameters, the stack space allocated by the compiler
to pass call-by-value parameters is actually doubled. This becomes evident from the
plain lines in Table 4.5, which represent the cost of a member function call with 0–2 int

parameters for which some advice was given.15 Each additional 4-byte int parameter
increases the absolute stack cost by 8 bytes with G++ and, because of a more agressive
stack frame aligning, even 8–16 bytes with ICC. The reason turned out to be a limitation
of the interactions between the compiler’s inliner and optimizer: Whenever a function
is inlined, the compiler ensures call-by-value semantics by pushing an extra copy of
all function parameters on the stack. In most cases, the optimizer later replaces the
parameter passing code with direct register access, but the (now completely useless) stack
reservations for the extra copy remain in the code nevertheless. Exactly this happens with
the AC++-generated wrapper functions, whose purpose was explained in Listing 4.2.

4.3.2.3. Context Retrieval via the Join-Point API

The overhead to retrieve join-point–specific context is also relatively low (benchmark jpapi,
Table 4.5). Compared to plain advice, only 0–6 extra cycles are consumed to provide access
to context with G++, and even less with ICC. Accessing context that is implicitly available
at the join point (such as argument and result values) does furthermore not induce
any additional stack cost. The optimizer replaces the required join-point–context data
generated for this purpose, such as the array of argument references, with direct access

15Table 4.5 numbers are not directly comparable with those from Table 4.3 and Table 4.4, as they include the
cost of the method call itself.
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G++-3.3.5

pointcut function ∆ cycles ∆ stack ∆ code ∆ data

cflow() 4

enter + leave 6 16 8

test 12 52 56

that() 10 24 128 50

target() 10 24 128 50

Table 4.6.: AspectC++ microbenchmark dynamic.
Cost (clock cycles, stack, code, and data bytes) of the not-statically evaluable pointcut functions cflow(), that(),
and target(). ∆ denotes the difference to a plain execution() pointcut. Results with G++-3.3.5. For methodical
details see Table 4.3.

to the referenced parameters. Only “extra” context, such as the pointer to the affected
instance (returned by tjp->that()) or the pointer to the target of the call (returned by
tjp->target()), requires additional stack space (4 bytes each).
The results show the benefits of the “pay as you use” context tailoring performed by
AC++. The additional 4 stack bytes to store the pointer returned by tjp->that() are only
consumed if the advice code actually uses tjp->that().

4.3.2.4. Not-Statically Evaluable Pointcuts

Compared to these numbers, the overhead of dynamic pointcut functions is relatively high
(benchmark dynamic, Table 4.6). As pointed out in Section 4.1.3, not-statically evaluable
pointcuts induce an overhead on principle, because they can not be resolved completely
at weave-time.

For the cflow() pointcut function, a run-time counter has to be maintained, which takes 4
additional bytes of data. For every pass through the observed control flow (enter+leave),
this counter has to be incremented and decremented, which takes 6 CPU cycles altogether.
The pointcut evaluation itself, which basically is a null-test against the counter (test),
takes 12 CPU cycles at run-time. For both cases, the stack overhead of 16 respectively
52 bytes is higher than necessary. Again this is a problem of the G++ inliner/optimizer;
superfluous stack reservations can be found in the object code.

The pointcut functions that() and target() (not to be mixed up with the equally named
join point API methods) yield all join points in the dynamic control flow where the run-
time type of an object instance affected by advice (that()), respectively receiving a call
(target()), matches a given type. They require a dynamic type test for evaluation, for
which AC++ inserts a virtual function into all relevant classes. The additional 10 cycles
of CPU and 24 bytes of stack are basically the cost of calling this virtual function. The
more than 120 extra bytes of code and 50 additional bytes of data can be considered a
“worst case scenario” if that() and target() are applied to classes that neither contain a
virtual function table nor a constructor. If applied to a class hierarchy that already uses
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virtual functions, the cost would be lower, as the compiler would not have to generate
support for a new virtual function table, but only extend an existing table.

4.4. Discussion of Results

In the following, I discuss the achieved results and insights of the language level with
respect to their greater effects on the qualitative and quantitative dimensions of configura-
bility.

4.4.1. Qualitative Effects

The qualitative effects towards a better configurability in system-software product lines
are difficult to extrapolate from the language level. However, what can be concluded
is that AOP extends on the expressiveness of existing programming paradigms, namely
object-oriented programming (OOP) and generic or generative programming (GP) by the
mechanisms behind obliviousness and quantification (inversion of control flow specification
by advice and implicit per–join-point instantation of advice).

Inversion is promising for the implementation of granularity and variability in the solution
space of a software product line. Components thereby can integrate themselves by advice,
which may reduce internal coupling. We will see examples for this idiom, which is called
advice-based binding, in Chapter 6, where it is applied extensively in the development of
the CiAO operating-system product line.

Implicit instantiation is also promising for loose coupling, but even more important for the
implementation of the architectural policies of an operating system. These polices typically
crosscut homogeneously with the implementation of many other system components. We
will see application examples for this in the “eCos” study in Chapter 5 and in the chapter
about the CiAO operating-system product line in Chapter 6.

4.4.2. Quantitative Effects

A major motivation for the in-depth analysis of the language level was to get a detailed
understanding of the cost induced by AOP. The results are, overall, promising:

The inherent cost of aspects. AOP can be applied as a “mostly statical” approach. Given
an “ideal weaver” as described in Section 4.1.3, the cost of an AOP-based, separated
implementation of some concern should be identical to the cost induced by an
“in-place” solution. In most cases, the extra expressiveness of AOP does not come at
the price of a run-time and memory overhead.

Special care, however, has to be taken with AOP features that are not resolvable
statically and, hence, induce some overhead at run-time. For not-statically evaluable
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pointcuts, based, for instance, on pointcut functions for dynamic control flow or
type filtering (cflow, target, that), an overhead is inevitable. The same holds for
join-point–specific context that is not just provided, but explicitly generated by the
aspect weaver.

Even though these overheads are AOP-related: We should not consider them as
AOP-caused. Any “in-place” implementation of similar functionality would obviously
induce similar cost. The AOP features, however, imply a danger of hiding this cost;
aspect developers have to be aware of these effects.

The actual cost of aspects. The AspectC++ weaver AC++ comes very close to an “ideal
weaver”. This is especially true for AC++1.0PRE1, which overcomes the deficiences
of previous versions when applying around-advice. In the microbenchmarks, advice
given to statically evaluable pointcuts now induces only a very small overhead. The
remaining overhead could be traced back to unnecessary stack allocations by the
back-end compiler. There is little that can be done on the weaver side here, we can
only hope that compiler vendors improve on this situation in future versions of their
compilers.16

The not-statically evaluable pointcut functions cflow(), that(), and target() in-
duce notable CPU and memory cost. This cost is pay-as-you-use; it remains difficult,
though, to assess how well AC++ compares in these cases to an “ideal weaver”. Nev-
ertheless, the conclusion is clear: In a resource-critical domain, such as embedded
systems, these features should be avoided.

As expected, the usage of join-point–specific “extra” context induces some cost as
well. Again, AC++ behaves like an ideal weaver in these cases and offers a strict
“pay-as-you-use” tailoring of the context.

The cost of generic advice and advice inlining. Generic advice, the AspectC++ mech-
anism for advice polymorphism, in principle implies a danger of code bloating. The
reason is that generic advice is instantiated per join point, which might result in a
high number of (similar) template instantiations, each being compiled separately
into the machine code. As advice code is instantiated per–join-point anyway, it is
furthermore generated as inline functions.

Code bloating by an (accidentally) large number of template instantiations is a gen-
eral and well-known issue in the C++ domain [Han97]. There have been attempts
to address this issue by better compiler and linker technology (e.g., [SBB02]), how-
ever, such technology is not yet state of the art. It is difficult to judge the effects that
code bloating by generic advice has on real applications as this depends on many
other properties, especially the size of the compiled advice code and the different
contexts it is instantiated for. The generative tracing aspect from Section 4.2.2.2, for
example, instantiates relatively expensive streaming code. If this aspect is quantified

16Getting rid of stack reservations that are no longer necessary after optimization seems to be a tough
problem, though. All analyzed back-end compilers suffer from this problem – and it is still present in
recent G++ versions (tested with G++-4.2).
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over a large number of join points, code bloat effects will arise.17 Tracing, however,
is an extreme case. Most aspects, such as the observer and caching examples, do
neither embed as much external code nor are they quantified over a similar extent
of join points.

Whether there is a danger of code bloat or not – we have no alternative to static
instantiation. Static genericity is part of the C++ philosophy, and it is for good
reasons – it leads to very flexible and efficient code. By advice-code inlining and
static instead of dynamic genericity, we basically trade data, stack, and CPU efficiency
for code overhead. For the embedded systems domain, this is not too bad a deal:
As shown in Section 2.1.2, SRAM is roughly 10 times more expensive than flash
memory.

To conclude: AOP with AspectC++ seems to be feasible even in highly resource-
constrained environments. Most AOP features do not induce an overhead. Nevertheless,
some care has to be taken with respect to not-statically evaluable pointcuts, extensive
usage of join-point context, and potential advice code bloat effects. These insights, as well
as the significant improvement in the implementation of around-advice, underline the
value of the extensive cost analysis.

4.5. Further Related Work

In the following, I discuss some work that is not particularly related to the topic of this
thesis, but to specific sub-topics of this chapter.

4.5.1. AOP in Pure C++

Several attempts have been published that aim to “simulate” AOP concepts in pure C++
using advanced template techniques or macro programming [CDE01, Ale02, Dig04]. In
these publications it is frequently claimed that in the case of C++ a dedicated aspect
language is not necessary: The instantiation of advice code (according to a specific join
point at weave time) and the instantiation of a template or macros (according to a set
of parameters at compile time) are similar processes. However, the “code instantiation
focus” is a too operational view on the ideas of AOP that neither provides obliviousness
nor quantification.

17This very much depends on the actually involved types and the implementation of the C++ run-time
library. To give a ball-park figure: With VisualC++ 2003, the tracing aspect induces around 200 bytes of
extra code for a function with two parameters and up to 1000 bytes of extra code for a function with 11
parameters.
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4.5.2. Generic Advice in Other Aspect Languages

The AOSD community has suggested several approaches to increase the static genericity
of AspectJ and other aspect languages. KNIESEL and RHO provide an excellent overview
of the (big) topic of “generic aspect languages” [KR06]. Most “generic aspect languages”
are based on an integration of logic meta-programming into the join-point–description
and advice-definition language [DJ04, GB03, ZHS04, HU03, KRH04]. In these languages,
logic meta-variables can be (either explicitly or implicitly) bound to matching program
entities and then be used for generic advice code or introductions. Sally [HU03] focuses on
genericity for structural aspects and proposes parametric introductions as an extension of
the inter-type declaration mechanism in AspectJ and Hyper/J. LogicAJ [KRH04] supports a
similar mechanism called generic introductions, together with generic advice and reasoning
over nontype program entities, such as methods, fields, or even expressions. The C++
template mechanism, which is used for generic advice in AspectC++, supports “meta
variables” for types and (compile-time) integer expressions only. Hence, the LogicAJ
approach is a lot more powerful than the generic advice mechanism in AspectC++.
However, despite all advantages, the use of logic meta-programming also leads to a
very high level of complexity. For C++, which already is a fairly rich language, such
an approach implies the risk of introducing redundant language concepts. The goal of
AspectC++ is a careful integration of AOP concepts with the existing idioms and the
philosophy of the C++ language.

4.5.3. Aspect Language Overhead

Some related work regarding cost of AOP has been conducted in the AspectJ domain.
DUFOUR and colleagues have presented a benchmark suite to measure the dynamic
behavior of AspectJ programs [DGH+04]. Their work focuses on a novel measuring
approach; however, it also shows that several AspectJ features induce significant overhead.
Based on these insights, AVGUSTINOV and associates have suggested some improvements
for the AspectJ code generation [ACH+05] that would specifically reduce the overhead
caused by cflow and around in AspectJ programs. JOHANSEN and colleagues describe
an approach for “zero-overhead composable aspects” for C# and .NET by intentionally
supporting only statically evaluable pointcuts in ther Yiihaw weaver [JSS07].

4.6. Chapter Summary

The goal of this chapter was to get a deep understanding of the technical issues of AOP in
general and AspectC++ in particular. The results from the language level show that AOP
does not induce an inherent overhead that makes it per se unacceptable for the domain
of efficient system software. Key to success, however, is to bind advice to join points at
compile-time whenever possible, that is, to avoid not-statically evaluable pointcuts.
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With the introduction of generic advice, AspectC++ now provides the efficiency of compile-
time binding in conjunction with aspect genericity. AspectC++ thereby fulfills an impor-
tant precondition for consideration as a technology towards better separation of concerns,
decomposability, and configurability in system software.

While these micro-benchmark effects are promising, they provide still limited insight into
the effects of a larger application of aspects. Still open is the question if aspects do really
lead to qualitative benefits such as better encapsulation and configurability of concern
implementations in system software. Are the quantitative effects still negligible if AOP
provides such benefits and is applied in a larger scale? To answer these questions, studies
with real software product lines are necessary.
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5
Implementation Level – Aspects in Action:

Practicing Configurability by AOP

On the language level, AOP with AspectC++ provides qualitative benefits (an increased
expressiveness we assume to be beneficial for configurability) without significant quanti-
tative disadvantages (overhead compared to an identical “tangled” implementation). We
also learned, however, that some language features do induce costs, and therefore should
be avoided in the development of software for resource-thrifty embedded systems.

In this chapter, we will lift up this knowledge to the implementation level of configura-
bility. The goal is to understand under which circumstances the assumed benefits hold –
respectively, can be realized at all – when we use aspects on a larger scale to implement
configurability in system software for embedded devices. Are the quantitative effects
still negligible if we affect hundreds or thousands of join points? Is the expressiveness of
AOP really sufficient to replace conditional compilation as the dominant implementation
technique for configurability? Can we really do without the “expensive” AOP features?
To answer these questions, I conducted a larger case study with the well-known eCos
operating system; in this chapter I describe and discuss the results.

The chapter is structured as follows: I start with an overview on the design of the “eCos”
study in Section 5.1, which is followed by the presentation of the study itself in Section 5.2
and Section 5.3. I discuss the results and their relevance for the aspect-aware development
of system software in Section 5.4; finally, the chapter is summarized in Section 5.5.
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5.1. Case Study “eCos” – Objectives and Study Design

The overall goal of the “eCos” study was to evaluate and understand the effects and
suitability of AOP for the implementation of configurability in operating-system product
lines for embedded devices. In other words, the goal was to increase the awareness
regarding the application of aspects in such systems:

Objective 1: Analyze how kernel policies manifest themselves in the source code. Evalu-
ate if we can implement them by aspects.

Objective 2: Analyze how fine-grained configuration options manifest themselves in the
source code. Evaluate if we can implement them by aspects.

Objective 3: Analyze the quantitative effects of a large-scale utilization of aspects to im-
plement configurability. Evaluate if AOP can compete with the dominant technique
of conditional compilation.

Objective 4: Evaluate if kernel policies actually become more configurable by aspects.
Analyze the factors that hinder or enable configurability by aspects.

Each of the above objectives required some analysis and some evaluation work to be
carried out. The evaluation work is actually constructive – in the sense that the question
is operationalized by “trying to implement it by AOP”. Hence, for each objective, an
analytical part and a constructive part had to be reflected in the actual study design. This
led to the “eCos” study.

The “eCos” study is an analytical and constructive case study. It is primarily analytical, as
it is based on an existing software product line, namely the eCos embedded operating
system. We have already seen and discussed the first part – the analysis – of this study
in Chapter 3, where we figured out how the configuration of central kernel policies and
fine-grained configuration options becomes manifest in the kernel source code (objectives
1, 2; analytical part). In the following second part of the study (Section 5.2), we now
evaluate if and how this configurability can be refactored into aspects (objectives 1, 2;
constructive part). The resulting AspeCos is functionally identical to the original eCos
kernel, but uses aspects instead of conditional compilation to implement the refactored
concerns. This permits a fair comparison between AOP and conditional compilation as a
means to implement configurability (objective 3). For the third part of the study, AspeCos
has been extended by extra configuration options regarding kernel policies (objective 4);
these extensions and their implementation issues are discussed in Section 5.3.

5.2. Aspectizing the eCos Kernel

eCos, the embedded Configurable operating system [eCo, Mas02], is a highly configurable
open-source operating-system product line targeted for the market of embedded systems.
We have learned about eCos, its configuration approach, and its kernel in Section 3.1.1.

101



5. Implementation Level – Aspects in Action: Practicing Configurability by AOP

We have also analyzed the scattering of 12 configuration options (8 thread options plus 4
mutex options) and three central kernel policies (Tracing, Instrumentation, Synchronization)
over the kernel source base – and found an “#ifdef hell” (Listing 3.1).

With respect to these problems the next logical step was the constructive part of objectives
1 and 2 (Section 5.1) – the refactoring of the identified policies and configuration options
as far as possible into aspects. This resulted in the AspeCos system, an “aspectized” version
of the eCos system in which the enforcement of system policies and configuration options
is implemented by means of AOP. In the following sections, I describe these refactorings
and their qualitative and quantitative effects on the eCos kernel.

5.2.1. Refactoring Concerns into Aspects

AspeCos was derived from eCos by means of refactoring. With respect to objective 3 – the
quantitative comparison of eCos and AspeCos – only gentle refactorings were permitted
in this process: only the where (the distribution of concerns) was to be improved; the
actual concern implementations (the what) were not to be changed. Basically, refactoring
was done by mechanically carrying out the following three steps for each identified policy
enforcement and #ifdef block:

1. Cut the code related to the concern from the affected function.

2. If some advice for this concern does already exist, then extend the pointcut the
advice is given to.

3. Otherwise create a new pointcut and an advice definition for this concern, and

a) paste the code related to the concern into the advice body

b) substitute any context access (e.g., to actual parameter values or the object
instance) with calls to the join point API.

This self-imposed restriction regarding the refactoring in some cases had the consequence
that a concern could not entirely be factored out.

5.2.1.1. Refactoring of Policies

The above holds for all of the identified configuration options and kernel policies, but
Tracing. As a general-purpose and I/O-intensive development concern, I did not consider
Tracing as a reasonable subject for overhead comparisons in an operating-system kernel.
Hence, Tracing was not only refactored, but also improved. The AspeCos implementation
of tracing (due to the flexible match mechanism of AspectC++) provides a much higher
coverage together with a better tailorability. This can be seen from the (maximal) number
of affected join points in Table 5.1, which is way above the number of tracing macro
invocations in the original eCos.

In the following, I therefore focus on the more performance-critical and kernel-related
Synchronization and Instrumentation concerns:
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(a) eCos (b) AspeCos

lines of code lines of code join points

policy # % # % # %

Tracing 336 6.5 4 0.1 632 67.9

Instrumentation 162 3.1 3 0.1 139 14.9

Synchronization 187 3.6 0 0.0 160 17.2

policy total 685 13.2 7 0.2 931 100

nonpolicy total 4520 86.8 4520 97.7 - -

kernel total 5205 100 4527 100 931 100

Table 5.1.: Comparison of kernel policy enforcement in eCos and AspeCos.
Listed is the number and percentage of policy-related macro and function invocations in the C++ parts of the
kernel code base (.cxx, .hxx, .inl files). (a) Results from the original eCos code base (reprinted from
Table 3.2). (b) Results from the AspeCos code base, together with the number of affected code join points.
Macro or function invocations from within the aspects (.ah files) are considered to be well separated and were
not counted.
[Lines of code counted with CCCC [Lit], numbers of join points obtained from the AC++–generated join point
repository]

(Kernel) Synchronization. Refactoring Synchronization was relatively simple. Synchro-
nization homogeneously crosscuts the implementation of other concerns; hence, the
same piece of advice can be applied to all join points:

aspect int_sync {

pointcut sync() = execution(...) // kernel calls to sync

|| construction(...)
|| destruction(...);

// advise kernel code to invoke lock() and unlock()

advice sync() : before() {

Cyg_Scheduler::lock();

}

advice sync() : after() {

Cyg_Scheduler::unlock();

}

// In eCos, a new thread always starts with a lock value of 0

advice execution(

"%Cyg_HardwareThread::thread_entry(...)") : before() {

Cyg_Scheduler::zero_sched_lock();

}

...
};

Before- and after-advice is used to superimpose the invocation of
Cyg_Scheduler::lock() and Cyg_Scheduler::unlock() into the execution1 of

1Some kernel functions are actually class constructors or destructors, for which the respective pointcut
functions are used instead of execution().
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Tracing Instrumentation Synchronization

Figure 5.1.: Distribution of policy enforcement in the AspeCos kernel source base.
Each bar represents a single AspectC++ file (.hxx, .cxx, .inl, .ah) from the kernel source base. Compared to
the original eCos (Figure 3.3), policy enforcement is much better localized. Instrumentation and Synchronization
are separated (almost) completely in the new aspect headers instrumentation_kernel.ah and sched.ah (the
two leftmost broad bars). For Instrumentation, three invocations of a CYG_INSTRUMENT_... macro could not be
factored out from the original code base (the other three broad bars).

all kernel functions that require synchronization. Overall, 160 code join points are
affected (Table 5.1). Note that the number of join points in AspeCos is below the
number of the corresponding function calls in eCos. In the original, some functions
contained more than one exit point, each with a call to Cyg_Scheduler::unlock().
After-advice, however, implicitly affects all exit points of a function.

Additionally (not shown above), the functions that implement locking itself have
been refactored from the scheduler class into a set of introductions; the int_sync

aspect now provides a hundred percent encapsulation of Synchronization.

(Kernel) Instrumentation. The refactoring of Instrumentation required a bit more work.
Instrumentation inhomogeneously crosscuts the implementation of other concerns.
For each kernel abstraction, eCos defines its own set of instrumentation macros. In
the refactored version, the invocation of the particular macro is given as advice to
the affected kernel functions such as follows:

aspect kernel_instrument_mutex {

...
advice execution("% Cyg_Mutex::lock(...)") : after() {
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if(*tjp->result()) {

CYG_INSTRUMENT_MUTEX(LOCKED,tjp->that(),0);

} }

advice call("% Cyg_Thread::wake(...)")

&& within("% Cyg_Mutex::unlock(...)") : after() {

CYG_INSTRUMENT_MUTEX(WAKE,tjp->that(),tjp->target());

}

...
};

In the advice bodies, the join-point API is used to retrieve the object instances
involved in a particular event. Overall, 13 aspects with 85 code advice definitions,
such as above, affect a total of 139 join points (Table 5.1). Again, the number
of affected join points is below the number of original macro invocations due to
multiple exit points in some functions.

Because of the self-imposed restriction to do only gentle refactorings, Instrumentation
could not be refactored completely into aspects. Three out of 162 invocations
remained in the code, all of which are related to the scheduler implementation.
In these cases, the invocation of a CYG_INSTRUMENT_xxx macro was conditional,
depending on some internal context such as follows:

void Cyg_Scheduler_Implementation::timeslice() {

if( --timeslice_count <= 0 ) {

CYG_INSTRUMENT_SCHED(TIMESLICE,0,0);

// Force a reschedule on each timeslice

need_reschedule = true;

timeslice_count = CYGNUM_KERNEL_SCHED_TIMESLICE_TICKS;

}

}

It should be clear, however, that with just slightly more elaborated refactorings (in
this case: “extract method” on the inner block) a complete separation of Instrumenta-
tion had been possible.

Overall, the refactoring of policy enforcement code into aspects was successful; the
scattering of this code over the kernel source base could notably be improved in AspeCos.
Figure 5.1 visualizes the distribution of Synchronization and Instrumentation in the AspeCos
kernel source base.

5.2.1.2. Refactoring of Configuration Options

For AspeCos, each configuration option has been encapsulated into a single aspect that
superimposes the functionality into the base component. Additional member functions
and state variables specific for a certain configuration option are applied by introductions,
option-specific behavior is applied by code advice. Table 5.2 lists the details. Overall, 98
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(a) eCos (b) AspeCos

#ifdef #ifdef join points

configuration option blocks blocks code intro

th
re

ad
op

tio
ns

(8
)

CYGVAR_KERNEL_THREADS_NAME 3 1 2 2

CYGVAR_KERNEL_THREADS_LIST 4 0 2 6

CYGVAR_KERNEL_THREADS_STACK_LIMIT 7 0 3 4

CYGVAR_KERNEL_THREADS_STACK_CHECKING 6 1 8 1

CYGVAR_KERNEL_THREADS_STACK_MEASUREMENT 2 0 2 2

CYGVAR_KERNEL_THREADS_DATA 3 0 1 8

CYGVAR_KERNEL_THREADS_DESTRUCTORS 3 0 1 3

CYGVAR_KERNEL_THREADS_DESTRUCTORS_PER_THREAD 11 1 2 3

thread configuration options total 39 3 21 29

m
ut

ex
op

tio
ns

(4
)

CYGSEM_KERNEL_ SYNC_MUTEX_PROTOCOL 14 4 9 11

CYGSEM_KERNEL_ SYNC_MUTEX_PROTOCOL_INHERIT 5 1 4 3

CYGSEM_KERNEL_ SYNC_MUTEX_PROTOCOL_CEILING 10 1 4 6

CYGSEM_KERNEL_ SYNC_MUTEX_PROTOCOL_DYNAMIC 5 0 5 6

mutex configuration options total 34 6 22 26

Table 5.2.: Comparison of configuration option enforcement in eCos and AspeCos.
Listed is the number of #ifdef blocks in the C++ (respective AspectC++) parts of the kernel code base (.cxx,
.hxx, .inl .ah files). (a) Results from the original eCos code base (reprinted from Table 3.1). (b) Results
from the AspeCos code base, together with the number of affected join points.
[Lines of code counted with CCCC [Lit], numbers of join points obtained from the AC++–generated join point
repository]

join points are affected: 21 code join points and 29 introductions for thread configuration
options, and 22 code join points and 26 introductions for mutex configuration options.
The number of join points is above the number of #ifdef blocks in the original (73),
as some #ifdef blocks embrace the definition of multiple identifiers (state variables,
member functions), while in the refactored version each identifier is represented by
a separate introduction.2 Some few #ifdef blocks (3 for thread configuration options,
6 for mutex configuration options), all caused by inter-feature dependencies, were not
resolved completely, but simply moved into the corresponding aspect implementation.
Again, it would have been possible to completely remove these #ifdef blocks with more
sophisticated refactorings.

Overall, the refactoring of configuration options into aspects was successful; the scattering
of the implementation of mutex and thread configuration options, which leads to a true
“#ifdef hell” in eCos, could be significantly reduced in AspeCos. Figure 5.2 visualizes this
on the example of the distribution of mutex configuration options in the AspeCos kernel
sources.

2This syntax for introductions (one introduced member per piece of introduction-advice) is deprecated in
newer AspectC++ versions, where it has been superseded by the slice concept (Appendix section A.3.4).
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PROTOCOL CEILING INHERIT DYNAMIC

Figure 5.2.: Distribution of mutex configuration options in the AspeCos kernel source base.
Each bar represents a single AspectC++ file (.hxx, .cxx, .inl, .ah) from the kernel source base; the colored
areas represent lines of code extracted from #ifdef blocks for the respective configuration option. Compared to
the original eCos (Figure 3.2), the enforcement of the various protocol variants is no longer scattered over the
mutex and scheduler implementation files, but was separated out into distinct aspect headers pri_ceiling.ah,
pri_dynamic.ah, pri_inheritance.ah, and pri_protocol.ah.

5.2.2. The Cost of Large-Scale AOP

In the resulting AspeCos, several kernel policies and various configuration options have
been implemented by means of AOP. The performance-critical Synchronization and Instru-
mentation policies affect around 300 join points; another 100 join points are affected by the
refactored configuration options. AspeCos has become a suitable target for the analysis
part of objective 3 (Section 5.1) – the analysis of the quantitative effects of a larger-scale
utilization of aspects to implement configurability. Furthermore, as AspeCos was derived
from eCos by carrying out only gentle refactorings, it has become a suitable target for
the evaluation part of objective 3 – the quantitative comparison of an AOP-based with a
preprocessor-based implementation.

5.2.2.1. Setup

13 different configurations, each in an AspeCos and an eCos version, were generated and
built, including:

• The (Aspect-)eCos basic configuration (_base, no additional features), to compare
the effects regarding the implementation of Synchronization.
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(a) thread

cycles thread system call

215 cyg_thread_create()

327 cyg_thread_resume()

127 cyg_thread_resume()

274 cyg_thread_yield()

354 cyg_thread_exit()

77 cyg_thread_yield()

91 cyg_thread_resume()

102 cyg_thread_kill()

336 cyg_thread_suspend()

96 cyg_thread_suspend()

53 cyg_thread_suspend()

63 cyg_thread_resume()

115 cyg_thread_resume()

38 cyg_thread_delete()

2268 total (thread_base)

(b) mutex

cycles system call

52 cyg_mutex_init()

47 cyg_mutex_lock()

22 cyg_mutex_unlock()

46 cyg_mutex_try_lock()

49 cyg_mutex_try_lock()

381 cyg_mutex_lock()

429 cyg_mutex_unlock()

17 cyg_mutex_destroy()

1043 total (mutex_base)

(c) semaphore

cycles system call

62 cyg_semaphore_init()

50 cyg_semaphore_post()

723 cyg_semaphore_wait()

416 cyg_semaphore_trywait()

44 cyg_semaphore_trywait()

46 cyg_semaphore_wait

22 cyg_semaphore_post()

19 cyg_semaphore_destroy()

1382 total (sem_base)

Table 5.3.: Test applications for the quantitative comparison of AspeCos and eCos.
Listed is the sequence of system calls performed by the thread, mutex, and semaphore test applications.
Numbers denote CPU cycles taken by the particular system call. CPU cycles differ among several invocations of
the same call due to different context-switch operations the kernel has to perform internally. (a) thread: three
threads activate each other in turns using operations from the kernel thread API. (b) mutex: two threads
synchronize using kernel mutex objects. (c) semaphore: two threads synchronize using kernel semaphore
objects.
[eCos original, base configuration, Pentium 3 at 600 MHz. Cycles measured with rdtsc and averaged from 10
series of 1000 iterations (σ < 0.1% for all cases). All code compiled with G++-3.3.5 using -O3 -mpreferred-
stack-boundary=2 -fno-align-functions -fno-align-jumps -fno-align-loops -fno-align-labels -fno-reorder-blocks
-fno-prefetch-loop-arrays optimizations. ]

• A configuration with additional support for instrumentation (_instrumentation), to
compare the effects regarding the implementation of Instrumentation.

• Several other configurations, each with one selected extra feature, to compare the
effects regarding the refactored configuration options.

A set of three multi-threaded test applications that specifically use the affected parts of
the eCos kernel was linked against each of the 13 + 13 variants of the eCos library, which
results in 58 test application binaries. The test applications themselves are quite simple;
their threads just invoke a sequence of system calls and do not perform further calculations.
Table 5.3 lists the sequence of system calls performed by each test in conjunction with the
number of CPU cycles taken by each system call on a basic eCos system.
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Figure 5.3.: Comparison of the CPU overhead between AspeCos and eCos.
Depicted is the per-test-case AOP runtime cost factor (AspeCos/eCos) for 13 different configurations over the three
test applications (mutex, sem[aphore], thread, see Table 5.3) and four different IA32 CPU types. Mean denotes
the per-test-case average over all CPU types.
[AspeCos woven with AC++1.0PRE1; other details as described in Table 5.3.]
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5.2.2.2. Runtime Cost

Runtime cost (cycles) was measured in the running test applications and averaged from 10
series of 1000 iterations to reduce cache effects. With a relative standard derivation σ <
0.1% for all series, the results can be considered as stable. Besides the P3 CPU, which was
the target platform for this study, additional measurements with the same binary images
were performed on Pentium, Athlon, and P4 CPUs. The results are depicted in Figure 5.3
with the relative AOP runtime cost factor (AspeCos/eCos) for each test case, configuration,
and CPU type:3

• Over all test cases, the AOP cost factor does vary. The highest variation is in the
numbers of the P4 CPU ([0.90, 1.07], σ=0.04); the distribution of all other CPU
types is in between (Pentium: [0.96, 1.07], σ=0.03, P3: [0.91, 1.03], σ=0.03,
Athlon: [0.96, 1.06], σ=0.02). For an averaged CPU (mean), the cost factor is
distributed with [0.96, 1.02], σ=0.02.

• Even for each single test case, the AOP cost factor varies noticeably among the
different CPU types. The maximum variation is [0.91, 1.04], σ=0.06 (test case
06: mutex_instrumentation). The minimum is [0.99, 1.01], σ = 0.01, (test case
39: thread_thread_stackusage). In average, the CPU-dependent cost factors are
distributed with a standard deviation of σ = 0.03.

• For no single test case, AOP can be considered as clearly beneficial (factor < 0.98)
or disadvantageous (factor > 1.02) for all CPU types.

• Over all test cases, a slight tendency towards a beneficial influence of AOP can be
observed for the P3 and P4 CPUs, for which the average AOP cost factor is 0.97. For
the Pentium and Athlon CPUs, however, no such effect can be found (factor 1.00) –
neither so for the averaged CPU (mean), for which the factor is 0.99.

We can conclude from these numbers that a general effect of AOP on the runtime cost of
AspeCos can not be ascertained. I attribute the observed variation to CPU-internal “per-
formance noise”, probably caused by mechanisms such as branch prediction, instruction
reordering and memory alignments. The distribution of the per-CPU cost factors, which
is stable and reproducible for each single test case, but which differs between different
test cases, is a clear indicator for such effects. The amount of cycles consumed by most
eCos kernel functions is quite low (Table 5.3), which increases the relative effects of such
CPU-internal variability in the measurements. On the other hand, a potential AOP-related
overhead should have become evident in the results, as it would affect every CPU type.

To gain additional evidence, I analyzed and compared the generated machine code of
AspeCos and eCos in the _base configuration (test cases 01, 13, 27). From the 28 an-
alyzed kernel functions that are called directly or indirectly from the test applications

3Depicted results were measured with enabled CPU caches. Additional measurements with caching disabled
resulted in a much higher standard deviation (probably caused by DRAM-timing and bus-load effects),
but basically the same average cost factors.
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and that are affected by Synchronization, 19 functions turned out to be actually identi-
cal in the machine code.4 Eight functions turned out to be minimally different with
respect to instruction ordering and other differences in sub-sequences of up to four in-
structions. I found major differences between AspeCos and eCos only in the function
Cyg_Scheduler_Implementation::add_thread(). In AspeCos, more member functions were
inlined. I attribute this to the compiler-internal heuristic regarding inlining of functions
that are not explicitly marked as inline. With the synchronization code moved into
aspects, the size of add_thread() had probably fallen under a compiler-internal threshold,
which caused the extra inlining. This effect seems to be even more prevalent in the other
configurations.

Overall, the enforcement of kernel policies and configuration options by AOP instead of
conditional compilation does neither lead to better nor to worse performance.

5.2.2.3. Memory Cost

The additional inlining performed by the compiler in AspeCos can as well be observed
in the memory overhead. Table 5.4 lists the absolute differences (∆ = AspeCos− eCos)
between AspeCos and eCos for all 39 configurations.

In almost all cases, AspeCos induces some ROM overhead. Larger code section cause this
overhead, which is 0.9 percent in average. The instrumentation test cases (06, 19, 32),
adding more than 500 extra code bytes (an overhead of three percent) show the maximum
difference. Most of this overhead can again be attributed to inlining effects. In eCos, the
compiler does not embed the final call to Cyg_Scheduler::unlock() if a function is affected
by Instrumentation. Instead, a jmp statement to a shared copy of Cyg_Scheduler::unlock()
is generated. In AspeCos, the call is always embedded and no code sharing takes place,
regardless of Instrumentation being enabled or not.

Generally, AspeCos also shows some stack overhead: In average, 1.3 percent more stack
bytes are used. This is mainly caused by (unnecessary) reservations for call-by-value
parameters, as explained in Section 4.3. The generally higher overhead of the mutex and
semaphore test cases (compared to thread) can be explained by this effect as well, as the
Cyg_Mutex and Cyg_Semaphore operations lead to higher call depths inside the kernel.

According to the AspectC++ microbenchmark results from the language level (Section 4.3),
some additional stack usage can also be expected if the advice code accesses context
information via the join point API. Surprisingly, test cases affected by Instrumentation (06,
19, 32), which makes extensive use of the join point API, show a very low stack overhead.
The reduced call-depth (due to inlining) seems to compensate any AOP-induced overhead
in these cases.

No differences can be observed regarding RAM utilization. As our aspects are stateless,
the linker seems to be able to omit even the aspect instances from the final image.

4if ignoring differences regarding symbol addresses and function-wide register allocation.
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test case ROM ∆ % RAM ∆ % stack ∆ %

01 mutex_base 101 0.6 0 0.0 24 2.0
02 mutex_excpt_hand 55 0.3 0 0.0 24 2.0
03 mutex_excpt_hand_dec -35 -0.2 0 0.0 24 2.0
04 mutex_excpt_hand_global 92 0.5 0 0.0 24 2.0
05 mutex_excpt_hand_global_dec 85 0.5 0 0.0 24 2.0
06 mutex_instrumenation 543 3.0 0 0.0 4 0.3
07 mutex_thread_data 74 0.4 0 0.0 28 2.3
08 mutex_thread_destrct 74 0.4 0 0.0 28 2.3
09 mutex_thread_destrct_perthread 224 1.3 0 0.0 24 2.0
10 mutex_thread_linked_list 88 0.5 0 0.0 8 0.6
11 mutex_thread_name 146 0.9 0 0.0 16 1.3
12 mutex_thread_stack_limit 311 1.8 0 0.0 24 2.0
13 mutex_thread_stackusage 341 2.0 0 0.0 24 2.0
14 sem_base 91 0.5 0 0.0 24 2.0
15 sem_excpt_hand 51 0.3 0 0.0 24 2.0
16 sem_excpt_hand_dec -54 -0.3 0 0.0 24 2.0
17 sem_excpt_hand_global 88 0.5 0 0.0 24 2.0
18 sem_excpt_hand_global_dec 81 0.5 0 0.0 24 2.0
19 sem_instrumenation 588 3.1 0 0.0 0 0.0
20 sem_thread_data 70 0.4 0 0.0 28 2.3
21 sem_thread_destrct 70 0.4 0 0.0 28 2.3
22 sem_thread_destrct_perthread 220 1.3 0 0.0 24 2.0
23 sem_thread_linked_list 84 0.5 0 0.0 8 0.6
24 sem_thread_name 142 0.8 0 0.0 16 1.3
25 sem_thread_stack_limit 307 1.8 0 0.0 24 2.0
26 sem_thread_stackusage 337 2.0 0 0.0 24 2.0
27 thread_base 104 0.6 0 0.0 12 0.7
28 thread_excpt_hand 58 0.3 0 0.0 12 0.7
29 thread_excpt_hand_dec -32 -0.2 0 0.0 12 0.7
30 thread_excpt_hand_global 95 0.6 0 0.0 12 0.7
31 thread_excpt_hand_global_dec 88 0.5 0 0.0 12 0.7
32 thread_instrumenation 563 3.1 0 0.0 -4 -0.2
33 thread_thread_data 77 0.4 0 0.0 12 0.7
34 thread_thread_destrct 77 0.4 0 0.0 12 0.7
35 thread_thread_destrct_perthread 227 1.3 0 0.0 12 0.7
36 thread_thread_linked_list 91 0.5 0 0.0 -12 -0.6
37 thread_thread_name 149 0.9 0 0.0 0 0.0
38 thread_thread_stack_limit 333 1.9 0 0.0 12 0.7
39 thread_thread_stackusage 344 2.0 0 0.0 12 0.7

Table 5.4.: Comparison of the memory overhead in AspeCos and eCos.
Listed is the absolute [Byte] and relative overhead of AspeCos compared to eCos (∆ = AspeCos− eCos ,
% = ∆/eCos ·100) with respect to dynamic memory utilization (stack, accumulated from all threads) and static
memory utilization (ROM = code + data + rodata, RAM = data + bss).
[Dynamic memory utilization was measured byte-exact in the running test applications. Static memory utilization
was retrieved off-line and byte-exact from the linker map files.]
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Overall, the enforcement of kernel polices and configuration options by AOP instead of
conditional compilation does not lead to a significant (>2%) memory overhead.

5.3. Improving eCos Configurability by AOP

The implementation and enforcement of several central kernel policies that were scattered
over the source base in eCos could be separated out into distinct aspects in AspeCos.
Thereby, AspeCos also became a good target for experiments regarding objective 4 (Sec-
tion 5.1) – the evaluation if an implementation with AOP actually improves on the
configurability of kernel policies.

5.3.1. Turning Synchronization and Preemption into Optional Features

In eCos, Synchronization is a mandatory policy and threads are always preemptable (Sec-
tion 3.1.1.2). We have seen, however, that there are good cases for understanding
Synchronization and Preemption as optional features (Section 3.1.2). The first experi-
ment therefore was aimed at improving the granularity of AspeCos with respect to these
concerns. The goal was to add support for the following application cases:

1. DSRs are not used, we only have threads: DSR support already is an optional feature
in eCos. However, if DSRs are not used, Synchronization is not necessary either.
Hence, we want to be able to select Synchronization as an optional feature as well.

2. Threads are not used, we only have DSRs: This is exactly the opposite of application
case 1: Synchronization is not needed either if the system is completely implemented
by DSRs and does not use any threads.

3. Preemption of threads is not required, all threads are run-to-completion: For this ap-
plication case it would be preferable to configure eCos for nonpreemptive scheduling,
which would also offer the opportunity to share stack space between threads. Hence,
we want thread preemptability represented as an optional Preemption feature.

In eCos, omitting Synchronization is hardly possible. The calls to Cyg_Scheduler::lock()

and Cyg_Scheduler::unlock() are “hard-wired” in the kernel source base. In AspeCos,
however, turning Synchronization into an optional feature should be easy: Theoretically, all
that is necessary is to omit the int_sync aspect from the output generated by ECOSCONFIG.

The closer analysis of the actual implementation revealed that this is by no means that
simple. The reason is the way another concern, Preemption, is enforced (not to say:
hidden) inside the eCos kernel. Preemption is based on the following requirements:

• Whenever a thread becomes ready (for example, if the current thread releases a
mutex for which some other thread has been waiting) this is a potential point of
preemption. If the thread that just became ready has a higher priority than the
current thread it should immediately get the CPU.
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(a) Synchronization

void Cyg_Alarm::enable() {

// Prevent DSR execution

Cyg_Scheduler::lock();

if( !enabled ){

// ensure the alarm time

// is in our future:

synchronize();

enabled = true;

counter->add_alarm(this);

}

// Unlock the scheduler and propagate

// DSRs. (No thread was set ready, so

// this is no point of preemption.)

Cyg_Scheduler::unlock();

}

(b) Synchronization and Preemption

void Cyg_Mutex::unlock() {

// Prevent preemption and DSR execution

Cyg_Scheduler::lock();

if( !queue.empty() ) {

Cyg_Thread *thread = queue.dequeue();

thread->set_wake_reason(

Cyg_Thread::DONE);

thread->wake();

}

locked = false;

owner = NULL;

// Unlock the scheduler, propagate DSRs

// and maybe switch threads

Cyg_Scheduler::unlock();

}

Listing 5.1: Join point ambiguity with respect to Synchronisation and Preemption in the eCos kernel.
Because Cyg_Scheduler::unlock() is used to enforce Synchronisation and Preemption, the related execution
join points are ambiguous. (a) The execution of Cyg_Scheduler::unlock() represents a join point for Syn-
chronization only. (b) The execution of Cyg_Scheduler::unlock() represents a join point for Synchronization
and Preemption.

• However, in most cases some additional state changes (such as clearing the owner
field of the mutex) have to be propagated first to ensure consistency of kernel data.
The actual preemption of the running thread must be delayed until these state
changes have been carried out and the internal kernel state is guaranteed to be
consistent again.

Kernel state consistency has been reached, by definition, whenever
Cyg_Scheduler::unlock() is invoked.5 The eCos designers exploited this fact for
a “clever optimization”: They piggybacked the enforcement of Preemption on the
implementation of Synchronization: Internally, Cyg_Scheduler::unlock() does not only
reactivate DSR execution (Synchronization), but also invokes the scheduler (Preemption).

The result is ambiguity: Apparently, 50 of the 101 invocations of Cyg_Scheduler::unlock()
that can be found in the eCos kernel sources represent only a point of Synchronization,
similar to Listing 5.1.a. The other 51 invocations represent as well a point of Preemption,
comparable to Listing 5.1.b. However, this is not distinguishable from the affected join
points!

The unaesthetic consequence is that the int_sync aspect does not only implement Syn-
chronization, but also parts of Preemption. Even in AspeCos it is not easily possible to leave
out just one of them – which would be necessary to support application cases 1 and 3.
Application case 2, however, can be supported. By extracting the code into the int_sync

aspect it became at least possible to leave out Synchronization and Preemption together.

Overall, the extraction of Synchronization into an aspect did not lead to much better
configurability with respect to this policy.

5Otherwise DSRs could run on inconsistent kernel state.
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5.3.2. Adding a New Feature: The Kernel Stack Aspect

The second experiment was about improving the variability of eCos by adding a new
kernel-stack policy. The idea of this optional policy is to reserve a dedicated part of a
thread’s stack exclusively for the kernel, which would guarantee that no stack overflow
error could occur while executing kernel code. The goal was to implement this new
configuration option as an additional aspect in AspeCos without any modifications of
other parts of the kernel.

The implementation of the kernel-stack functionality itself is relatively straightforward:
The stack pointer is switched to the part reserved for the kernel before a thread enters the
kernel. This is the case whenever the application invokes a function from the eCos library.
The stack is switched back to the application stack immediately before the kernel is left
(when the invoked function terminates):

advice stack_switch() : around() {

HAL_TO_KERNEL_STACK( Cyg_Thread::self() );

tjp->proceed();

HAL_FROM_KERNEL_STACK();

};

The platform-specific HAL_TO_KERNEL_STACK macro performs the actual stack switch. After-
wards, the join point API method proceed() calls the original function and thereby copies
all parameters from the join point context to the now active kernel stack.6

The issue is, again, ambiguous join points. In eCos, most kernel functions are not only
invoked from application level, but also used internally, that is, called by other kernel
functions. As a consequence, it is not possible to decide statically if some kernel function
invocation represents an application 7→ kernel transition or not.

However, in this case the ambiguity can be resolved by incorporating extra run-time state.
From the AOP point of view this means to use not statically evaluable pointcuts. The
ambiguity between application 7→ kernel and kernel 7→ kernel transitions can be resolved
by a pointcut expression similar to the following:7

pointcut stack_switch() = execution( kernel() )

&& !cflow( execution( kernel() ) );

This definition of the stack_switch() pointcut yields all join points where a kernel function
is not executed in the context of some other kernel function. However, not statically
evaluable pointcut functions, such as the used cflow(), have shown nonnegligible cost
in the microbenchmarks (Section 4.3.2.4). As the execution of every kernel function is

6This is platform-dependent. On x86, proceed() is inlined and accesses the join-point context via the frame
pointer, which is not modified by HAL_TO_KERNEL_STACK.

7Similar, as cflow() is not actually thread-safe. For thread safety, the cflow counter had to be stored in thread-
local storage, which is not supported by standard C++. For the actual kernel_stack implementation,
a “per-thread cflow()” was implemented by introducing the counter into the Cyg_Thread thread control
block.
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test application AspeCos “alternative AspeCos”

thread 2.24 1.05

mutex 1.95 1.07

semaphore 1.88 1.09

Table 5.5.: CPU overhead of the new Kernel stack feature.
Listed is the relative overhead (factor) of the kernel_stack aspect if applied to the three test programs
(Table 5.3). In AspeCos, not statically evaluable pointcut functions have to be used to resolve the ambiguity
between application 7→ kernel and kernel 7→ kernel transitions at run-time. With an “alternative AspeCos”
implementation, the same ambiguity was resolved at compile-time, which led to a much lower overhead.

affected by the kernel_stack aspect, it is not surprising that this also leads to a noticeable
overhead on the global level: Table 5.5 (column “AspeCos”) lists the cost factor of the
kernel_stack aspect for the three _base test-cases from Table 5.3. The cost factor is
between 1.88 and 2.24 (average 2.02).

To evaluate which part of this cost is induced by the concern implementation itself (the
actual stack switch) and which part is induced by the need to use not statically evaluable
join points on a larger scale, I compared the results to those of an implementation for
an “alternative AspeCos”. This “alternative AspeCos” is more aspect-aware by offering
a thin “user API layer” on top of the kernel, which is used exclusively by application
code to invoke kernel functionality. The user API layer consists of a set of inline wrapper
functions and classes and does not lead to additional overhead. However, the extra layer
would make it possible to statically resolve the ambiguity between application 7→ kernel
and kernel 7→ kernel transitions, so aspects can bind to these events without inducing an
overhead.

pointcut stack_switch() = call( kernel() )

&& within( user_api() );

As shown in Table 5.5 (column “alternative AspeCos”), the overhead was significantly
lower in this case, with a the cost factor between 1.05 and 1.09 (average 1.07). Thus,
most of the overhead of the real kernel_stack implementation is caused by a weakness in
the eCos design by which it became necessary to resolve the join points relevant for the
new Kernel stack policy at run-time.

Overall, it was possible to add a new kernel policy to AspeCos without any modification
of the kernel – the kernel implementation remained oblivious of the new kernel-stack
feature. The overhead induced by the resulting aspect, however, is higher than necessary.

5.4. Discussion of Results

With respect to the objectives defined in Section 5.1, the “eCos” study was quite successful:

1. It could be shown that the enforcement of kernel policies that heavily crosscut the
implementation of other concerns can actually be factored out into aspects. The
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expressive power of the AspectC++ language turned out to be sufficient for this
(objective 1).

2. The same holds for the implementation of fine-grained configuration options. The
“#ifdef-hell” caused by 12 thread and mutex configuration options could be replaced
by a much cleaner separation into aspects. The expressive power of the AspectC++
language turned out to be sufficient for this, too (objective 2).

3. All this does furthermore not lead to a higher overhead at runtime. On the language
level, most AspectC++ constructs have shown a small, but nevertheless present
overhead. On the larger scale, AOP turned out to be a cost-neutral alternative to
conditional compilation. System-software developers can get better separation of
concerns for free (objective 3)!

In short: AOP is qualitatively superior to conditional compilation for the implementa-
tion of configuration options and central kernel policies. Kernel developers can implement
both types of concerns with aspects in a much cleaner way. There are no quantita-
tive disadvantages. This means that we already can report success with respect to
the implementation-level objectives from Section 3.3.2 (page 65) – AOP does compare
qualitatively and quantitatively very well to conditional compilation for implementing
configurability in software product lines for embedded systems. These results and their
validity are further discussed in Section 5.4.1.

On the other hand, the “eCos” study also revealed that the extraction of concerns into
distinct aspects does not per se improve their configurability:

4. Many join points turned out to be ambiguous. This hindered further configurability
by aspects or made further configuration options more expensive than necessary
(objective 4).

These issues have to be reflected with respect to the goal of aspect-aware development.
This is further discussed in Section 5.4.2.

5.4.1. The Implementation of Configurability by AOP

The results from the “eCos” study are quite promising with respect to the first of problem
identifed in the problem analysis of this thesis in Section 3.1.3: State of the art to
implement fine-grained configurability is – for the sake of efficiency and flexibility –
conditional compilation, which however leads to commingling of concerns and “#ifdef
hell”. AOP combines similar flexibility and efficiency with a much better separation of
concerns.

This gives rise to questions regarding the general, not eCos-specific validity of the obtained
results. The following two sections discuss this with respect to the qualitative and
quantitative dimensions of configurability.
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5.4.1.1. Validity of Quantitative Results

The quantitative results were obtained by combining language-level microbenchmarks
(Section 4.3) with a refactoring-based case study. The refactoring approach of the “eCos”
study makes sure that the implementation of the concerns is identical in the AOP and
original version. Both versions differ only regarding the mechanism used to apply the
concern implementations. Thus, the measured results actually depict the net overhead of
using aspects instead of tangled code and are not caused by a “smarter implementation”.
So even though eCos ist just one example for a system-software product line, we can
expect the obtained results to have a general significance:

• eCos can be considered as a demanding test subject regarding the cost of aspects
in system software. Designed for and widely accepted in the very resource-thrifty
domain of embedded systems, eCos has certainly been optimized for runtime and
memory efficiency. Most system calls take only a few cycles (Table 5.3), the typical
kernel image size is a only few KB. An AOP-induced overhead, if any, should become
evident in this system.

• The test applications chosen for cost measurements (Table 5.3) can not be considered
as “typical applications”. They have been designed specifically for the measurements
and spend most of their time executing the affected kernel code. Regarding the
cost of aspects, this has to be considered as more demanding than using “real”
applications, which only occasionally call kernel functions. Thus, an AOP-induced
overhead, if any, should become evident with this setup.

• The refactored concerns represent broad-scaled and cost-critical kernel function-
ality. With 160 affected code join points (Table 5.1), Synchronization qualifies
well for evaluation of the cost AOP may induce for homogeneously crosscutting,
performance-critical concerns. Instrumentation qualifies, with 139 affected code join
points (Table 5.2) given by 13 aspects with 85 code advice definitions, well for
evaluation of the cost AOP may induce for inhomogeneously and context-sensitive
crosscutting concerns. Scalability problems, such as a per–join-point overhead,
should become evident with this setup.

Overall, we can conclude that the results of the quantitative comparison between AOP
on the one side and conditional compilation on the other side are generally valid for our
target domain. 8

5.4.1.2. Validity of Qualitative Results

Naturally, the “eCos” results with respect to the flexibility of AOP are based on only a
selection of concerns, namely the central kernel policies Synchronization and Instrumentation

8The quantitative results are furthermore backed by another, more application-oriented study for an
embedded-system product line. In the “WeatherMon” study I compared AOP, OOP and conditional
compilation for the implementation of a weather-station product line; the hardware was based on a small
8-bit microcontroller. The “WeatherMon” study is described and discussed in Appendix B.
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and 12 configuration options. However, the refactoring approach ensures that we deal
with concerns from “real software”; the selected concerns represent a cross-section of
different classes of real-world (and cost-critical) concerns:

• Synchronization is a typical example of a homogenously crosscutting concern.

• Instrumentation is a typical example of an inhomogenously crosscutting concern.

• The various configuration options are typical examples for scattered concerns that
are caused by fine-grained configurability.

On the other hand, Instrumentation could not be factored out entirely into aspects. Three
out of 162 macro invocations (5%) remained in the code because of the self-imposed
restriction to gentle refactorings (Section 5.2.1.1). Even though in this case it would have
been possible to factor out the complete concern by a more aggressive refactoring: It
should be clear that the text-processing approach of the preprocessor is more flexible than
AOP – it is not restricted to the boundaries of syntactic entities.

With respect to these boundaries, eCos was furthermore a relatively good-natured target.
By its fine-grained C++ implementation, the eCos kernel offered an extensive set of
potential join points – ideal conditions for aspect-based refactorings. This might explain
why AOP-refactoring studies conducted by other researchers revealed less optimistic
results [SWK06, KAB07].

However, our question is not if AOP is the ultimate refactoring tool, but if it is flexible (and
efficient) enough to be used instead of conditional compilation for the implementation of
configurability when applied from the very beginning. With respect to the different classes
of concerns we dealt with in the “eCos” study, we can conclude that this is generally the
case.

5.4.2. Consequences for Aspect-Aware Operating-System Developement

Overall the “eCos” study has shown that AOP is beneficial for the implementation of con-
figurability. Concerns that already had been designed for configurability (by conditional
compilation) could as well be implemented with aspects, resulting in a much cleaner code
base. However, AOP did not help much in improving the configurability of concerns that
were not designed to be configurable from the very beginning. The attempts to extend the
configurability of architectural policies in eCos revealed problems of join-point ambiguity
– a simple separation of concerns into aspects does not per se improve their configurability.

The lesson from this is: The successful aspect-aware software development does not only
imply to design the software with aspects, but also design the software for aspects. In a
sense, both of these interpretations are covered by the meaning of “awareness” (which
encompasses, as pointed out in Section 1.3, “knowledge” as well as “perception”):

Design with aspects means to use aspects as first-class design elements when decom-
posing some feature into implementation entities of the solution space. It requires
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profound knowledge about the cost and expressiveness of AOP language constructs –
as well as idioms and rules for how and when to use them.

Design for aspects means to be aware of potential aspects and their interactions when
designing and implementing some feature, that is, to be aware of the semantics and
quality of the offered join points. It requires a good perception of concern interaction
and “potentially interesting join points” – as well as experience and methods in how
to retrieve them.

Essentially, design for aspects requires that we abandon – at least partly – the obliviousness
principle (Section 4.1.2.1) of AOP.

5.5. Chapter Summary

The goal of this chapter was to evaluate AOP – in comparison to conditional compilation –
with respect to the implementation level of configurability in system software for embedded
devices. The results from the “eCos” study show that AOP does compare very well here;
it leads to a much better separation of concerns without any disadvantages on the cost
side. This means that we have solved the first problem addressed by this thesis (called
“Problem 1” in Section 3.1.3): We have found a better way to implement configurability!

The results with respect to the second problem (called “Problem 2” in Section 3.1.3) are
less convincing, however. Separating the implementation of architectural policies into
aspects does not inherently make them more configurable. To achieve configurability
of even architectural policies, it seems to be necessary to design the software and its
components specifically for the application of policy aspects.

The work I have presented so far mostly addresses design with aspects and the necessary
knowledge about language, expressiveness, and – especially – cost. In the next chapter, we
will therefore concentrate on design for aspects in system software for embedded devices.
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6
Design Level – CiAO Aspects:

Aspect-Aware Operating-System Development

In the previous chapter we have seen that many configuration options and architectural
kernel policies can as well be implemented by aspects instead of conditional compilation.
However, the “eCos” study also revealed that a simple extraction of policies into aspects
does not automatically improve their configurability. The observed issues were ambiguity
of join points, missing join points, and a general lack of influence by aspects on the less
obvious facets of eCos components.

In this chapter, we will lift up this knowledge on the design level of configurability. The
goal is to understand, how system components can be developed for aspects to achieve
better configurability of both mechanisms and policies. What are useful design principles
and idioms for such an aspect-aware operating-system development?

On the following pages, I elaborate on these questions by the example of the CiAO family
of operating systems. CiAO – the acronym stands for CiAO is Aspect-Oriented – is a highly
configurable operating-system product line that has been designed and implemented from
scratch with aspects as a first-class development concept.

The chapter is organized as follows: I begin with a brief overview of CiAO – goals,
approach, and general structure – in Section 6.1. This is followed by a brief presentation
of the CiAO design principles in Section 6.2. These principles are achieved by a set of
aspect-aware development idioms, which I first present and discuss by examples from
CiAO in Section 6.3, and then elaborate further by three larger case studies in Sections
6.4–6.6 (pages 137–167). The approach of aspect-aware operating-system development
is then discussed in Section 6.7 and finally summarized in Section 6.8.
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6.1. A Brief Overview of CiAO

CiAO is a family of research operating systems that has been developed using AOP and
software product line concepts from scratch. CiAO targets the domain of embedded
systems, such as automotive applications. The CiAO-AS family member implements an
AUTOSAR-OS–like operating system kernel with configurable protection policies (memory
protection, timing protection, service protection) as defined in [AUT06a].

6.1.1. Goals and Approach

The primary goal of CiAO is architectural configurability. That is, configurability of
even fundamental, architectural kernel policies (see Section 3.1.2), like synchronization or
protection. Further engineering goals are efficiency with respect to hardware resources,
configurability in general, and portability with respect to hardware platforms.

The approach to achieve these goals in the implementation is aspect-aware operating-
system development. The basic idea behind aspect-aware operating-system development
is the strict decoupling of policies and mechanisms1 by using aspects as the primary
composition technique: Kernel mechanisms are glued together and extended by binding,
policy or extension aspects; they support these aspects by ensuring that all relevant internal
control-flow transitions are available as potential join points.

6.1.2. General Structure

Figure 6.1 gives an overview of CiAO’s architecture. Like most operating systems, CiAO
is designed with a layered architecture, in which each layer is implemented using the
functionality of the layers below (Figure 6.1). The only exceptions from this are the
aspects implementing architectural policies, which may take effect across multiple layers.

On the coarse level, we have three layers. From bottom up these are: the hardware layer
(the hardware programming interface), the system layer (the operating system itself), and
the interface layer (the application programming interface). In the implementation, each
layer is represented by a separate top-level namespace (hw, os, ciao/as). Each layer may
define additional sublayers or subsystem. The hardware access layer (hw::hal), for instance,
decouples the kernel from the actual hardware platform by providing the fundamental
control flow abstraction (Continuation) and components for the accessing central devices,
such as the processor and interrupt controller (CPU) or the memory protection unit (MPU).
The system kernel layer (os::krn) contains the actual kernel.

In CiAO, layers do not only serve as conceptual levels of abstraction, but also as a means
to provide cross-layer control-flow transitions (especially into and out of os::krn) as

1Policies in the general sense, that is, strategic decisions how a certain system behavior (such as preemption
or upcalls) is to be achieved using the available mechanisms. (When reading about kernel policies, people
tend to think of thread scheduling only.)
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Figure 6.1.: Layered structure of CiAO.
Depicted are the three fundamental layers of the CiAO architecture with a selection of their sublayers, components,
abstractions, and aspects (depicted with rounded corners). Each subsystem and sublayer defines a separate
namespace. Configurable architectural properties may have an effect across multiple layers.

potential join points. The representation by distinct namespaces makes it easy to grasp
such transitions by pointcuts, like the following pointcut yields all join points where a
system-layer component accesses the hardware:

pointcut OStoHW() = call("% hw::...::%(...)") && within("% os::...::%(...)");

Control-flow transitions down the layer hierarchy are established by function calls; aspects
can interfere with these transitions by giving advice to a pointcut like OStoHW. Transitions
up the hierarchy (upcalls) are only established by binding or policy aspects. Hence, aspects
can influence and engage with all control-flow transitions up or down the layers. This
also holds for upcalls into the application code (e.g., for signal handlers). We will see
examples for this in Sections 6.3, 6.4, and 6.5.

The static structure of CiAO is organized in a similar way: Extensions of a component or
abstraction defined in a lower layer are established by means of C++ implementation
inheritance and type aliases. Extensions of a component or abstraction defined in a higher
layer are established by aspects and extension slices. Again, examples will be presented in
Sections 6.3 and 6.4.
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6.1.3. Kernel Personalities and Features

On the interface layer (Figure 6.1), CiAO currently provides two different kernel personal-
ities, namely the native CiAO personality (ciao) and the CiAO-AS personality (as). Both
can be understood as top-level family members of the CiAO operating system family; they
represent the outcome of two consecutive development phases with, however, different
approaches to aspect-aware operating system development:

1. The ciao personality is the outcome of the first development phase. It was devel-
oped in a bottom-up process – from the hardware up to a minimal kernel. Most
components and abstractions of the hw layer (and its sublayers, especially hw::hal)
result from this phase, so does an execution model for device drivers (os::dev) and
the configurable architectural policy interrupt synchronization.

2. The as personality is the outcome of the second development phase. It was de-
veloped as an extension to the existing system in a top-down process – from an
external specification (AUTOSAR OS [AUT06b, OSE05]) down to the (afterwards
much extended) kernel. Most kernel components and abstractions result from this
phase, so do the configurable architectural policies memory protection, timing
protection, and service protection.

The focus of the first phase was on the aspect-aware design and implementation of the
core control-flow abstractions (continuations, threads, interrupts). In this context I also
developed the fundamental principles and idioms for aspect-aware operating-system
development. These points are further detailed in Sections 6.2–6.4; the configuration of
the interrupt synchronization policy is discussed in Section 6.5.

The goals of the second phase were twofold: Firstly, additional kernel components and
abstractions and new configurable architectural policies should be added to the CiAO
system. Secondly, the approach of aspect-aware operating system development was to be
evaluated with real-world operating-system requirements. CiAO-AS is further discussed
in Section 6.6.

6.1.4. Configuration of System Components, Abstractions, and Objects

The CiAO operating system is configured completely statically. There are two configuration
sets involved in the specification of the system components, system abstractions, and system
objects that make a concrete CiAO variant:

1. The system configuration specifies the features and the availability of system
components (such as the Scheduler, the EventManager, or the various hardware
devices) and system abstractions (such as Task, Event, Hook or Application). Both
are configured by selecting features from a representation of the feature model in
the graphical configuration tool (Figure 6.2 shows a screen shot).
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2. The application configuration specifies the system objects, the application-
specific instantiation of system abstractions (such as that there are the tasks myTask1
and myTask2, the event myEvent, and that all these objects belong to the application
(protection domain) myAppA). The system objects are configured by an XML-based
configuration file. The underlying XML schema mimics the concepts and expres-
siveness of OIL (OSEK implementation language), the system-objects configuration
language used in OSEK and AUTOSAR OS [OSE04, OSE05, AUT06b].

Both configurations are processed to build the concrete system variant. As upcalls into the
application are established by aspects, the kernel has to be woven with application-specific
code. However, these aspects are generated from the configuration; they are not to be
provided by the application programmer.

6.2. CiAO Design Principles

As pointed out in Section 6.1.1, the basic idea behind aspect-aware operating system
development is to use aspects to achieve a clear separation between policies and mecha-
nisms in the implementation. The key towards aspect awareness is a component structure
that makes it possible to influence the composition and shape of components as well
as all run-time control flows that run through them by aspects. This leads to the three
fundamental principles of aspect-aware operating system development:

The principle of loose coupling. Make sure that aspects can influence and engage with
all facets of the integration of system components. This includes binding, instanti-
ation, initialization of components, but also the interaction between components,
which all should be established (or at least be influenceable) by aspects.

The principle of visible transitions. Make sure that aspects can influence and engage
with the control flows that run through the system. All control-flow transitions into,
out of, and within the system should be influenceable by aspects. For this they have
to be represented on the join-point level as statically evaluable, unambiguous join
points.

The principle of minimal extensions. Make sure that aspects can influence and engage
with all features provided by the system on a fine granularity. System components
and system abstractions should be fine-grained, sparse, and extensible by aspects.

Aspect-awareness, as described by these principles, means that we moderate the AOP ideal
of obliviousness. CiAO’s system components and abstractions are not totally oblivious to
aspects – they are supposed to provide explicit support for aspects and even depend on
them for their integration.

However, this does not mean that system components and abstractions have to know the
concrete aspects that (potentially) bind to them. It is the responsibility of the aspects to
ensure that all components affected and used by them still work correctly. Potentially
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Figure 6.2.: Screen shot of the CiAO system configuration editor.
The system is configured inside the Eclipse IDE using the PURE::VARIANTS variant management plugin [Beu03b].
Depicted is the configuration editor with an extract from the CiAO feature model.

critical are situations in which the application of the aspect leads to changes in the
uses hierarchy [Par76b]. The developer of some aspect that, for instance, binds some
mechanism to a join point of an interrupt control flow has to make sure that the component
that provides this mechanism is safe to be used on interrupt level. This often involves the
enforcement of additional constraints, which, however, can be applied by another aspect.
We will see examples for this in Section 6.3.3 and Section 6.5.
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6.3. Aspect-Aware Development Idioms

In the design and implementation of the CiAO system, we can find the recurring application
of three development idioms, which we can understand as the operationalization of the
CiAO design principles: advice-based binding, explicit join points, and extension slices. In
the following, I first present some general details on how aspects and classes are used
within CiAO (Section 6.3.1) and then discuss each of these idioms by concrete examples
from CiAO (Sections 6.3.3, 6.3.4, and 6.3.5).

6.3.1. Roles and Types of Classes and Aspects

CiAO is developed in AspectC++ using both OOP and AOP language constructs. However,
the implementation abstains from all C++ and AspectC++ features that bear a significant
overhead. This does not only include advanced run-time features, such as run-time
type information (RTTI) and exception handling, but also “OOP basics”, such as virtual
functions or the support for the construction of global object instances at system start.2

Instead, the binding of behavior and the initialization of components is implemented via
a static mechanism – advice-based binding.

In general, CiAO employs static typing as much as possible. System components and
system abstractions are represented as distinct classes so they can be distinguished at
compile time and yield statically evaluable join points. For instance, each interrupt source
is represented by its own class in the hw::irq layer instead of being instantiated as a system
object from a common interrupt-source abstraction. However, all interrupt classes adhere
to a standardized static interface that specifies a well-defined set of operations and explicit
join points so that policy aspects can employ generic advice to quantify over all interrupt
sources. We will see an example for this in Section 6.5.

System components that maintain run-time state (such as the scheduler), are implemented
as singletons and instantiated by the kernel. The singleton instance encapsulates the
run-time state (e.g., the ready list); it can only be retrieved via the ...::Inst() class
method. The standardized singleton interface ensures that policy aspects can engage
with the instantiation of components (e.g., implement a different instantiation scheme by
overriding ...::Inst() with a piece of around-advice).

The classes for system components and system abstraction are sparse and to be “filled” by
extension slices. The main purpose of classes is to provide a namespace with unambiguous
join points for the aspects. We distinguish three general types of aspects:

1. Extension aspects add additional features to a system abstraction or component.

2. Policy aspects “glue” otherwise unrelated system abstractions or components to-
gether to implement some CiAO kernel policy.

2Both of which induce quite some overhead, compared to the applied alternative implementation with static
typing and aspects. I have compared and analyzed this cost in detail in the “WeatherMon” study. This
study can be found in Appendix B, the cost analysis in Appendix section B.4.
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3. Upcall aspects bind behavior defined by higher layers to events produced in lower
layers of the system.

Generally, the effect of extension aspects becomes visible in the API of the affected system
component or abstraction, whereas policy aspects and upcall aspects lead to a different
behavior. However, the distinction between the three types is not strict; a policy aspect,
for instance, may also extend some class if this is part of the policy. We will see examples
for all three types of aspects in the following sections.

6.3.2. Diagram Notation

Figure 6.3 describes the diagram notation I use for class-and-aspect diagrams in this
thesis. Several attempts have been published to extend UML with a formal notation of
AOP elements.3 However, the existing notations tend to be either too formal, too close
to AspectJ, or both. Hence, I developed my own notation that offers a suitable level of
detail for the purpose of this thesis. The notation is also related to UML, but intentionally
abstains from the official UML extension system (e.g., stereotypes) to bring in the relevant
AOP concepts.

BaseClass

method()

explicitJP() • method is explicit join point

SomeClass

#protected()
static()
unadvisable() ◦

method is unadvisable

AnAspect

exec("explicitJP")
intro("SomeClass")

«slice»
ASlice

state_variable_

anotherMethod()

"explicitJP"

advice [of "join point"]

ASlice

introduction [of Slice]

static

call [of method]

know
s

implied relationship

Figure 6.3.: Diagram notation for class-and-aspect diagrams (static structure).
The notation is related to the notation of UML class diagrams, but uses several nonstandard style elements to
depict aspects, advice, and introductions.

6.3.3. Loose Coupling by Advice-Based Binding

With advice-based binding components and polices integrate themselves into the system.
This is the most fundamental idiom for the implementation of loose coupling. It exploits

3Well-known examples are: composition patterns [CW01], Theme/UML [BC04], the notation by STEIN and
colleagues [SHU02], and AML [GB04].
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the effect that aspects effectively invert the direction in which control-flow relationships
between components are established (see Figure 4.1). Thereby, optional components and
policies can easily hook into the system’s control flows.

Besides flexibility, advice-based binding also has the advantage that it can be bound at
compile time if the affected join points are statically evaluable. Where appropriate, the
advice code can even be inlined directly at the join point occurrence to avoid the overhead
of extra function calls. This is more efficient than the common approaches for indirect
binding of components, which bind at link time (external functions) or run time (virtual
functions and function pointers).

6.3.3.1. Component Self-Integration

The canonical example for self-integration by advice-based binding is component initial-
ization: Every CiAO component has an accompanying _Init aspect that gives advice to
the system initialization handler hal::init() to invoke the component’s init() method
at system startup time (see Figure 6.4). Thereby, the startup code does not have to
know which components are present in the actual CiAO configuration – nevertheless this
flexibility does not come at a price, as all initialization code gets bound and inlined at
compile time.

Serial0

init()

Sched

init()

Timer0

init()
. . .

«binding aspect»
Serial0_Init

exec("init")

«binding aspect»
Sched_Init

exec("init")

«binding aspect»
Timer0_Init

exec("init")

. . .

in
it

in
it

in
it

init() •

"init"

. . .
os::krn

hw::hal

Figure 6.4.: Self-integration of components by advice-based binding.
Depicted is the CiAO component initialization scheme. Every CiAO component integrates itself into the global
system initialization handler hal::init() by an accompanying _Init aspect.

Figure 6.4 also demonstrates another advantage of advice-based binding, namely the
transparent support of 1 : n relationships. Without any further preparations, multiple
clients can bind to the same join point by several aspects giving advice for it. The result is
sequential activation of the respective advice implementations at run time.4

4Another obvious use case for this facility is the transparent chaining of interrupt handlers on platforms
where interrupt lines are shared between multiple devices.
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However, with respect to loose coupling and aspect awareness, the most important benefit
of advice-based binding is that we can further influence it by additional aspects. Consider,
for instance, an (optional) aspect Serial0Ext that extends the serial driver from Figure 6.4
by a task of its own (e.g., for some background protocol handling). This aspect effectively
inserts a new functional dependency between the serial driver and the scheduler; the
serial driver now uses the scheduler. The consequence for the implementation is that the
scheduler has now to be initialized before the serial driver. This new constraint can easily
be realized with order-advice. Additional to the extension of the class Serial0, the aspect
Serial0Ext can specify a relative invocation order for the foreign aspects Sched_Init and
Serial0_Init at the join point execution( "void hw::hal::init()" ) as follows:5

aspect Serial0Ext {

...
advice execution( "void hw::hal::init()" ): order(

"Sched_Init", "Serial0_Init" );

};

Essentially, the aspect thereby re-establishes the uses hierachy of the system.6

6.3.3.2. Policy Self-Integration

Another common use case for advice-based binding in CiAO is the self-integration of
policies. Self-integration of policies is crucial for the aspired decoupling of policies and
mechanisms. Most policy implementations induce new interactions between (otherwise
unrelated) components. This may, again, lead to new functional dependencies that we
also have to deal with.

Figure 6.5 demonstrates self-integration of policies by the example of two variants
of the CiAO preemption policy. Generally, system components report the need
for rescheduling (and, thus, potential preemption of the running task) by calling
Sched::setNeedReschedule(). The actual activation of the scheduler is, however, delayed:

The aspect Sched_LeaveBinding in Figure 6.5.a implements a simple delayed activation
policy for a cooperative system; with this policy, preemption is only possible at the return
from some system service.

The aspect Sched_ASTBinding in Figure 6.5.b implements a more sophisticated delayed
activation policy for an interruptive system; with this policy, preemption can also take
place after interrupt termination. Technically, this is realized by binding the scheduler
activation (Sched::reschedule()) to the function AST0::ast(), which is the handler of

5At weave time, the aspect weaver analyzes all specified partial orders to derive a valid total order of advice
invocation for every join point. If this is not possible, a weave-time error is thrown. A detailed explanation
of the syntax of order-advice can be found in Appendix section A.1.3.3.

6The effect that changes in the functional hierarchy have also to be caught up in the initialization order
of system components was a serious problem for the aspect-based configuration of architectural polices
in PURE [SL04]. In PURE, system components are initialized by C++ global instance construction, for
which the order cannot be influenced on the language level.
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Figure 6.5.: Self-integration of policies by advice-based binding.
Depicted are two alternatives for the delayed preemption policy in CiAO. (a) The aspect Sched_LeaveBinding
binds to leaveKernel() to activate the scheduler when some task leaves the kernel. (b) The aspect
Sched_LeaveBinding binds to the handler of an asynchronous system trap (AST ) to activate the scheduler
when all (potentially nested) interrupt handlers have terminated. This has the consequence that the scheduler
now runs on AST level, which leads to a new functional dependency between the (otherwise unrelated)
system components AST0 and Sched. The aspect Kernel_ASTSync re-establishes a correct uses hierarchy by
synchronizing AST propagation with other control flows in the kernel.

an asynchronous system trap (AST). Additionally, the triggering of the AST is bound to
setNeedReschedule(). The fact that the scheduler is now activated from AST0::ast() leads
to a new functional dependency, which has the consequence that the kernel now has to be
synchronized on AST level. We can, however, easily enforce this constraint with additional
pieces of advice that are given by the Kernel_ASTSync aspect.

6.3.4. Visible Transitions by Explicit Join Points

Much of the flexibility of advice-based binding comes from the fact that CiAO’s components
provide – by a fine-grained separation of concerns and the syntactic richness of the C++
language (we have discussed this Section 4.1.2.1) – a rich implicit join-point interface
to which aspects can bind. Every method call or execution adds to the set of potential
join points. This fine-grained separation of concerns is an important factor for aspect-
awareness.
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However, in many cases the implicit join-point interface is not ample enough. This has
conceptual as well as technical reasons:

1. Implicit join points are inherently implementation dependent. Their amount – but
especially their semantics – may be inconsistent between different implementations
of the same concept. This is absolutely acceptable for component-specific extension
aspects, as these aspects have to know the component they extend anyway. It is,
however, not satisfying for system aspects that implement more general policies
and for aspects that bind application code to kernel events, such as the binding of
user-level signal handlers (AUTOSAR OS hook functions).

2. Some semantically important control-flow transitions are not visible on join-point
level because they do not occur on the boundary of function calls or executions.
In other cases, their place of occurrence is configuration-dependent, or there are
multiple places of occurrence. For example, application 7→ kernel transitions might
occur if a kernel function is called, when a trap handler is activated, or during task
switching to another task. However, in CiAO this is a matter of configuration.

3. Several semantically important control-flow transitions are not available as join
points because of technical reasons. This is often the case with low-level system
abstractions, such as interrupt handlers or the implementation of the context switch
mechanism. If the implementation uses assembly language, the join points are
not visible to the aspect weaver. In other cases, the implementation depends on
assumptions about the compiler’s code generation that are not covered by the
semantics of ISO C++ (e.g., that a function will always be inlined, or that a
parameter is always passed in a certain register). Join points in those fragile parts
of the code are visible, but should not be advised as the nontrivial transformations
by the aspect weaver (compare Section 4.3.1) might easily break it. In the diagram
notation, an open dot (◦) is used to mark such unadvisable methods.

For these reasons, many CiAO components and layers provide furthermore a well-defined
explicit join-point interface that defines one or several explicit join points. An explicit
join point is a named join point in the kernel control flow that bears a precisely defined
semantics and can safely be advised. Technically, explicit join points are implemented
as empty methods – provided for the sole purpose that aspects can bind to them. The
join-point provider invokes these methods at run time, either directly or indirectly by
component-specific adapter aspects. In the diagram notation, a filled dot (•) marks a
method that represents an explicit join point.

We have already seen several examples: The methods hal::init() and AST0::ast(), for
instance, are actually explicit join points. Both have an empty implementation, but
represent the occurrence of a well-defined, semantically important run-time event. They
are explicitly triggered by their providing components (the startup code; and the hardware-
based or software-based implementation of the AST facility, both of which are platform
dependent).

Conceptually, explicit join-point interfaces can be compared to hooks or interceptor
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type representing function or method description
os

::
kr

n

U interalErrorHook() Explicit join points for the support and binding of
OSEK OS and AUTOSAR OS user-level hook
functions, as specified in [OSE05, p. 39] and
[AUT06b, p. 46]. Triggered in case of an error, a
protection violation, before (pre) and after (post)
at high-level task switch, and at
operating-system startup and shutdown time.

U internalProtectionHook(StatusType error)

U internalPreTaskHook()

U internalPostTaskHook()

U internalStartupHook()

U internalShutdownHook()

T enterKernel() Triggered when a control flow enters
(respectively leaves) the kernel domain.T leaveKernel()

...

hw
::

ha
l

U ThreadFunc() Entry point of a new thread (continuation).

T before_CPURelease(Continuation*& to) Triggered immediately before the running
continuation is deactivated or terminated; to is
going to become the next running continuation.T before_LastCPURelease(Continuation*& to)

T after_CPUReceive() Triggered immediately after the (new) running
continuation got reactivated or started.T after_FirstCPUReceive()

U AST<#>::ast() Entry point of the respective AST.

U init() Triggered during system startup after memory

busses and stack have been initialized.

...

hw
::

ir
q U <IRQ_NAME>::handler() Entry point of the respective interrupt handler.

(Interrupts are still disabled.)

...

Table 6.1.: Explicit join points in CiAO.
Listed is a selection of upcall (U) and transition (T) join points offered by the different layers (respectively
components in these layers) of CiAO. The actual set of available explicit join points is configuration dependent.

interfaces in other component models. An advantage of explicit join points is, however,
their low overhead. In most cases (that is, when they do not have to be triggered from
parts written in assembly language) they can be implemented as empty inline methods,
which get optimized away by the compiler if no aspect binds to them. Another advantage
is the inherent support for 1 : n relationships, as explained in the previous section on the
example of hal::init().

Table 6.1 lists a selection of the explicit join points provided by CiAO. We distinguish
between upcall join points and transition join points. This differentiation is not strict
(depending on the client, an upcall can also represent a transition and vice versa), however,
underlines the primary purpose of the respective explicit join point.
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6.3.4.1. Explicit Upcall Join Points

For the sake of configurability, the processing of most system-internal events is postponed
to a higher layer than the layer on which they occur. By representing these events as
explicit join points, higher layers (up to the application itself) can subscribe to them with
advice-based binding.

The methods hal::init()and AST0::ast() are examples for (internally used) upcall join
points. Other examples include interrupt handlers (<IRQ_NAME>::handler()), signal han-
dlers (AUTOSAR OS hook functions), the TCBUser::ThreadFunc() start function of a new
coroutine (will be further detailed in Section 6.4), or the method Sched::idle() that is
called from the scheduler idle loop. Besides the direct binding (and potential inlining)
of the event-processing code, the kernel can also exploit these join points to implement
configuration-dependent upcall policies. An upcall-policy aspect may, for instance, filter
events, or translate them into virtual function invocations, thread activations, or send
message operations.

6.3.4.2. Explicit Transition Join Points

Control flow transitions inside the kernel, such as the transition from application level to
kernel level, from thread level to interrupt level, or the context switch from one thread
to another one, are important events for the implementation of many policies. Many
of these events, however, have multiple sources (m : n relationships); or they occur in
fragile, low-level parts of the implementation. By representing them as explicit join points,
providers and publishers of transition events can be decoupled.

An already mentioned example for transition join points are the application 7→ kernel
and kernel 7→ application transitions, which are represented in CiAO by the explicit join
points krn::enterKernel() and krn::leaveKernel(). Another example are the transition
join points provided by the CiAO dispatcher (the class Continuation), which are further
detailed in Section 6.4.

6.3.5. Minimal Extensions by Extension Slices

The classes that represent CiAO’s system components and system abstractions are gen-
erally sparse: they are either completely empty or implement only the minimal base of
some feature. Optional features are implemented as extension slices and introduced by
extension aspects into these classes.

The use of extension slices is the most relevant idiom for the implementation of minimal
extensions: The implementation of optional features does usually not affect a single
component or abstraction, but crosscuts with the implementation of several other concerns
– often even across multiple layers. This is, for instance, always the case if the extension is
also to become visible in the API provided by the interface layer.
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Figure 6.6.: Integration of an optional feature by extension slices.
The aspect ResourceSupport adds support for AUTOSAR-OS resources to the CiAO kernel. This requires the
introduction of respective extension slices into the Task system abstraction and the Sched system component
from the os::krn layer, as well as into CIAO-AS API, which is contained in the class AS on the interface layer.

Figure 6.6 demonstrates this by the example of the ResourceSupport extension aspect that
adds support for AUTOSAR-OS resources to the CiAO-AS kernel. The actual implementa-
tion is introduced as methods and state variables into the os::krn classes Task and Sched.
However, to be accessable from applications, the CIAO-AS API on the interface layer has
to be adapted as well – which requires the introduction of the respective methods into the
class AS.

With extension slices, collateral adaptations of several kernel components, abstractions,
and the API can be separated and grouped into a single logical module – the extension
aspect. Basically all optional system services provided by the CiAO-AS kernel are imple-
mented this way. This ensures that services and abstractions that have not been configured
for the kernel are not reflected in the API either; hence, many configuration errors can be
detected early at compile time.

We can understand extension slices as the static counterpart of advice-based binding (see
Section 6.3.3); the latter is used for loose coupling and self-integration with respect to
the system’s control flows, whereas the former fulfills the same task for the static system
structure, that is, abstractions and components. Therefore, extension slices and advice-
based binding are often used together. We will see examples for this in the “Continuation”
study in Section 6.4.

136



6.4. Case Study “Continuation”

6.3.6. Summary

The CiAO design principles of loose coupling, visible transitions, and minimal extensions, are
to a high degree implemented by three development idioms: advice-based binding, explicit
join points, and extension slices. Technically, these idioms exploit the mechanisms AOP
provides for obliviousness – code advice and introductions; they here facilitate the self-
integration (and thereby decoupling) of mechanisms and policies in the implementation.
CiAO components and abstractions are, however, not completely oblivious to aspects –
they even depend on them for their integration, all “glueing” is done by advice.

The application of an extension or policy aspect often leads to side effects in the functional
hierarchy. However, if the CiAO design principles have been applied consequently, it
is always possible to enforce the additional constraints that result from new functional
dependencies by additional aspects. Essentially, aspects are used in CiAO to implement
different functional hierarchies from a common set of implementation assets.

The following sections further elaborate on the application of the discussed principles and
idioms by three larger case studies from CiAO:

“Continuation”. In the “Continuation” study I exemplify the aspect-aware decomposition
and implementation of a configurable system abstraction – from features down
to code. The purpose of this study is to demonstrate the need and the benefits of
explicit join points in even the fundamental low-level system abstractions of the
operating system to achieve exensibility by visible transitions and loose coupling
(Section 6.4).

“Interrupt synchronisation”. The “Interrupt synchronisation” study demonstrates the
aspect-aware design (and partly also the implementation) of a configurable archi-
tectural policy. The purpose of this study is to show how architectural configurabil-
ity can be achieved by means of aspect-aware development (Section 6.5).

“CiAO AS”. The “CiAO-AS” study finally presents results from the aspect-aware devel-
opment of a complete configurable operating system – from requirements and
specification down to evaluation results. The purpose of this study is to show that
the approach does scale up and is applicable for the development of a complete
kernel (Section 6.6).

6.4. Case Study “Continuation”

In this section I present a detailed example for the aspect-aware design and implementa-
tion of a system abstraction. The Continuation concept is CiAO’s system abstraction for the
instantiation of preemptable control flows. It is provided by the hw::hal layer and serves
as the base for other subsystems, especially the kernel, to implement higher-level thread
or task abstractions.
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Continuation
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composition rule:
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requires Switch

Figure 6.7.: Feature diagram of CiAO’s control flow abstraction.
The Continuation concept provides mechanisms to load, save, and initialize a control flow context (Load–Save);
extension stages on top of this are mechanisms for dispatching (Switch) and the support for user-level control
flows (User-level support). Context switches can be atomic (Synchroniziation) and tracked (Bookkeeping);
user-level control flows can be allowed to terminate while executing subfunctions (Flexible termination). (The
coloring is for the purpose of feature traceability with Figure 6.8 and Figure 6.9.)

6.4.1. Continuation Features

Figure 6.7 depicts the variability of the Continuation concept as a feature diagram. A CiAO
continuation provides at least mechanisms to load, save, and initialize a control-flow
context (Load–Save). Optional extension stages are the mechanisms to dispatch from
one continuation to another (Switch) and the interface for the kernel to implement user-
level control flows (User-level support). The extension stages can be further specialized
by additional features to keep track of the running continuation (Bookkeeping), ensure
atomicity of context switches (Synchronization), and permit user-level control flows to
terminate from subfunctions (Flexible termination).

6.4.2. Continuation Design

Figure 6.8 depicts the functional hierarchy (dependency graph) for the Continuation concept
under the assumption of an aspect-aware design. The three (logical) basic functions (Load–
Save, Switch, User-level support) build upon one another. The functions that implement
the remaining features, however, do not depend directly on one of the basic functions.
Instead, they depend on transitions that result from others using the basic functions. The
Bookkeeping function, for instance, does not directly depend on any kind of context switch
functionality, but on being informed about context switches. We can understand this as
a dependency on some (implicit or explicit) event interface. In Figure 6.8, these event
interfaces are made explicit as special functions (depicted in italics).

The Continuation abstraction is provided by the hw::hal layer as a set of classes and
aspects around the class Continuation. Figure 6.9 shows the resulting class-and-aspect
diagram. The three extension stages Load–Save, Switch, and User-level support have
been implemented as classes ContinuationBase, Contination, and TCBUser, respectively.
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SynchronizationBookkeeping

User-level support

Upcall event

BindingFlexible termination

Figure 6.8.: Functional hierarchy of the features provided by CiAO’s control flow abstraction.
The nodes represent logical functions, that is, implementations of the (equally named/colored) features from
Figure 6.7; the edges represent functional dependencies between the logical functions.

In theory it would also have been possible to implement Switch and User-level support
as extension aspects of ContinuationBase; the class-based design was chosen to support
control-flow instances of different extension stages to coexist in the system (e.g., to execute
interrupt handlers as Continuation instances while user-level threads are instances of
TCBUser).

Besides the relevant mechanisms, the classes Continuation and TCBUser each provide
certain events by an explicit join-point interface (methods marked with •) for potential
aspects to bind to. Thereby, all other functions could be implemented as loosely-coupled
policy, extension, or binding aspects that use advice-based binding and extension slicing
to integrate themselves into the respective abstraction.

The explicit join-point interface is of particular importance here. As pointed out in
Section 6.3.4, implicit join points in the implementation of low-level mechanisms can be
fragile or completely invisible and, hence, have to be considered as unadvisable (methods
marked with ◦). Even if they are visible, their semantics can bear subtle differences across
platforms and implementations. The four explicit transition join points provided by the
class Continuation, on the other hand, make all relevant transitions in the life cycle of a
control flow (start, deactivation, reactivation, and termination, see also Table 6.1) visible
on join-point level with well-defined semantics. In a similar manner the class TCBUser

provides with ThreadFunc() an upcall join point with a well-defined semantics for the
binding of further kernel policies or abstractions.

In the following, I illustrate these constraints, the join point interfaces, and how they
are used by extension, policy or binding aspects by an actual implementation of the
Continuation abstraction.
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Figure 6.9.: Classes and aspects that implement CiAO’s control flow abstraction.
Depicted is the static structure of classes and aspects that implement the features from Figure 6.7 according to
the functional hierarchy from Figure 6.8. Central element is the class Continuation, which provides an interface
of four explicit transition join points; the class TCBUser extends Continuation by an additional upcall join point
for the kernel. All other features are modeled as policy, binding, or extension aspects that bind to these join
points.

6.4.3. Implementation for TriCore

On the TriCore platform with G++ as the compiler, all context switch functionality could
be implemented in C++ (with utitliziation of a few assembler intrinsics).

6.4.3.1. The Fundament: Continuation, ContinuationBase, and TCBUser

ContinuationBase. Listing 6.1 shows the TriCore implementation of the class
ContinuationBase. The purpose of this class is to encapsulate the elementary state of a
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1 class ContinuationBase {

2 protected:

3 _tc::PCXI_t_nonv pcxi_; // previous context pointer (caller’s context)

4 void* addr_; // return address (caller)

5

6 void init() {

7 pcxi_.reg = 0;

8 }

9 void CIAO_INLINE save() {

10 addr_ = _getRA(); // save return address (caller)

11 pcxi_.reg = _mfcr( $pcxi ); // save PCXI register (caller’s context)

12 _dsync(); // sync data pipeline

13 }

14 void CIAO_INLINE load() {

15 _mtcr( $pcxi, pcxi_.reg ); // restore PCXI register (caller’s context)

16 _setRA( addr_ ); // restore return address (caller)

17 _isync(); // sync instruction pipeline

18 }

19 void CIAO_INLINE go( void* tos, StartFunc starter ) {

20 _mtcr( $pcxi, 0 ); // new control flow has no caller

21 _setSP( tos ); // set the stack pointer

22 _isync();

23 hw::JUMP1( starter, this ); // to not waste CSAs, directly jump to start address

24 }

25 };

Listing 6.1: TriCore implementation of the class ContinuationBase

continuation and to provide the elementary operations to initialize, save, load, and begin
a continuation context (init(), save(), load(), go()). As the TriCore CPU automatically
saves and restores all nonvolatile registers around function calls, the state to be managed
in the continuation object itself is relatively small: Only the register that contains the
return address and the register that points to the implicitly saved caller context have to be
dealt with in the save(), load(), and go() operations.7

However, even though these operations are implemented in C++ they must not be advised
– they are fragile. As save() and load() effectively store and restore the caller’s context
(the actual switch after a load() operation takes place when the surrounding function
returns), they must be inlined into their invoker, which itself must not be inlined. The go()

operation must be inlined, too – otherwise the call context that was implicitly created for
the call to go() would never be freed.

The explicit control over inlining versus noninlining depends on compiler-specific language
extensions.8 As pointed out in Section 6.3.4, the nontrivial transformations of the aspect

7A peculiarity of the TriCore platform is that call frames are not managed on the stack, but in linked
lists of dedicated context save areas (CSAs) that are implicitly created and destroyed by the call and
ret instructions. A CSA is a memory block of 128 bytes that represents a function frame including all
nonvolatile registers and the pointer to the previous context. The PCXI (previous context information) CPU
register always points to the most recent CSA, which is the head of the CSA list of the currently active
thread. Consult [Inf05, pp. 5-1ff] for further details.

8On G++ CIAO_INLINE and CIAO_NOINLINE expand to __attribute__((always_inline)) and __attri-

bute__((noinline)), respectively.
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weaver might easily break such code. However, even if it were safely possible to give advice
to these implicit join points we should refrain from doing so – they might be unavailable or
bear subtle semantical differences in other implementations of the load–save mechanisms.

Continuation. The class Continuation implementation-inherits from ContinuationBase

and uses the elementary operations to provide the four higher-level context-switch opera-
tions that are available to clients:

class Continuation : public ContinuationBase {

void ... start( void* tos, StartFunc starter, Continuation* to );

void ... switchto( Continuation* to );

void ... saveAndStart( void* tos, StartFunc starter, Continuation* to );

void ... saveAndSwitchto( Continuation* to );

...

These operations have to be considered as nonadvisable, too. They are also fragile with
respect to inlining and may bear subtle semantical differences in other implementations.
However, all control-flow transitions that result from using these operations are made
visible on join-point level by an explicit join-point interface:

...
void before_CPURelease( Continuation*& to ) {}

void before_LastCPURelease( Continuation*& to ) {}

void after_CPUReceive() {}

void after_FirstCPUReceive() {}

};

The explicit join points are triggered by the context switch operations. The start()

and switchto() operations, for instance, are used to start, respectively reactivate, an-
other continuation to without saving their own context. Both operations never re-
turn; the calling continuation terminates. Immediately before termination they trigger
before_LastCPURelease() to signal this transition to interested aspects. In the implemen-
tation of start() this looks as follows:

void CIAO_INLINE start( void* tos, StartFunc starter, Continuation* to ) {

before_LastCPURelease( to ); // we are going to leave forever

to->go( tos, starter ); // start ’to’

} // <-- we never come here

Thereby, an aspect that gives advice to before_LastCPURelease() is activated whenever
the current continuation control flow is about to terminate for to to receive the CPU.
Note that to is passed as a reference parameter to before_[Last]CPURelease() – an aspect
could not only inspect, but even influence the ongoing transition by choosing another
continuation to receive the CPU.

The saveAnd...() context switch operations work similarly, but save the calling’s continua-
tion context first. They return when the calling continuation gets reactivated. Hence, they
trigger before_CPURelease() and after_CPUReceive(), which signal these transitions. In
the implementation of saveAndSwitchto() this looks as follows:
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void Continuation::saveAndSwitchto( Continuation* to ){

int_saveAndSwitchto( to ); // call (!) internal implementation

// <-- point of reactivation

after_CPUReceive(); // hello, again

}

void CIAO_NOINLINE Continuation::int_saveAndSwitchto( Continuation* to ) {

before_CPURelease( to ); // we are going to leave for ’to’...

save(); // but not forever

to->load(); // load ’to’

} // <-- point of ’to’ reactivation

The explicit join point after_FirstCPUReceive() signals that a continuation has been
started (activated for the very first time). It has to be triggered by the start function that is
passed as parameter starter to the start() or saveAndStart() operations. Furthermore,
starter has to adhere to a specific platform/configuration-dependent signature. These
two constraints are part of the contract between the class Continuation and its clients.
A third constraint imposed by Continuation is that the control flow must not terminate
(invoke start() or switchTo()) from a function call level below starter.

TCBUser. Whereas the above constraints are perfectly acceptable for system-internal
control flows, they might be inappropriate for continuations that start in user-level code.
In general, the decision how the user-level code has to be shaped, is bound, and gets
activated should be understood as a policy decision of the kernel – and not be prescribed
by the hw::hal layer.

The class TCBUser implements a continuation interface for the kernel that deals with these
issues. It is intended as the base for user-level control flows and provides an explicit upcall
join point (ThreadFunc()) to which the kernel can bind its own policy for the binding and
activation of user code without having to deal with the first two constraints imposed by
Continuation. (The third constraint is tackled by the TCBUser_Cleanup extension aspect,
which will be discussed further below.):

class TCBUser : public Continuation {

...
// the internal Continuation start function

static void cfHAL_STARTFUNC_ATTRIBUTES kickoff( TCBUser* me ) {

me->after_FirstCPUReceive(); // we are alive

me->ThreadFunc(); // and this is what we do
_debug(); // <-- we should never come here!

}

public:

void inline TCBUser::ThreadFunc() { /* upcall JP for the kernel*/ }

};

Technically, TCBUser uses an internal start function (kickoff()) that fulfills the Continu-

ation contract and then triggers the explict upcall join point. As ThreadFunc() can be
inlined by the compiler, this indirection does not cause an overhead.
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6.4.3.2. The Aspects: Utilizing the Explicit Join-Point Interfaces

The remaining optional or alternative features have been implemented as aspects; they
integrate themselves into the continuation classes with advice-based binding and extension
slices (see Figure 6.9).

Continuation_IRQSync. Continuation_IRQSync is a platform-independent policy as-
pect that implements the optional Synchronization feature. It ensures atomicity of context
switches by disabling interrupts in before_[Last]CPURelease() and reenabling them in
after_[First]CPUReceive(). The implementation of this aspect is straightforward:

aspect Continuation_IRQSync {

...
advice execution( "void ...::before_%CPURelease( ... )" ) && ... : before() {

hw::hal::CPU::disable();

}

advice execution( "void ...::after_%CPUReceive( ... )" ) && ... : after() {

hw::hal::CPU::enable();

}

};

Continuation_Active. Continuation_Active is a platform-independent extension as-
pect that implements the optional Bookkeeping feature. It upgrades the class Continuation
to a full-blown dispatcher that “knows” the currently running continuation. For this
purpose, an extensions slice is used to introduce the static active_ pointer along with cor-
responding accessor functions into class Continuation; advice-based binding is employed
to update the pointer after a context switch transition:

aspect Continuation_Active {

pointcut pcClass() = "hw::hal::Continuation";

advice pcClass() : slice class ActiveSupport {

static ActiveSupport* active_;

public:

static void setActive(ActiveSupport* to) {active_ = to;}

static ActiveSupport* getActive() {return active_;}

};

advice execution( "void ...::after_%CPUReceive( ... )" )

&& within( pcClass() ) : before() {

JoinPoint::That::setActive( tjp->that() );

}

};

TCBUser_Cleanup. TCBUser_Cleanup is an extension aspect that implements the Flexible
termination feature. For the sake of potential stack sharing, continuation control flows are
generally constrained to terminate only from the call-depth level of their start function –
otherwise remaining call contexts may not be freed. On platforms that implicitly share
call contexts between all control flows (as on the TriCore) this constraint is compulsory.
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However, as a restriction for the user level it might be inappropriate.9 With the Flexible
termination feature, it becomes permissible for user-level control flows to terminate even
while executing some subfunction.

1 aspect TCBUser_Cleanup {

2 pointcut pcClass() = "hw::hal::TCBUser";

3 advice pcClass() : slice class CleanupSupport {

4 _tc::PCXI_t_nonv fcxi_; // tail pointer (for dummy context)

5 public:

6 void CIAO_INLINE cleanup() {

7 _tc::PCXI_t_nonv head = _mfcr( $pcxi ); // get head of CSA list

8 _mtcr( $pcxi, 0 ); // "forget" it

9 _tc::free_cx_list( head, fcxi_ ); // add CSAs to the CPU’s free list

10 }

11 };

12 advice call( "% ...::after_FirstCPUReceive(...)" ) // when a *TCBUser* starts...

13 && within ( pcClass() ) : after() {

14 _svlcx(); // let the CPU create (and link) a CSA

15 tjp->target()->fcxi_ = _mfcr( $pcxi ); // remember its adress in fcxi_

16 }

17 advice execution( "% ...::before_LastCPURelease(...)" )

18 && within ( base( pcClass() ) ) : after() {

19 if( _mfcr( $pcxi) != 0 ) { // if there are still CSAs left

20 ((hw::hal::TCBUser*)(tjp->target()))->cleanup(); // we are a TCBUser and need to cleanup

21 }

22 }

23 };

Listing 6.2: TriCore implementation of the aspect TCBUser_Cleanup

Listing 6.2 shows the source code of TCBUser_Cleanup, which implements the Deterministic
alternative of Flexible termination for the TriCore platform. When a continuation terminates,
it adds all remaining call contexts to the free list of the CPU (lines 17–22). In order to not
have to collect them by walking down the whole list (which would take an indeterministic
amount of time), the aspect creates an extra dummy context that serves as a tail pointer
(fcxi_) at the beginning of a TCBUser continuation. By using call-advice instead of
execution-advice, the creation of this extra context only affects TCBUser continuations
(lines 12–16).

Task_TCBBinding. The last aspect under discussion is not provided by the hw::hal
layer as part of the continuation concept; it is an example for the implementation of
the alternative Binding feature by the kernel. Task_TCBBinding is the binding aspect
that is employed by the CiAO-AS kernel implementation to bind the user-level task
implementations to continuations via an AUTOSAR-OS–compatible TaskFunc function
pointer. As the switch to user level is itself a semantically important transition (for which
the kernel employs separate explicit join points, see Table 6.1), the aspect furthermore
signals this transition before activating the user code:

9This depends on the kernel personality and, hence, should be configurable. AUTOSAR OS, for instance,
constrains the allowed termination points of user-level task functions in a similar manner; however, other
operating systems do not impose such a restriction.
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aspect Task_TCBBinding {

...
advice execution( "% hw::hal::TCBUser::ThreadFunc(...)" ) : around() {

os::krn::leaveKernel(); // we are going up

hw::JUMP ( tjp->that()->start_ ); // execute user-level code

}

};

6.4.4. Summary

The CiAO control flow abstraction is a good example for the aspect-aware design and
implementation of a low-level system abstraction by applying the idioms discussed in
Section 6.3. Visible transitions by explicit join points and advice-based binding facilitate
the loose coupling of the core abstraction, its optional extensions, and the related policies.
The result is a perfect one-to-one mapping from features to implementation components.
New policies or extensions – either platform-independent or for some particular hardware
platform – are easy to add. A good example for the latter would be an extension with
respect to the amount of context information. If, for instance, a CPU architecture provides
dedicated floating-point registers, saving and restoring these registers could be left to an
extension aspect.

Especially the four explicit join points provided by class Continuation, which make all
relevant transitions from the life cycle of a control flow visible on join-point level, turned
out as particularly useful. Besides the aspects depicted in Figure 6.9, we can find customer
aspects that make use of them in many other parts of the kernel. This includes policy
aspects from the implementation of the architectural policies memory protection and
timing protection, but also extension aspects that implement optional kernel features,
such as the support for AUTOSAR-OS hook functions.

6.5. Case Study “Interrupt Synchronization”

In the domain of event-triggered systems, interrupt requests (IRQs) are the common
approach to signal events from peripheral devices (such as the expiry of a timer or a
level change on a digital I/O line) to the CPU. The CPU deals with the event by the
(immediate or delayed) execution of a corresponding interrupt service routine (ISR). To
ensure consistency of system state that is accessed by ordinary control flows as well as
by ISRs, the operating system has to apply measures for interrupt synchronization. As
pointed out in Section 3.1.2.2, interrupt synchronization is an architectural policy – the
chosen strategy is transparent to the application, but can have a notable influence on
non-functional properties, such as latency and performance. For these reasons, interrupt
synchronization is implemented in CiAO as a configurable policy.
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Figure 6.10.: Feature diagram of the configurable architectural policy interrupt synchronization.
CiAO supports three different strategies for interrupt synchronization: Hard synchronization, Delayed synchro-
nization, and Continuation synchronization. Continuation synchronization requires, however, certain Continuation
features (see Figure 6.7) to be present. (The coloring is for the purpose of feature traceability with Figure 6.11.)

6.5.1. CiAO Interrupt Synchronization Models

As in eCos (compare Section 3.1.1.2), interrupt handling in CiAO device drivers is explicitly
divided into two parts: The first part, called prologue, is intended for time-critical actions
and restricted with respect to the resources it may access, typically only hardware registers.
Before termination, the prologue may request the (potentially delayed) execution of a
second part. The second part, called epilogue in CiAO, is allowed to access other system
components, such as the scheduler. The general idea is to execute the time-critical part
immediately on interrupt level and the synchronized second part with a lower priority or
at a later time when the required resources are available.

The feature diagram in Figure 6.10 depicts the offered variability for the architectural
property interrupt synchronization. CiAO currently provides two different models for
coarse-grained interrupt synchronization (Hard synchronization and Delayed synchronization)
and one model for fine-grained interrupt synchronization (Continuation synchronization).
They are all based on well-known techniques that are also used in other operating systems.

6.5.1.1. Hard Synchronization

In this configuration, the two parts are actually combined into one. When an interrupt
occurs, prologue and epilogue are just executed consecutively on the interrupt level
(interrupts remain disabled). Before accessing shared resources, threads have to enter
interrupt level as well, that is, they have to disable interrupts.

The advantage of this model is its simplicity and low overhead. It is employed in many
proprietary operating systems (compare Section 2.1.4) but also in sensor-network op-
erating systems like TinyOS [Ber]. However, if interrupts are disabled too long or the
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interrupt handler has to perform a time-consuming task, latency rises and IRQ signals
might be lost.

6.5.1.2. Delayed Synchronization

The prologue is executed with low latency at interrupt level. Epilogues are executed on
their own epilogue level; they are queued until the kernel propagates them for execution,
which is the case after all nested prologues have terminated and before the scheduler is
activated. Epilogues thereby have priority over threads, but are interruptible by prologues
if new IRQ signals come in. Threads inside the kernel can temporarily disable the
propagation of epilogues to access shared resources. In this case, epilogue propagation is
delayed until the thread finishes its access. Interrupts only have to be disabled if a thread
or epilogue operates on prologue-accessible state.

If low latencies for critical handler code are crucial, this is our model of choice, as
prologue deferment is rare and short. Many operating systems employ means for such
a delayed execution of the major handler code: The term epilogues as used in CiAO
stems from PEACE [SP94]; in eCos, epilogues are called delayed service routines (DSRs)
(see Section 3.1.1.2), in Linux Tasklets [RC01, Lov05], and Windows calls them deferred
procedure calls (DPCs) [SR00].

The optional Fast epilogues feature represents an optimization. When this feature is
applied, epilogues are – if possible – executed directly without queueing them first.10

6.5.1.3. Continuation Synchronization

In this configuration, the role of the prologue is the same as above. If an epilogue is
requested, interrupts are reenabled and a new continuation (basic thread abstraction in
CiAO, see Section 6.4) is started to execute the epilogue code in its own control-flow
context. Epilogues synchronize with other continuation objects (epilogues or threads)
via mutex objects using a priority inheritance protocol: The execution of the epilogue
continuation can block on such mutex if a shared resource is currently in use by some
thread or lower-priority epilogue; in this case, the owning control flow is reactivated until
it frees the mutex. Hence, interrupts (respectively epilogues) and threads share (logically)
a common priority space.11

The major advantage of this model is that it thereby becomes permissible for interrupt
control flows to block. This facilitates on-demand and fine-grained locking of kernel
components. The implementation in CiAO was inspired by the interrupt-as-coroutines

10This is possible, when (a) there are currently no nested prologues and (b) epilogue propagation has not
been temporarily disabled.

11To avoid a scheduling overhead this is restricted in the current implementation. Epilogues just keep (and
hand down) the current interrupt level, so they have priority over all threads and can only be interrupted
and preempted by IRQs with a higher priority.
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approach from Solaris [KE95]; however, the earliest references to this idea can be found
in Moose [SP86] and Mach [ABG+86]. Several other systems, such as FreeBSD [MKM04]
and L4 [Lie95], also execute interrupt handlers as threads.

The optional Piggybacking feature represents an optimization. When this feature is applied,
interrupts “borrow” – if possible – the interrupted continuation control flow for the
execution of their epilogue instead of starting their own continuation for this purpose.12

6.5.2. Design

In the following, I sketch the functional layers and their relevant components of interrupt
synchronization in a bottom-up manner. The achieved separation of concerns through
aspect-aware design will then be further detailed in Section 6.5.2.2; the implementation
in Section 6.5.3.

6.5.2.1. Functional Layers

Figure 6.11 shows the structure of interrupt synchronization in CiAO as a layered model:

(1) Interrupt handling starts in the hw::irq layer (the interface to the underlying hard-
ware), which contains one separate system component (a C++ class) for each
(platform-specific) interrupt source. Each interrupt class provides a static handler()

method as an explicit upcall join point (see Table 6.1). This join point is triggered
when the corresponding interrupt occurs.

(2a) Binding aspects from the os::dev layer establish the link from hardware interrupt
sources to corresponding system layer components (drivers). As a driver may service
more than one IRQ, prologue and epilogue are contained in virtual IRQ (VIRQ)
components inside the driver. VIRQs are the operating system’s software abstraction
for hardware interrupt sources. Each VIRQ class provides an empty handler()

method as an explicit transition join point for the execution policy.

(4a) The Executor policy aspect from the policy layer binds VIRQ::handler() to the proper
activation of the actual interrupt handler implementation in VIRQ::prologue() and
VIRQ::epilogue().

(2) The os layer and its sublayers (os::dev, os::krn) contain the functional parts of the
operating system, which are independent of the interrupt synchronization policy.
Device drivers, but also other system components (such as the scheduler) are placed
in this layer. Device drivers implement the interrupt service code as VIRQs (that is,
define the behavior of prologue() and epilogue()), but have neither information
nor any influence on the actual circumstances of their execution. Depending on the
chosen synchronization model, a VIRQ may also act as a continuation or a delayed
execution object. Every system component used by interrupts (either directly or

12This is possible when the interrupted continuation has not aquired a mutex.
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Figure 6.11.: Design model of the architectural policy interrupt synchronization in CiAO.
Depicted is, on the example of a Timer0 device driver and the Continuation synchronization strategy, how
interrupt processing engages with the policy implementation (Executor, Locker) of the chosen strategy. (The
coloring indicates the corresponding feature from Figure 6.10.)

indirectly) is subject to interrupt synchronization and provides an accompanying
..._IntSync aspect that describes its synchronization requirements.

(3) The os::irq layer is responsible for enforcing the synchronization constraints. The
aspect Block enforces disabling of interrupts when methods are called that operate
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on prologue-accessible state (will be explained in following next section). It may be
deactivated if we want to combine prologues and epilogues, which means that they
are actually synchronized with the same mechanism. This is always the case with
the Hard synchronization strategy. The Sync aspect enforces protection of all methods
that run on epilogue level.

(4) Finally, a policy layer implements the chosen model of interrupt synchronization.13

A policy layer contains at least a Locker and an Executor. Whereas the Locker

encapsulates the implementation of the locking mechanism, the Executor applies
the policy-dependent mechanisms for the activation of prologues and epilogues.
This responsibility includes the necessary transformations of VIRQs in a way that
they are able to act as a continuation or a delayed execution object.

In the shown policy::continuation strategy, the Executor activates epilogues as new con-
tinuations using the Continuation abstraction as dispatcher. VIRQs have to be equipped
with their own Continuation context for this purpose; locking is implemented by mutex
objects. As the context switch mechanisms are now also activated from interrupt level
(the Executor aspect introduces a new functional dependency between interrupts and the
class Continuation), they have to be synchronized on interrupt level. For this purpose the
Continuation_SyncIRQ aspect we discussed in Section 6.4 is employed.

6.5.2.2. Separation of Policies and Mechanisms

With respect to aspect-aware operating system development, the most interesting point of
the sketched design is how the separation of policies and mechanisms is achieved. We can
roughly divide the architectural policy of interrupt handling in two concerns:

Synchronization. The synchronization concern deals with the question which mechanism
is used for the coordination of interrupt and thread control flows (deferring of
interrupts, deferring of epilogues, mutex) and where it has to be applied.

Execution. The execution concern deals with the question which mechanism is used for
the activation of interrupt control flows (direct, delayed, as separate continuation)
and where it has to be applied.

Both concerns are not independent of each other – if we choose a blocking synchronization
mechanism (such as mutex) we also need a preemptable execution mechanism (such
as continuation). Hence, they together constitute an implementation of the interrupt
synchronization policy.

To be able to develop system components (such as device drivers) in a way that they
are transparent with respect to such a policy, a further separation is necessary. It can be
expressed as simple questions of how, where, and what:

13The policy layers are not real layers in CiAO; they serve only illustrative purposes here to group the
mechanisms that are used for a particular policy.
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How. The answer to the question how we want to synchronize is the policy-dependent part
of interrupt synchronization and execution. It defines which mechanisms are to be
used for synchronization of components (Locker) together with a suitable execution
model for prologues and epilogues (Executor).

Where. The answer to the question where synchronization measures have to be applied is
the component-dependent part of interrupt synchronization. We need a representation
of the synchronization requirements of each operating system component. As this
knowledge depends on the component implementation, it has to be provided by the
component developer. In the current implementation, synchronization requirements
are encoded on a per-method level in the accompanying ...IntSync aspects, which
provide named pointcuts that specify the members of each synchronization class.14

We distinguish between three synchronization classes.

1. Most methods belong to the class synchronized, which means that they get
synchronized on epilogue level.

2. Methods that access prologue-accessible state belong to the class blocked in-
stead, which means that they are synchronized on prologue level.

3. Methods that only perform atomic or interrupt-transparent operations do not
need to be subject of any synchronization measures and belong to the class
transparent.

In principle, the where of prologue/epilogue activation is component-dependent,
too. However, this knowledge is already encoded in an aspect-aware manner by
the common structure and join-point interface of the VIRQ classes. Thereby it is
possible to quantify over all points of prologue/epilogue activation with a single
pointcut expression. Hence, in the actual implementation the where of the execution
concern is not component-dependent and can directly be encoded as a pointcut in
the Executor aspect.

What. Finally, we have to ensure that the chosen synchronization mechanism actually
gets applied appropriately at the correct positions in the control flow. This part is
independent of both the policy and the component. It is accomplished by pieces of
advice given by the aspects Sync and Block from the os::irq layer. For the execution
mechanism it is taken care of by pieces of generic advice given by the Executor

aspect.

The concerns and their corresponding aspects are briefly summarized in Table 6.2.

14The specification of the synchronization requirements on method granularity and by manual maintenance
of named pointcuts is not optimal. Ideally, we would be able to tag methods directly with their synchro-
nization class – instead of listing them in a named pointcut. Even better would be the possiblity to apply
tags on a finer granularity, such as on the level of code blocks. Currently, AspectC++ does not provide
language means for this. However, if a concept of tagged attributes becomes available in AspectC++, it
will be easy to catch this up in the discussed design as no policy-related parts will be affected.
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aspect # concern

Binder per IRQ–VIRQ mapping upcall binding, hardware decoupling

VIRQ per VIRQ per component execution domain specification

Executor per policy execution mechanism and enforcement

Locker per policy synchronization mechanism

Sync 1 synchronization enforcement

Block 1 synchronization enforcement

IntSync per component synchronization domain specification

Table 6.2.: Concerns of the architectural policy interrupt handling and corresponding aspects in CiAO

6.5.3. Implementation

In the following, I provide a closer look at some selected parts of the implementation.
A typical characteristic of architectural policies is that their implementation homoge-
niously crosscuts with the implementation of a (potentially unknown) number of kernel
components. In the actual implementation, this is tackled with generic advice.

6.5.3.1. Component Implementation

Listing 6.3.a shows excerpts from the driver implementation for the Timer0 timer device:
The windupPeriodical() method arms the timer device to request an interrupt after the
specified time. However, for the timer to do this periodically, the tick() method has to be
invoked from the interrupt handler to re-arm the timer. This is considered time-critical,
so it is done in the prologue. Therefore, the timer hardware registers and the period
belong to prologue-accessible state. Consequently, windupPeriodical() and tick() belong
to the synchronization class blocked. The callback functions, which are registered by
addEvent() and eventually get triggered by processEvents(), are held in a queue. This
queue belongs to the epilogue-accessible state; hence addEvent() and processEvents() are
members of the synchronization class synchronized. The value() method simply reads
the timer value; this happens atomically on this hardware architecture and does not
need to be synchronized, so value() belongs to the synchronization class transparent.
The accompanying Timer0_IntSync aspect in Listing 6.3.b encodes these decisions by
specifying a named pointcut for each class. The named pointcuts pcSynchronized(),
pcBlocked(), and pcTransparent() are actually definitions of pure virtual pointcuts from
the aspects Block and Sync (Section 6.5.3.3), from which (indirectly) every ..._IntSync
aspect inherits.15

15An aspect may give advice to an yet undefined (pure virtual) pointcut, which turns the aspect into an
abstract aspect; the pure virtual pointcut eventually has to be defined by some derived aspects. A more
detailed example for aspect inheritance and (pure) virtual pointcuts in AspectC++ can be found in
Appendix section A.2.
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(a) Timer0.h

1 class Timer0 ... {

2 ... // state

3 public:

4 void windupPeriodical( long time );

5 long value() const;

6 void addEvent( const EventCB* cb );

7 private:

8 void tick();

9 void processEvents();

10 class VIRQ ... {

11 void handler();

12 void prologue() {

13 tick();

14 }

15 void epilogue() {

16 process_events();

17 }

18 };

19 ...
20 };

(b) Timer0_IntSync.ah

1 aspect Timer0_IntSync : public IntSync {

2 pointcut pcClass = "os::dev::Timer0";

3

4 pointcut virtual pcSynchronized() =

5 within( pcClass() ) && (

6 "% addEvent(...)"

7 || "% processEvents()"

8 );

9

10 pointcut virtual pcBlocked() =

11 within( pcClass() ) && (

12 "% windupPeriodical(...)"

13 || "% tick()"

14 );

15

16 pointcut virtual pcTransparent() =

17 within( pcClass() ) && (

18 "% value()"

19 );

20 };

Listing 6.3: Example for a CiAO device driver with corresponding ..._IntSync aspect.
(a) Class Timer0 with inner class Timer0::VIRQ implements the driver for an interrupt-driven timer device.
(b) The accompanying aspect Timer0_IntSync encodes the synchronization requirements of Timer0 methods
by assigning them to one of the pointcuts pcSynchronized(), pcBlocked(), or pcTransparent().

6.5.3.2. Policy Implementation

The Locker is simply a type alias to a class which provides methods to be called in order
to protect critical method calls. In the case of Hard synchronization that class looks like this:

struct Hard {

static void enter() {

hw::hal::CPU::disable();

}

static void leave() {

hw::hal::CPU::enable();

}

};

For the other models, more sophisticated actions are to be performed by these two
methods. With Continuation synchronization, for instance, Locker is aliased to the kernel
mutex class IMutex, which has to deal with priority inheritance and potential dispatching
in enter() and leave().

With respect to configurability, the more interesting part of model implementation is the
Executor aspect, which again looks relatively simple in the case of Hard synchronization:

aspect Executor_Hard {

advice execution("% os::...::VIRQ%::handler(...)") : after() {

if (JoinPoint::That::prologue()) // execute prologue

154



6.5. Case Study “Interrupt Synchronization”

JoinPoint::That::epilogue(); // execute epilogue

}

};

The Executor aspect is quantified over all VIRQ classes; it uses generic advice (Section 4.2)
to bind prologue() and epilogue() via their static type (given by JoinPoint::That), so
they can be inlined.

If we want to run the Delayed synchronization policy, the aspect has to enqueue the VIRQ
for later execution of the epilogue. For this, it is necessary to transform VIRQ classes into
queueable objects by introducing a Queueable base class:

aspect Executor_Delayed {

advice "os::...::VIRQ%" : slice class Gate : public Queueable {};

advice execution("...::VIRQ%::handler(...)") : after() {

if ( JoinPoint::That::prologue() ) { // execute prologue

Guard::relay( JoinPoint::That::Inst() ); // enqueue for later execution

} }

};

To be queueable, an actual instance is needed for each VIRQ class, even though the VIRQ
classes contain just static elements. To provide such instance the introduced slice Gate

also transforms VIRQs into singletons.

The realization of Continuation synchronization requires one separate continuation context
per VIRQ to which the Executor may switch for epilogue activation:

aspect Executor_Continuation {

advice "...::VIRQ%" : slice class { // introduce its own Continuation

static Continuation ctx; // into every VIRQ

static char *stack[cfIRQ_EPISTACK];

static void cfHAL_STARTFUNC_ATTRIBUTES entry( Continuation* me) {

me->after_FirstCPUReceive();

epilogue(); // run epilogue

} };

advice execution("...::VIRQ%::handler(...)") : after() {

...
typedef JoinPoint::That VIRQ;

if ( VIRQ::prologue() ) { // execute prologue

Continuation::getActive()->saveAndStart( // save current context and

&VIRQ::stack[cfIRQ_EPISTACK], // start epilogue in its own

VIRQ::entry, &VIRQ::ctx); // continuation

} ... }

};

No object instance for the VIRQ is needed in this case as all members can be static.
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6.5.3.3. Enforcement of Synchronization

To accomplish the task of combining what, how and where, the aspects of this layer use
pure virtual pointcuts to which they give pieces of advice that contain the synchronization
code. These pointcuts are later defined by the component-specific ..._IntSync aspects.
The pcExclude() pointcut protects synchronized but magic code (for example the epilogue
itself) from being affected by the piece of advice:

aspect Sync : Locker {

pointcut virtual pcSynchronized() = 0;

pointcut pcToSync() = call(pcSynchronized()

&& !pcExclude())

&& !within(pcSynchronized());

advice pcToSync() : around() {

enter();

tjp->proceed();

leave();

}

};

For fine-grained locking as used by the Continuation synchronization strategy, every compo-
nent has to be synchronized independently. This is achieved by the fact that a separate
instantiation of the whole synchronization hierarchy is performed for each (component-
specific) ..._IntSync aspect, resulting in one IMutex per component. In this case the Sync

aspect instruments all calls into “foreign” synchronization domains to obtain and release
the respective Mutex instance around the call.

With coarse-grained locking as used by the Hard synchronization and Delayed synchronization
strategies, all components share a single synchronization domain. This is realized by
combining the component-specific definitions of the virtual pointcuts pcSynchronized(),
pcBlocked(), and pcTransparent().

6.5.4. Interrupt Latency Comparison

Table 6.3 compares the relative prologue and epilogue activation overhead of the three
implementations. The numbers represent the latency in the optimal case: no other control
flow is in the kernel that blocks or delays the execution of prologues and epilogues. It is
therefore not surprising that the implementation of Hard synchrionization performs best as
this model involves the lowest ground overhead. With Delayed synchronization, the prologue
activation time is identical, however the potentially delayed execution of the epilogue
causes some overhead. As expected, the overhead is highest in the implementation of
Continuation synchronization. For the later context switch out of interrupt state, the TriCore
CPU requires some additional processing before entering the prologue, which causes the
higher latency for its activation. The context switch to activate the epilogue itself comes
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tprologue tepilogue t iret

hard 8 8 16
delayed 8 40 60

continuation 16 60 108

ProOSEK category 1 ISR 12 – 20
ProOSEK category 2 ISR – 12 20

Table 6.3.: Latencies for non-delayed interrupts in CiAO and ProOSEK.
Depicted numbers are the elapsed time [cycles] from the begin of the hardware interrupt handler to the first
prologue instruction, epilogue instruction, and until interrupt termination (iret)
[Measurements were performed on a TC1796b running at 50MHz clock speed. Code was compiled with
AC++1.0PRE3 and TRICORE-GCC-3.3 using -O3 optimizations and executed from internal no-wait-state RAM.
Measurements were performed with a hardware trace analyzer (Lauterbach). All results were measured (and
turned out to be stable) over 10 iterations.]

at a price, too, even though 60 cycles can still be considered as a fairly small overhead for
the gained flexibility of fine-grained locking.

Even though the latency of Continuation synchronization is highest in Table 6.3 (the ideal case
without any delays), it can quickly pay off: If the length of epilogue locks caused by other
interrupt handlers or kernel components exceeds the amount of 20 cycles, we already
could have a break-even to Delayed synchronization. This, however, always depends on
particularities of the concrete application (event frequency, deadlines, processor utilization,
...) and, thus, should be configurable.

The last two rows show the interrupt latency of category 1 and category 2 ISRs in
ProOSEK.16 In OSEK OS, ISRs cannot be split into two parts; instead they run either, as a
prologue, outside of the kernel (category 1 ISR) or, similar to an epilogue, synchronized
with the kernel (category 2 ISR) [OSE05, p. 25].

6.5.5. Summary

Interrupt synchronization is a good example for the decoupling of policies and mecha-
nisms of even architectural policies in CiAO. Whereas the enforcement of a usual kernel
policy (such as the preemption strategy presented in Figure 6.5) affects only a small
selection of well-known components, it is characteristic for an architectural policy that its
implementation crosscuts with the implementation of a (potentially unknown) number of
kernel components. Hence, it has to be quantifiable – which requires some preparations
on the side of the affected components. CiAO’s kernel components are aware of interrupt
synchronization – they adhere to a common driver model for VIRQs and explicitly specify
their synchronization requirements. However, they do not have to know the concrete
strategy. Thanks to generic advice and static typing, this architectural transparency can be
implemented in way that leads to quite efficient yet flexible and concern-separated code.

16ProOSEK by Elektrobit Automotive GmbH is a commercial OSEK OS implementation that is widely used in
the German automotive industry.
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6.6. Case Study “CiAO-AS”

The purpose of the “CiAO-AS” study was to evaluate the identifed principles and idioms
of aspect-aware operating-system development on a larger scale, that is, by construction
of a complete kernel. For a variety of reasons, the AUTOSAR-OS standard is a particularly
interesting test subject for this kind of evaluation (see also Section 3.1.2.3):

• AUTOSAR OS is not a concrete system but a standard, described by a set of require-
ments and a detailed specification of the system services (API) and abstractions.
This makes it possible to evaluate the approach with a top-down implementation of
real-world requirements.

• The suggested protection facilities (memory protection, timing protection, and service
protection) make AUTOSAR OS a convincing case for architectural configurability.

• AUTOSAR is a “hot topic” in the embedded systems domain.

CiAO-AS is an AUTOSAR-OS–like operating system based on the CiAO kernel. It is
AUTOSAR-OS–like in the sense that it implements almost all functional requirements and
features specified by AUTOSAR OS [AUT06a, AUT06b] (tasks, ISRs, events, resources,
alarms, hooks, ...) but does not claim to adhere entirely to the specification.17

In the following sections, I present and discuss some results from the “CIAO-AS” study. As
we already have discussed several examples for the aspect-aware design and implementa-
tion of CiAO’s system abstractions on a relatively high level of detail, I shall concentrate
in the following more on the achieved general results. This includes the global analysis
of AUTOSAR-OS concerns and their interdependencies, the implementation of these
concerns by aspect-aware operating-system development in CiAO, and the memory and
execution-time footprint of the resulting kernel.

6.6.1. Analysis Results – From Requirements to Concerns

As described in Section 3.1.2.3, the AUTOSAR-OS standard proposes a set of conformance-
and-scalability classes for the purpose of system tailoring. These classes are, however,
relatively coarse-grained and do not clearly separate between conceptually distinct con-
cerns. As CiAO aims at a much better granularity (see Section 6.1.1), every AUTOSAR-OS
concern is represented as an individual feature in CiAO-AS.

Table 6.4 presents – in a condensed form – the results of the analysis of the AUTOSAR-OS
concerns. It lists the identified concerns of AUTOSAR OS (column headings) and how we
can expect them to interact with the named entities of the implementation (row headings),
that is, the 44 system services (e.g., ActivateTask()) and the relevant system object
types (e.g., TaskType) specified in [OSE05, AUT06b]. Additionally examined in Table 6.4

17The differences are mostly related to language and tools. For instance, CiAO-AS applications have to be
written in C++ and woven with AC++.
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are some internal concerns (Preemption, Kernel synchronization) and internal transitions
(events) that are not mentioned explicitly in the AUTOSAR-OS specification, but that
are nevertheless of high relevance. These concerns were examined by experience and
deduction.

Table 6.4 thereby provides an overview on how we can expect AUTOSAR-OS concerns
to crosscut with each other in the structural space (types, services) and behavioral space
(control flows events) of the implementation. We can see, for instance, that the design
of the API is canonical – each system service and object type is motivated (introduced)
by exactly one concern. The state to be maintained in the listed object types, however, is
influenced by several concerns, so is the behavior that is associated with the execution of
a system service. In fact, there is not a single AUTOSAR-OS service that is influenced by
only one concern!

Some concerns are “highly crosscutting”, in the sense that their implementation is ex-
pected to touch a high number of system services or object types. The Hooks facility, for
instance, includes support for several application-specific signal handlers, among them the
ErrorHook that is to be invoked in case of an error.18 In the implementation, this touches
every system service that may return with an error code (StatusType).

As expected, some of the architectural protection classify as “highly crosscutting”, too.
This is particularly true for the various Service protection constraints to be checked for –
the enforcement of these constraints is naturally associated with the execution of system
services. Memory protection, on the other hand, is mostly associated with system-internal
events.19

The identified system-internal events are of particular importance with respect to an
aspect-aware development as they reflect relevant transitions that are not implicitly
provided by a system service. Instead, I had to deal with these transitions explicitly in
the design and implementation, for example, model them as explicit join-points. We have
already seen several examples for this in Section 6.3.4.

Overall, the concerns defined by the AUTOSAR-OS specification documents [AUT06b,
OSE05] bear a surprisingly high amount of crosscutting in the specified services and
abstractions. A concrete implementation should profit significantly from the aspect-aware
development approach.

18In Table 6.4, the Hooks concern subsumes all six hooks specified by AUTOSAR OS (ErrorHook,
ProtectionHook, StartupHook, ShutdownHook, PreTaskHook, PostTaskHook); in the CiAO-AS implementation
the support for each hook can be selected invididually (see also Figure 6.2 on page 127).

19The architectural policy Memory protection is not further elaborated in this thesis. Please consult [LSH+07]
for details regarding the design and implementation of CiAO’s Memory protection facilities.
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Table 6.4. (both pages): Influence of con-
figurable features on system services,
system types, and internal events in
AUTOSAR OS.

The table displays the results a con-
cern impact analysis on the base of the
AUTOSAR-OS requirements [AUT06a] and
specification [AUT06b, OSE05]. Depicted is
the influence of the identified AUTOSAR-OS
concerns (columns) on specified and deduced
implementation entities (rows).

The implementation entities in the rows
are (from top to bottom): system services
(functions), system objects (types), and,
slightly separated, internal events that were
deduced during the analysis (not part of the
AUTOSAR-OS specification). The concerns
in the columns are (from left to right): system
abstractions (functional concerns), callbacks
(upcalls into the application), protection
facilities (architectural concerns), and, slightly
separated, internal concerns deduced during
the analysis (not part of the AUTOSAR-OS
specification).

Kind of influence:
⊕ = extension of the API by a service or type
� = extension of an existing type
H# = modification after service or event
G# = modification before
 = modification before and after
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GetActiveApplicationMode() ⊕ H# G# G# GetActiveApplicationMode()
StartOS() ⊕ G# G# G# G# StartOS()
ShutdownOS() ⊕ H# G# G# G# ShutdownOS()
ActivateTask() ⊕ H# G# G# G# G# H# ActivateTask()
TerminateTask() ⊕ H# G# G# H# TerminateTask()
ChainTask() ⊕ H# G# G# G# G# H# ChainTask()
Schedule() ⊕ H# G# G# H# Schedule()
GetTaskID() ⊕ H# G# G# GetTaskID()
GetTaskState() ⊕ H# G# G# G# G# GetTaskState()
EnableAllInterrupts() ⊕ G# G# G# EnableAllInterrupts()
DisableAllInterrupts() ⊕ H# G# DisableAllInterrupts()
ResumeAllInterrupts() ⊕ G# G# G# ResumeAllInterrupts()
SuspendAllInterrupts() ⊕ H# G# SuspendAllInterrupts()
ResumeOSInterrupts() ⊕ G# G# G# ResumeOSInterrupts()
SuspendOSInterrupts() ⊕ H# G# SuspendOSInterrupts()
GetISRID() ⊕ G# G# GetISRID()
DisableInterruptSource() ⊕ H# G# G# G# G# DisableInterruptSource()
EnableInterruptSource() ⊕ H# G# G# G# G# EnableInterruptSource()
GetResource() ⊕ H# H# G# G# G# G# GetResource()
ReleaseResource() ⊕ H# G# G# G# G# G# H# ReleaseResource()
SetEvent() ⊕ H# G# G# G# G# H# SetEvent()
ClearEvent() ⊕ H# G# G# ClearEvent()
GetEvent() ⊕ H# G# G# G# G# GetEvent()
WaitEvent() ⊕ H# G# G# H# WaitEvent()
IncrementCounter() ⊕ H# G# G# G# G# H# IncrementCounter()
GetAlarmBase() ⊕ H# G# G# G# G# GetAlarmBase()
GetAlarm() ⊕ H# G# G# G# G# GetAlarm()
SetRelAlarm() ⊕ H# G# G# G# G# G# SetRelAlarm()
SetAbsAlarm() ⊕ H# G# G# G# G# G# SetAbsAlarm()
CancelAlarm() ⊕ H# G# G# G# G# CancelAlarm()
StartScheduleTableRel() ⊕ H# G# G# G# G# G# StartScheduleTableRel()
StartScheduleTableAbs() ⊕ H# G# G# G# G# G# StartScheduleTableAbs()
StopScheduleTable() ⊕ H# G# G# G# G# StopScheduleTable()
NextScheduleTable() ⊕ H# G# G# G# G# NextScheduleTable()
SetScheduleTableAsync() ⊕ H# G# G# G# G# SetScheduleTableAsync()
SyncScheduleTable() ⊕ H# G# G# G# G# SyncScheduleTable()
GetScheduleTableStatus() ⊕ H# G# G# G# G# GetScheduleTableStatus()
GetApplicationID() ⊕ G# G# GetApplicationID()
TerminateApplication() H# ⊕ G# G# TerminateApplication()
CallTrustedFunction() H# ⊕ G# G# CallTrustedFunction()
CheckObjectAccess() ⊕ G# G# G# G# CheckObjectAccess()
CheckObjectOwnership() ⊕ G# G# CheckObjectOwnership()
CheckISRMemoryAccess() ⊕ G# G# G# G# CheckISRMemoryAccess()
CheckTaskMemoryAccess() ⊕ G# G# G# G# CheckTaskMemoryAccess()
AppModeType ⊕ � � AppModeType
TaskType ⊕ � � � � � � � � TaskType
ISR category 2 ⊕ � � � ISR category 2
ResourceType ⊕ � � ResourceType
AlarmType /ScheduleTableType � � ⊕ � � � � AlarmType /ScheduleTableType
ApplicationType ⊕ � ApplicationType

alarm expiry H# H# H# H# alarm expiry
category 2 ISR execution   H# category 2 ISR execution
system startup H# H# H# system startup
system shutdown G# system shutdown
protection violation H# protection violation
task switch  H# G#  task switch
application switch H# H# application switch
uncontrolled task end H# uncontrolled task end
user 7→ kernel transition H# G# user 7→ kernel transition
kernel 7→ user transition H# H# kernel 7→ user transition
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System abstractions (functional) Callbacks Protection facilities (architectural) Internal
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GetActiveApplicationMode() ⊕ H# G# G# GetActiveApplicationMode()
StartOS() ⊕ G# G# G# G# StartOS()
ShutdownOS() ⊕ H# G# G# G# ShutdownOS()
ActivateTask() ⊕ H# G# G# G# G# H# ActivateTask()
TerminateTask() ⊕ H# G# G# H# TerminateTask()
ChainTask() ⊕ H# G# G# G# G# H# ChainTask()
Schedule() ⊕ H# G# G# H# Schedule()
GetTaskID() ⊕ H# G# G# GetTaskID()
GetTaskState() ⊕ H# G# G# G# G# GetTaskState()
EnableAllInterrupts() ⊕ G# G# G# EnableAllInterrupts()
DisableAllInterrupts() ⊕ H# G# DisableAllInterrupts()
ResumeAllInterrupts() ⊕ G# G# G# ResumeAllInterrupts()
SuspendAllInterrupts() ⊕ H# G# SuspendAllInterrupts()
ResumeOSInterrupts() ⊕ G# G# G# ResumeOSInterrupts()
SuspendOSInterrupts() ⊕ H# G# SuspendOSInterrupts()
GetISRID() ⊕ G# G# GetISRID()
DisableInterruptSource() ⊕ H# G# G# G# G# DisableInterruptSource()
EnableInterruptSource() ⊕ H# G# G# G# G# EnableInterruptSource()
GetResource() ⊕ H# H# G# G# G# G# GetResource()
ReleaseResource() ⊕ H# G# G# G# G# G# H# ReleaseResource()
SetEvent() ⊕ H# G# G# G# G# H# SetEvent()
ClearEvent() ⊕ H# G# G# ClearEvent()
GetEvent() ⊕ H# G# G# G# G# GetEvent()
WaitEvent() ⊕ H# G# G# H# WaitEvent()
IncrementCounter() ⊕ H# G# G# G# G# H# IncrementCounter()
GetAlarmBase() ⊕ H# G# G# G# G# GetAlarmBase()
GetAlarm() ⊕ H# G# G# G# G# GetAlarm()
SetRelAlarm() ⊕ H# G# G# G# G# G# SetRelAlarm()
SetAbsAlarm() ⊕ H# G# G# G# G# G# SetAbsAlarm()
CancelAlarm() ⊕ H# G# G# G# G# CancelAlarm()
StartScheduleTableRel() ⊕ H# G# G# G# G# G# StartScheduleTableRel()
StartScheduleTableAbs() ⊕ H# G# G# G# G# G# StartScheduleTableAbs()
StopScheduleTable() ⊕ H# G# G# G# G# StopScheduleTable()
NextScheduleTable() ⊕ H# G# G# G# G# NextScheduleTable()
SetScheduleTableAsync() ⊕ H# G# G# G# G# SetScheduleTableAsync()
SyncScheduleTable() ⊕ H# G# G# G# G# SyncScheduleTable()
GetScheduleTableStatus() ⊕ H# G# G# G# G# GetScheduleTableStatus()
GetApplicationID() ⊕ G# G# GetApplicationID()
TerminateApplication() H# ⊕ G# G# TerminateApplication()
CallTrustedFunction() H# ⊕ G# G# CallTrustedFunction()
CheckObjectAccess() ⊕ G# G# G# G# CheckObjectAccess()
CheckObjectOwnership() ⊕ G# G# CheckObjectOwnership()
CheckISRMemoryAccess() ⊕ G# G# G# G# CheckISRMemoryAccess()
CheckTaskMemoryAccess() ⊕ G# G# G# G# CheckTaskMemoryAccess()
AppModeType ⊕ � � AppModeType
TaskType ⊕ � � � � � � � � TaskType
ISR category 2 ⊕ � � � ISR category 2
ResourceType ⊕ � � ResourceType
AlarmType /ScheduleTableType � � ⊕ � � � � AlarmType /ScheduleTableType
ApplicationType ⊕ � ApplicationType

alarm expiry H# H# H# H# alarm expiry
category 2 ISR execution   H# category 2 ISR execution
system startup H# H# H# system startup
system shutdown G# system shutdown
protection violation H# protection violation
task switch  H# G#  task switch
application switch H# H# application switch
uncontrolled task end H# uncontrolled task end
user 7→ kernel transition H# G# user 7→ kernel transition
kernel 7→ user transition H# H# kernel 7→ user transition
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6.6.2. Development Results – From Concerns to Classes and Aspects

In its full configuration, the CiAO-AS kernel source bears three basic system components
that are singletons by definition and represented as classes:

1. The scheduler (Scheduler) takes cares about the dispatching of tasks and the schedul-
ing strategy.

2. The alarm manager (AlarmManager) takes cares about the management of alarms
and the underlying (hardware / software) counters.

3. The OS control facility (OSControl) provides services for the controlled startup
and shutdown of the system and the management of OSEK-OS / AUTOSAR-OS
application modes.

Also represented as classes are the system abstractions (the types that represent instan-
tiable system objects, such as TaskType, ResourceType, and so on) and the namespace of
the API (AS).

However, as described in Section 6.3.1, these classes are sparse or even empty. If at all,
they implement only a minimal base of their respective concern. All further features and
variants are brought into the system by aspects. The class Scheduler, for instance, provides
only the minimal base of the scheduling facility, which is nonpreemptive scheduling with
single task activations. Support for more sophisticated preemption or activation modes is
provided by additional policy aspects and extension aspects.

Table 6.5 displays an excerpt of the list of AUTOSAR-OS concerns that have been imple-
mented as aspects in CiAO-AS.

The first three columns list for each concern the number of extension, policy, and upcall
aspects that implement the concern. For all concerns, the implementation could be realized
as a single aspect. (The further separation into an extension aspect and a policy aspect in
two cases (Resource support and Protection hook) is owed to the goal of strict decoupling of
mechanisms and policies suggested by the CiAO approach, see Section 6.1.1.)

The majority of concerns from Table 6.5 contributes to the set of policy aspects (12 aspects),
which by extend is followed by the set of extension aspects (9 aspects). The number of
upcall aspects (3 + n + m) differs from these in so far as it does not only depend on the
system configuration, but also on the application configuation: Each specified ISR in the
application is bound with the respective interrupt source in the kernel or HAL by its own
upcall aspect. These aspects are, however, not to be provided by the application developer;
they are generated automatically from the application configuration.

Another interesting point is the realization of synergies by quantification. If for some
concern the number of pieces of advice is lower than the number of affected join points
(displayed in the last two columns of Table 6.5) we have actually profited from the AOP
concept of quantification. For 14 out of the 22 concerns listed in Table 6.5 this is the case.

The net amount of this profit, however, depends on the type of the concern and aspect.
Extension aspects typically crosscut inhomogeniously with the implementation of other
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concern ex
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extension of | advice-based binding to

ISR cat. 1 support 1 m 2+m 2+m API, OS control | m ISR bindings
ISR cat. 2 support 1 n 5+n 5+n API, OS control, scheduler | n ISR bindings
ISR abortion support 1 2 1+m+n scheduler | m+n ISR functions

Resource support 1 1 3 5 scheduler, API, task | PCP policy implementation
Resource tracking 1 3 4 task, ISR | monitoring of Get/ReleaseResource

Event support 1 5 5 scheduler, API, task, alarm | trigger action JP

Alarm support 1 1 1 API

OS application support 1 2 3 scheduler, task, ISR

Full preemption 1 2 6 | 3 points of rescheduling
Mixed preemption 1 3 7 task | 3 points of rescheduling for task / ISR
Multiple activation support 1 3 3 task | binding to scheduler

Stack monitoring 1 2 3 task | CPU-release JPs
Context check 1 1 s | s service calls
Disabled interrupts check 1 1 30 | all services except interrupt services
Enable w/o disable check 1 3 3 | enable services
Missing task end check 1 1 t | t task functions
Out of range check 1 1 4 | alarm set and schedule table start services
Invalid object check 1 1 25 | services with an OS object parameter

Error hook 1 2 30 scheduler | 29 services
Protection hook 1 1 2 2 API | default policy implementation
Startup / shutdown hook 1 2 2 | explicit hooks
Pre-task / post-task hook 1 2 2 | explicit hooks

Table 6.5.: CIAO-AS kernel concern implemented as aspects with number of affected join points.
Listed are kernel concerns that are implemented as extension, policy, or upcall aspects (not including aspects
for memory protection, timing protection, and hw::hal-bindings), together with the related pieces of advice (not
including order-advice), the affected join points, and a short explanation for the purpose of each join point
(separated by “|” into introductions of extension slices | advice-based binding).

concerns, which does not leave much potential for synergies by quantification. Policy
aspects on the other hand – especially those for architectural policies – tend to crosscut
homogeniously with the implementation of other concerns; here quantification creates
significant synergies. Note, however, that in many cases the necessary homogenity of the
affected join points could only be achived by using generic advice.20

Overall, the identified AUTOSAR-OS concerns (cf. Section 6.6.1) could be well separated
into distinct implementation units by applying the principles and idioms of aspect-aware
operating system development.

20You may remember the ServiceProtection_InvalidObjectCheck aspect that served as an example for
generic advice in Section 4.2.3. It actually implements the Invalid object check feature from Table 6.5.
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6.6.3. Evaluation Results – From Configurations To Cost

In the following, I present some results from the performance and memory footprint
evaluation of the CiAO-AS implementation that demonstrate the achieved granularity.

6.6.3.1. Scalability of Memory Requirements

Table 6.6 displays how the memory requirements of the CiAO-AS kernel scale up with
the amount of selected features. The base system, which stands for the Task management
and OS control features, comprises about three KiB of code and 80 bytes of RAM. This
seems to be surprisingly high, however, is distorted by the not yet optimized startup code
and library code. The resulting image contains several debug facilities, including a serial
driver and a printf() implementation. Hence, this figure should only be understood as
the base size for the relative cost of the other features.

Each Task object, for instance, takes 20 bytes of data for the kernel task context (priority,
state, function, stack, interrupted flag) and 16 bytes (bss) for the underlying TCBUser

continuation structure (saved PCXI register, return address, start function, task ID).
Aspects from the implementation of other features, however, may extend the size of the
kernel task context. Event support, for instance, crosscuts with Task management in the
implementation of the Task structure, which it extends by 8 bytes to accommodate the
current and waited-for event masks.

The cost of several features scales up with the amount of affected join points, which in turn
depends on the presence of other features. For example, the overhead of selecting a distinct
preemption policy than the implicit nonpreemptive depends on the number of additional
points of rescheduling (the execution of the services ActivateTask(), ReleaseResource(),
and SetEvent()), which have to be affected by the preemption policy aspect. Hence,
the total overhead is determined by the actual presence of these system services in the
configuration. If, for instance, Resource support is not part of the current configuration,
the piece of advice given by the preemption policy aspect to ReleaseResource() has just
no effect and, thus, does not induce a cost. This effect underlines again the flexibility of
loose coupling by advice-based binding.

Overall, we can ascertain CiAO a good granularity. The memory requirements scale up
well with the set of selected features.

6.6.3.2. Execution-Time Comparison

Table 6.7 displays the execution times of several tasking-related test scenarios (explained
in Listing 6.4) on CiAO and ProOSEK. For each of the microbenchmarks, both systems
were configured to support the smallest possible set of features.

The differences between CiAO and ProOSEK are formidable. CiAO is noticeable faster
in all test scenarions, with up to 2.6 times better execution times. This is due to several
reasons:
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feature with feature or instance text data bss

base system (OS control and tasks) 2890 24 56
with Alarm support + 32 0 0
per task + task function size + 0 + 20 + stack size + 16
per application mode 0 + 4 0
per alarm 0 + 8 0

ISR cat. 1 support 0 0 0
per ISR + ISR function size + 0 0 0
per disable–enable + 4 0 0

Resource support + 128 0 0
per resource 0 + 4 0
per task 0 + 8 0

Event support + 280 0 0
with Alarm support + 54 0 0
per task 0 + 8 0
per alarm 0 + 12 0

Alarm support + 568 0 + 24
per alarm 0 + 16 0
per application mode 0 + 4 0

Alarm callback support + 24 0 0
per alarm 0 + 8 0

Full preemption 0 0 0
per join point + 12 0 0

Mixed preemption 0 0 0
per join point + 44 0 0
per task 0 + 4 0

Stack monitoring 0 0 0
per join point + 44 0 0
per task 0 + 4 0

Context check 0 0 0
per void join point 0 0 0
per StatusType join point + 8 0 0

Disabled interrupts check 0 0 0
per join point + 64 0 0

Enable without disable check + 14 0 0
Missing task end check 0 0 0

per task + 58 0 0
Out of range values check 0 0 0

per join point + 152 0 0
per alarm 0 + 8 0

Invalid objects check 0 0 0
per join point + 36 0 0

ErrorHook 0 0 + 4
per join point + 54 0 0

StartUpHook or ShutDownHook 0 0 0
PreTaskHook or PostTaskHook 0 0 0

Table 6.6.: Scalability of CiAO’s memory footprint.
Listed are the static memory demands [Byte] of the CiAO base system (first line) and the relative increment for a
selection of optional features.
[Number of bytes retrieved from linker map files. All variants were woven and compiled with AC++-1.0PRE3 and
TRICORE-G++-3.4.3 using -O3 -fno-rtti -funit-at-a-time -ffunction-sections -Xlinker --gc-sections optimization
flags.]
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test scenario CiAO ProOSEK

(a) voluntary task switch 160 218
(b) forced task switch 108 280
(c) preemptive task switch 192 274
(d) system startup 194 399

Table 6.7.: Performance measurement results from CiAO and ProOSEK.
Listed numbers represent execution times [cycles] taken by CiAO and ProOSEK when executing the test
scenarios from from Listing 6.4 (execution time between FROM and TO in the corresponding test case). For each
figure the operating systems were configured with the minimal set of features supporting the respective test
case.
[Measurements were performed on a TC1796b running at 50MHz clock speed while executing from internal
no-wait-state RAM. Measurements were performed with a hardware trace analyzer (Lauterbach). All results
were measured (and turned out to be stable) over at least 10 iterations.]

• First and foremost, CiAO provides a much better configurability (and thereby gran-
ularity), than ProOSEK. As the test scenarios utilize only a relatively small set of
AUTOSAR-OS features, and both systems where configured to support the smallest
possible amount of features, this has a significant effect on the resulting execution
times. The smallest possible configurations of ProOSEK still contained a lot of ballast.
The scheduler is synchronized with ISRs, for instance; however, there are no ISRs in
the application scenario possibly interrupting the kernel.21

• Another reason is that ProOSEK’s internal implementation of continuations is less
efficient than CiAO’s (see Section 6.4.3). ProOSEK additionally saves the volatile
registers when preempting a task. Furthermore, the dispatching code does not
distinguish internally between start() of a new control flow and switch() to a
preempted control flow. Hence, whenever a new task gets activated, a context has
to be created for this task that resembles the context of a preempted task. On the
TriCore platform this is expensive, as it requires manual fiddling with the list of free
CSAs, for which – even worse – interrupts have to be disabled.

Overall, we can ascertain CiAO not only a good granularity, but also a quite competitive
performance.

6.6.4. Summary

The results from the “CiAO-AS” study show that the approach of aspect-aware operating-
system development is both feasible and benefitial for the implementation of real-world
operating systems. The concerns, services, and abstractions defined by the AUTOSAR-OS
standard bear a noticeable amount of internal crosscutting. Nevertheless, by applying
the principles and idioms of aspect-aware operating-system development, they could be
implemented in a well-separated and fine-grained manner in CiAO-AS.

21Apparently, ProOSEK bears the same unnecessary coupling of preemption and synchronization we already
have observed in eCos (see Section 5.3).
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(a) voluntary switch, nonpreemptive system

TASK( Task0 ) { // low priority

ActivateTask( Task1 );

asm volatile( "FROM:" );

Schedule();

ChainTask( Task0 );

}

TASK( Task1 ) { // high priority

asm volatile( "TO:" );

TerminateTask();

}

(b) forced switch, nonpreemptive system

TASK( Task0 ) {

ActivateTask( Task1 );

asm volatile( "FROM:" );

TerminateTask();

}

TASK( Task1 ) {

asm volatile( "TO:" );

ActivateTask( Task0 );

TerminateTask();

}

(c) preemptive switch, fully preemptive system

TASK( Task0 ) { // low priority

asm volatile( "FROM:" );

ActivateTask( Task1 );

ChainTask( Task0 );

}

TASK( Task1 ) { // high priority

asm volatile( "TO:" );

TerminateTask();

}

(d) system startup

int main() {

asm volatile( "FROM:" );

StartOS( OSDEFAULTAPPLICATIONMODE );

}

TASK( Task0 ) {

asm volatile( "TO:" );

TerminateTask();

}

Listing 6.4: Performance measurement test scenarios.
Taken into account are all instructions executed from the FROM label to the TO label. (a) Voluntary task switch
in a nonpreemptive system: Task1 gets the CPU when running Task2 invokes Schedule(). (b) Forced task
switch in a nonpreemptive system: activated Task1 gets the CPU when running Task0 terminates. (c) Preem-
tive switch in a fully preemptive system: Task1 gets the CPU the moment it is activated by Task0. (d) System
startup: StartOS() initializes the operating system and starts the scheduler, which dispatches Task0.

6.7. Discussion of Results

With respect to the goals described in Section 6.1.1, the approach of aspect-aware operat-
ing system development was quite successful. CiAO reaches the primary research goal
of architectural configurability. The system combines a good separation of concerns in
the implementation with excellent granularity and configurability, and – thereby – a quite
competitive efficiency regarding hardware resources.

This means that we can report success with respect to the design-level objectives from
Section 3.3.3 (page 65) – AOP does lead to a better configurability of policies in an
operating-system kernel; even architectural policies can be implemented as config-
urable features.

Overall, we can conclude that AOP is a well-suited tool for the implementation of config-
urability in system-software product lines for resource-constrained devices. It particularly

167



6. Design Level – CiAO Aspects: Aspect-Aware Operating-System Development

solves the problems that motivated this thesis (see Section 3.1.3 on page 63). These
results, however, were achieved by a somewhat different, “pragmatic” understanding and
application of AOP. In the following sections, I discuss some “aspects” of my approach.

6.7.1. Obliviousness Versus Awareness

An important difference between aspect-aware operating-system development and the
“classical” understanding and application of AOP is how I dealt with the inherent tension
between obliviousness and awareness.22

In their publications [FF00, FECA05], FILMAN and FRIEDMAN describe the obliviousness
ideal of AOP. Ideally, obliviousness can be a bidirectional relationship between components
and aspects: The programmers of the base system and the aspect developers can work
completely independent of each other. (“Just program like you always do, and we’ll be
able to add the aspects later.”)

However, total obliviousness is unrealistic for nontrivial aspect–component interactions.
Hence, in actual applications of AOP obliviousness is usually understood unidirectional:
The components of the base system are kept oblivious of aspects – at the price that the
aspects have to be perfectly aware of the components they affect. This often involves
knowledge about certain implementation details, which in turn leads to fragile pointcuts
if the component developers are kept oblivious of the aspects, too. Furthermore, this
approach hits its limits when the base code just does not offer the required join points.
The “eCos” study from Chapter 5 is a good example.

Aware of these problems, the AOP community tends to suggest “better pointcut languages”
with “semantic pointcuts” as the remedy to go for. However, I doubt that, for instance, the
semantic ambiguity between points of preemption and points of synchronization in eCos
(see Section 5.3.1 on page 113) could really be resolved by a better pointcut language.

Aspect-aware operating system development moderates these issues by pragmatically
considering obliviousness and awareness as two ends of a continuum: The more oblivious
a component should be of the aspects that potentially engage with it, the more aware
the aspects have to be of the component – and vice versa. Much of the flexibility and
configurability of CiAO stems from the freedom to decide for each relationship about
the placement on this continuum. This is reflected in the three design principles of loose
coupling, visible transitions, and minimal extensions.

6.7.2. AOP Critique – Revisited

This brings us back to the common AOP critique we have discussed in Section 2.3.8 on
page 43. In his OOPSLA essay, STEIMANN concludes on the tension between obliviousness
and awareness that “the problems of AOP cannot be fixed without giving up its distin-
guishing characteristics” [Ste06]. However, he implies that obliviousness (or awareness)
22After all, aware and oblivious are antonyms [McK05].
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is an all-or-nothing property – which is not the case with aspect-aware operating-system
development. Even though CiAO components are not completely oblivious to aspects, –
the AOP mechanism behind obliviousness (which is inversion of control flow specifications
by advice, compare Section 4.1.2.1 on page 70) turned out as particularly useful. The
same holds for the mechanism behind quantification. Even though considered by some
authors as “rarely applicable” [KAB07] – only quantification (that is, the implicit per–join-
point instantiation of advice, compare Section 4.1.2.2 on page 72) made it possible to
implement architectural polices as configurable features in CiAO.

6.8. Chapter Summary

The goal of this chapter was to evaluate AOP with respect to the design level of config-
urability in system software for embedded devices. This led to the design principles and
development idioms of aspect-aware operating-system development.

The results from the CiAO project show that aspect-aware operating-system development
is a sound and applicable approach.

169



6. Design Level – CiAO Aspects: Aspect-Aware Operating-System Development

170



7
Summary, Conclusions, and Further Ideas

In this thesis, I evaluated the application of AOP as a first-class mechanism for the imple-
mentation of configurability in operating-system product lines for resource-constrained
embedded systems. The overall goal was to show that a well-directed, broad-scale appli-
cation of AOP significantly improves on the state of the art to implement configurability
in embedded operating systems without disadvantages on the hardware cost side.
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7.1. Summary and Conclusions

The idea to evaluate AOP for the implementation of configurability in operating-system
product lines for resource-constrained embedded systems was motivated by two problems:

Problem 1: Conditional compilation – the current state of the art for the implementation
of fine-grained configurability – leads to commingling of concerns instead of their
separation. While feasible for small projects, this technique does not scale, as the
increasingly commingled preprocessor statements severely impact the readability
and maintainability of the code – a situation commonly described by the pictorial
term “#ifdef hell”.

Problem 2: The configurable operating systems available today are yet not configurable
enough – they do not provide configurability of architectural policies. Even though
these policies are transparent to the application, they influence important nonfunc-
tional properties and, thus, should be understood as configurable features.

Both problems are essentially problems of crosscutting, so aspect-oriented programming
was a promising candidate for a remedy. It was, however, completely open if AOP can
compete – qualitatively, but especially quantitatively – with the existing approaches, and
if it facilitates to implement architectural policies as configurable features.

My research approach to answer these questions was to analyze and evaluate the suitability
of AOP in a bottom-up manner on three levels of increasing abstraction: language level,
implementation level, and design level.

Language-level conclusions: AOP does not induce an inherent overhead that makes it
per se unacceptable for the domain of efficient system software. Key to success,
however, is (1) to bind advice to join points at compile time whenever possible,
that is, to avoid not-statically evaluable pointcuts, and (2) to provide means for
overhead-free, static advice polymorphism – such as generic advice.

Implementation-level conclusions: AOP does not induce an overhead if applied to real
system software with aspects that quantify over hundreds of join points. With the
“eCos” study I could show that AOP compares very well to conditional compilation
for the implementation of configurability; it leads to a much better separation of
concerns without any disadvantages on side of the hardware cost. Hence, AOP is a
suitable remedy for Problem 1.

However, at the same time we had to conclude that separating the implementation of
architectural policies into aspects does not inherently make them more configurable.

Design-level conclusions: Instead, to achieve configurability of architectural policies, it
is necessary to design the software and its components specifically for the applica-
tion of policy aspects from the very beginning. The design rules of aspect-aware
operating-system development facilitate such a consequent decoupling of policies
and mechanisms in the implementation of an operating-system kernel. Thereby, it
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becomes possible to implement even fundamental architectural policies as config-
urable features. I could show this on the example of the AUTOSAR OS standard
and the CiAO operating-system product line, which combines a very competetive
granularity and variability with the configurability of architectural policies. Hence,
AOP is a suitable remedy for Problem 2.

7.2. Contributions

This thesis advances the state of the art in several directions. The following list describes
the most relevant contributions:

• The new generic advice concept, which facilitates advice polymorphy in statically
typed aspect languages, such as AspectC++. Only thereby it became possible
to exploit quantification for the implementation of architectural policies without
compromising on efficiency.

• The detailed analysis and reduction of the overhead induced by AspectC++
language constructs, which also led to a set of best practices on how to apply AOP
in resource-critical environments. Developers of embedded systems can now be sure
that the separation of concerns by AOP does not induce an extra overhead.

• The proof that AOP can lead to a significantly better separation of concerns in
the implementation of configurable system software. Code scattering and tangling in
real-world and state-of-the-art system software, such as the eCos operating system,
can significantly be reduced without any compromise on the hardware cost side.

• The method of aspect-aware operating system development, which puts the
ideas of obliviousness, quantification, and awareness in a new balance and has been
applied in the development of the CiAO operating system.

• The proof that by aspect-aware operating system development it becomes possible
to implement even fundamental architectural policies as configurable features.

• The CiAO family of operating systems, which is the first system family that has
been developed with AOP concepts from scratch and offers a competitive implemen-
tation of the AUTOSAR OS standard.

7.3. Further Ideas

The Ideal Aspect Language for System Development. The implementation of CiAO
and AspeCos with AspectC++ was successful. Still we learned that applying AOP to
the low-level concerns of system sofware involves some very particular requirements
that are not addressed in an optimal way so far. Generally desirable for this domain
would be language extensions that provide more control over the generated code. It
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should be possible, for instance, to assign compiler-specific attributes that control inlining
and calling conventions to advice code as well. Language means to prevent advising of
fragile parts would be helpful; so would be a better notion of explicit join points, such as
the possibility to “tag” syntactic entities, code blocks, or even single statements with an
annotation mechanism.

Optimization of Nonfunctional Properties. In Section 3.1.2, I discussed the relation
between nonfunctional and architectural properties. Because of their emergent nature,
nonfunctional properties can only be influenced indirectly. The motivation of a config-
urable architecture stems from the observation that architectural policies have a high
influence on certain nonfunctional properties without impairing the functional specifica-
tion of the system. Hence, they are ideal variation points for optimizing a system with
respect to certain nonfunctional properties, such as latency, performance, or memory
footprint.

With its configurable architecture, CiAO now provides excellent means for such optimiza-
tions. Still open is, however, how we can find the best – or at least a reasonably good –
configuration for a particular application and its characteristic workload. A brute-force
approach (that is, to manually or automatically generate and evaluate all possible variants
that fulfill the functional specification) will quickly hit its limits, as the number of variants
to check grows exponentially with the number of architectural features. Hence, we need
measures for an upfront assessment of promising and unpromising feature selections to
reduce the number of configurations to test.
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A
Appendix: AspectC++

AspectC++ [SGSP02, SLU05a, SL07] is a general-purpose AOP extension for the C++
language [Str97] as specified by ISO/IEC 14882:2003 (C++98) [Ins03]. The AspectC++
language and all related tools (especially the static weaver AC++) are available under an
open-source license from the AspectC++ project homepage [AC+].

AspectC++ was originally developed by OLAF SPINCZYK as part of his PhD thesis [Spi02]
on top of the general-purpose C++ transformation framework PUMA, developed by OLAF

SPINCZYK and MATTHIAS URBAN. GEORG BLASCHKE and RAINER SAND have provided
additional tool support.1 Since I joined the AspectC++ team in 2003 I have been involved
in questions of language design (such as the support for generic advice discussed in
Section 4.2), overhead evaluation, and optimization.

On the following pages, I provide additional information about the AspectC++ language
and tools. This includes:

• a general language overview in section A.1,

• some advanced application examples in section A.2,

• the AspectC++ language quick reference in section A.3, and

• a comparison of the around-advice code generation by AC++0.9 and AC++1.0PRE1
in section A.4.

1namely the ag++ front-end for the GNU g++ compiler and the AspectC++ Development Tools for Eclipse
(ACDT)
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AspectC++ is a superset of the C++ language; every valid C++ program is also a valid
AspectC++ program. As in AspectJ, the most relevant terms are advice and pointcut.
Advice types include code-advice (before, after, around), introductions (known as inter-type
declarations in AspectJ) and aspect order definitions. The building blocks of pointcut
expressions are match expressions (to some degree comparable to generalized type names
(GTNs) and signature patterns in AspectJ), which can be combined using pointcut functions
and algebraic operations. Pointcuts can be named and thereby reused in a different context.
While named pointcuts can be defined anywhere in the program, only aspects can give
advice. The aspect

aspect TraceService {

pointcut Methods() = "% Service::%(...)";

advice call( Methods() ) : before() {

cout << "Service function invocation" << endl;

}};

gives before-advice to all calls to functions defined by the pointcut Methods(), which is in
turn defined as all functions of the class or namespace Service, like void Service::foo()

or int Service::bar(char*). The special % and ... symbols are wildcards, comparable
to * and .. in AspectJ.2 More about the match expression language can be found in
section A.1.3.2 and section A.3.5. A list of the pointcut functions and algebraic operations
currently supported by AspectC++ can be found in section A.3.6, respectively.

A.1.1. Design Rationale

AspectC++ has been developed with the following goals in mind:

AOP in C++ should be easy. We want practitioners to use AspectC++ in their daily
work. The aspect language has to be general-purpose, applicable to existing projects
and needs to be integrated well into the C++ language and tool chain.

AspectC++ should be strong where C++ is strong. Even though general-purpose, As-
pectC++ should specifically be applicable in the C/C++-dominated domains of
“very big” and “very small” systems. Hence, it must not lead to a significant overhead
at run-time.

These goals of AspectC++, in conjunction with the properties of the C++ language itself,
led to some fundamental design decisions:

• “AspectJ-style” syntax and semantics, as the AspectJ approach of AOP is used and
approved.

2AspectJ supports with + a third wildcard for subtype matching. In AspectC++ this is implemented by the
derived() pointcut function.
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• Comply with the C++ philosophy, as this is crucial for acceptance. As different as
C++ is from Java, as different AspectC++ has to be from, e.g., AspectJ.

• Source-to-source weaving, as it is the only practicable way to integrate AspectC++
with the high number of existing tools and platforms. The AspectC++ weaver AC++
transforms AspectC++ code into C++ code.

• Avoid using expensive C++ language features in the generated code, such as exception
handling or RTTI, as this would lead to a general run-time overhead.

• Apply strict pay-as-you-use semantics with respect to used AOP features. The gener-
ated code must not depend on additional run-time libraries, as this would lead to a
general run-time overhead.

• Careful, minimal extension of the C++ grammar, as the grammar of C++ already is
a very fragile building, which should not be shaken more than absolutely necessary.

A.1.2. AspectC++ Grammar Extensions

The AspectC++ extensions to the C++ grammar can be found in section A.3.1. Probably
the most important design decision for keeping the set of grammar extensions small and
simple was to use quoted match expressions. By quoting match expressions, pointcuts can
be parsed with the ordinary C++ expression syntax. The real evaluation of the pointcuts
itself can be postponed to a separate parser. This clear separation also helps the user to
distinguish on the syntax level between ordinary code expressions and match expressions,
which are quite different concepts. Additionally, it keeps the match-expression language
extensible.

A.1.3. Join-Point Model

AspectC++ uses a unified join-point model to handle all types of advice in the same
way. This is different from AspectJ, which distinguishes between pointcuts and advice on
the one hand, and GTNs and introductions on the other. As shown in the TraceService

example above, in AspectC++ even match expressions are pointcuts and can be named.
While such a coherent language design is a good thing anyway, this is particularly useful
in combination with aspect inheritance and (pure) virtual pointcuts. In AspectC++, even
the pointcuts used for introductions and base-class introductions can be (pure) virtual
and, thus, be defined or overridden in derived aspects. This will be demonstrated in the
“Reusable Observer” example in section A.2.

A.1.3.1. Join-Point Types

Regarding the implementation, the unified model requires join points to be typed in
AspectC++. The basic join-point types are Name (N) and Code (C). A name join point
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represents a named entity from the C++ program, like a class, a function or a namespace.
It typically results from a match expression. A code join point represents a node in the
program execution graph, like the call to or execution of a function. Code join points result
from applying pointcut functions to name pointcuts. The basic types are additionally
separated into more specialized subtypes like Class (NC) or Function (NF), Execution
(CE), or Construction (CCons). The aspect weaver uses the type information to ensure
that, for example, code-advice (before, after, around) is only given to code join points.
section A.3.2 lists all join-point types. The subtypes are, however, mostly irrelevant for
the user as most pointcut functions accept the general types as a compound; an NC join
point, for instance, is implicitly treated as a set of NF join points of all member functions.

A.1.3.2. Match Expression Language

C++ has a rather complex type system, consisting of fundamental types (int, short, ...)
and class types (class, struct, union), derived types (pointer, array, reference, function)
and optional cv qualifiers (const, volatile). Besides ordinary functions and member
functions, C++ also supports overloading a predefined set of operator functions. Classes
can define type-conversion functions to provide implicit casts to other types. And finally,
classes or functions can be parameterizable with template arguments.

The AspectC++ match expression language covers all these elements, because in C++
they are an integral part of a type’s or function’s name or signature. Hence, they should be
usable as match criteria for yielding name join points. The match expression language is
defined by its own grammar consisting of more than 25 rules [US06, pp. 33ff]. I shall not
describe these rules here, instead refer to the match expressions examples in section A.3.5,
which should be sufficient to understand the match expressions used in this thesis.

A.1.3.3. Order-Advice

Besides code-advice (before, after, around) and introductions (see section A.3.4), As-
pectC++ supports with order-advice a third type of advice. Order-advice is used to define
a partial order of aspect precedence per pointcut. This makes it possible to have a different
precedence for different join points. For example, the order declarations

advice "Service" : order("Locking", "Tracing");

advice "Client" : order("Tracing", !"Tracing");

define that in the context of the class or namespace Service all advice given by the
aspect Locking should be applied first, followed by advice from any aspect but Locking
and Tracing. Advice given by Tracing should have the lowest precedence. However, for
Client the order is different. Advice given by Tracing should be applied first. As order
declarations are themselves pieces of advice, they benefit from the unified join-point
model. They can be given to virtual pointcuts and can be declared in the context of any
aspect. Hence, it is possible to separate the precedence rules from the aspects they affect.

181



A. Appendix: AspectC++

DigitalClock
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Tick()
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update(subject)
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Figure A.1.: Tangled code in the application of the observer protocol (scenario).
The existing stand-alone classes DigitalClock and AnalogClock should become observers of the existing
stand-alone class ClockTimer. However, applying the observer pattern requires significant modifications in
these classes. To turn DigitalClock and AnalogClock into observers of ClockTimer, they have to derive from
an additional base class, an update() method has to be added to AnalogClock and DigitalClock, and each
state-changing method in ClockTimer has to be modified to trigger the update. The implementation of the
observer protocol crosscuts with the implementation of its participants.

The AC++ weaver collects all partial order declarations for a join point and derives a
valid total order. In case of a contradiction, a weave-time error is reported.

A.1.3.4. Intentionally Missing Features

AspectC++ intentionally does not implement the get() and set() pointcut functions,
known from AspectJ to give advice for field access. Even if desirable, they are not
implementable in a language that supports free pointers. Field access through pointers is
quite common in C/C++ and implies a danger of “surprising” side effects for such advice.

A.2. Examples

The following examples for real-world aspects demonstrate some of the more advanced
AspectC++ language features.

A.2.1. Observer Pattern with AspectC++

Design patterns, such as the patterns published by the GANG OF FOUR (GOF) [GHJV95],
are generally considered as excellently reusable pieces of software design. Their implemen-
tation, however, typically crosscuts with the implementation of the participating classes,
which leads to tangled, less reusable code. Figure A.1 demonstrates this problem by an
example scenario for the observer pattern.

By means of AOP most design patterns can be implemented in a reusable, noninvasive
way. This was first presented by HANNEMANN and KICZALES with AspectJ and a subset
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1 aspect ObserverPattern {

2 public:

3 // Interfaces for each role

4 struct ISubject {};

5 struct IObserver { virtual void update (ISubject *) = 0; };

6

7 // To be defined / overridden by the concrete derived aspect

8 pointcut virtual observers() = 0;

9 pointcut virtual subjects() = 0;

10 pointcut virtual subjectChange() = execution( "% ...::%(...)"

11 && !"% ...::%(...) const" ) && within( subjects() );

12

13 // Introduce role interfaces into actual subject/observer classes;

14 advice observers() : slice class : public ObserverPattern::IObserver;

15 advice subjects() : slice class : public ObserverPattern::ISubject;

16 // Update observers when the subject changes

17 advice subjectChange() : after () {

18 ISubject* sub = tjp->that();

19 updateObservers( sub );

20 }

21 // Data structures and helper functions to manage subjects and observers

22 void updateObservers( ISubject* sub ) {...}
23 void addObserver( ISubject* sub, IObserver* ob ) {...}
24 ...
25 };

Listing A.1: A reusable implementation of the observer pattern in AspectC++.
The abstract aspect ObserverPattern defines interfaces IObserver and ISubject to be introduced as base
classes into all classes specified by the pure virtual pointcuts observers() and subjects(). Observers are
notified in case of a change by giving after-advice to the virtual pointcut subjectChange(), which defaults to all
state-changing methods.

of the GoF patterns [HK02]. Listing A.1 implements a reusable observer pattern with
AspectC++.

The aspect ObserverPattern defines interfaces ISubject and IObserver (lines 4f), which
are inserted via base-class introductions into all classes that take part in the observer proto-
col (lines 14f). These roles are represented by the pointcuts subjects() and observers(),
which are declared as pure virtual. Thus, ObserverPattern is an abstract aspect and the
definition of subjects() and observers() is delegated to derived concrete aspects.

A third pointcut, subjectChange(), describes all methods that potentially change the state
of a subject and thereby should lead to a notification of the registered observers (lines 11f).
This pointcut is a good example for the expressive power of the AspectC++ join-point
description language; it is defined as:

execution( // execution of

"%...::%(...)" // any function in any scope

&& // intersected with

!"%...::%(...) const" // any nonconst function

) && // intersected with

within(subjects()) // anything within a class from subjects()
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1 #include "ObserverPattern.ah"

2 #include "ClockTimer.h"

3

4 aspect ClockObserver : public ObserverPattern {

5

6 // define the pointcuts

7 pointcut subjects() = "ClockTimer";

8 pointcut observers() = "DigitalClock" ||"AnalogClock";

9

10 // insert the concrete update() implementation

11 advice observers() : slice class {

12 void update( ObserverPattern::ISubject* sub ){

13 Draw();

14 }

15 };};

Listing A.2: Application example for the reusable observer aspect.
The concrete aspect ClockObserver implements the application scenario from Figure A.1 without the necessity
to touch the existing classes AnalogClock, DigitalClock, and ClockTimer. The pattern is instantiated by inher-
iting from the reusable ObserverPattern aspect described in Listing A.1 and overwriting the pure virtual pointcuts
subjects() and observers(). Additionally, the instantiation-specific implementation of IObserver::update()
is introduced into DigitalClock and AnalogClock.

which evaluates to the execution of all nonconst methods that are defined within a class
from subjects(). This is a reasonable default. However, subjectChange() is declared as
virtual; it can be overridden in a derived aspect – if, for instance, not all state-changing
methods should trigger a notification. Finally, the notification of observers is implemented
by giving after-execution-advice to subjectChange() (lines 17ff).

The ClockObserver aspect in Listing A.2 implements the scenario from Figure A.1 as an
example for a concrete aspect derived from ObserverPattern. To apply the pattern, the
developer only would have to define the inherited, pure virtual pointcuts subjects() and
observers() (lines 7f) and to write the introduction that inserts the implementation of
update() into the observer classes (lines 11ff).3

A.2.2. Caching with AspectC++

The following example demonstrates how the possibility to use generative programming
techniques for aspect implementations can lead to a very high level of abstraction. The
example is a simple caching policy for function invocations. The implementation idea is
straightforward: before executing the function body, a cache is searched for the passed

3This implementation of “reusable observer” is even more generic than the AspectJ implementation suggested
by HANNEMANN in [HK02], where the derived aspects have to perform the base class introductions for
the role interfaces. Purpose and name of these interfaces are, however, implementation details of the
protocol and should be hidden. Moreover, the derived aspect has to define the subjectChange() pointcut
in any case. In the AspectC++ solution this is not necessary, as it is possible to take advantage from
the C++ notion of nonmodifying (const) methods in match expressions and thereby find all potentially
state-changing methods automatically.
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1 class Calc {

2 public:

3

4 Vec Expensive( const Vec& a,

5 const Vec& b) const;

6

7 int AlsoExpensive( double a,

8 double b) const;

9

10 int VeryExpensive( int a, int b,

11 int c) const;

12 };

13 struct Vec {

14 Vec( double _x = 0, double _y = 0 )

15 : x( _x ), y( _y ) {}

16 Vec(const Vec& src){operator =(src);}

17 Vec& operator =( const Vec& src ){

18 x = src.x; y = src.y; return *this;

19 }

20 bool operator==(const Vec& w) const{

21 return w.x == x && w.y == y;

22 }

23 double x, y;

24 };

Listing A.3: Target code for caching (Scenario).
Class Calc provides computationally intensive, yet side-effect–free (const) functions Expensive(),
AlsoExpensive(), and VeryExpensive(). In the function signatures, simple (int, double) as well as complex
(Vec) data types are used.

argument values. If an entry is found, the corresponding result is returned immediately,
otherwise the function body is executed and the cache is updated.

Caching is a typical example for a crosscutting policy. However, to be generic, an aspect
must be able to compare, copy, and allocate arbitrary sequences of function arguments. All
this is type-dependent; hence, for C++ the implementing code has to be generated at
compile-time.

A.2.2.1. Application Scenario

Consider an application that uses the class Calc (Listing A.3). The goal is to improve
the overall application execution speed. With the help of a tracing aspect we figured
out that the application spends most time in the computationally intensive functions
Calc::Expensive(), Calc::AlsoExpensive(), and Calc::VeryExpensive(). We detected
that in our application these functions are often called several times in order with exactly
the same arguments. Therefore, we want to improve the execution speed by caching.

A.2.2.2. The Generative Caching Aspect

Listing A.4 describes the implementation of a reusable caching aspect for this purpose.
The implementation is based on common idioms for template meta-programming. It uses
services from Loki, a well-known library for template meta-programming and policy-based
design [Ale01]: The Loki::Tuple template generates (at compile time) a tuple from a list
of types, passed as a Loki::Typelist.4 The resulting tuple is a class that contains one data
member for each element in the type list. The rough implementation idea is to pass a list
of parameter types to the Cache template and to store the cache data in a Loki::Tuple

4consult [Küm] or [Ale01] for a detailed documentation of these classes.
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1 #include "loki/TypeTraits.h"
2 #include "loki/Typelist.h"
3 #include "loki/HierarchyGenerators.h"
4
5 template< class T > struct Traits {
6 typedef typename Loki::TypeTraits<
7 typename Loki::TypeTraits< T
8 >::ReferredType >::NonConstType
9 BaseType;

10 };
11
12 namespace AC {
13 // Generate Loki::Typelist from args
14 template< class TJP, int J >
15 struct JP2TL {
16 typedef Loki::Typelist< typename
17 Traits< typename TJP::Arg<
18 TJP::ARGS-J >::Type >::BaseType,
19 typename JP2TL< TJP, J-1 >::Result
20 > Result;
21 };
22 template< class TJP >
23 struct JP2TL< TJP, 1 > {
24 typedef Loki::Typelist< typename
25 Traits< typename TJP::Arg<
26 TJP::ARGS-1 >::Type >::BaseType,
27 Loki::NullType
28 > Result;
29 };
30 }
31
32 aspect Caching {
33 template<class TJP> struct Cache
34 : public Loki::Tuple< typename
35 AC::JP2TL< TJP, TJP::ARGS >::Result >
36 {
37 // Comp. TJP args with a Loki tuple
38 template<class C,int I>struct Comp_N{
39 static bool proc(TJP* tjp,
40 const C& cc)
41 { return *tjp->arg< I >() ==
42 Loki::Field< I >( cc ) &&
43 Comp_N<C,I-1>::proc(tjp,cc);
44 }
45 };
46 template<class C>struct Comp_N<C,0>{
47 static bool proc(TJP* tjp,
48 const C& cc)
49 { return *tjp->arg<0>()

50 == Loki::Field<0>(cc);
51 }
52 };
53
54 // Copies TJP args into a Loki tuple
55 template<class C,int I>struct Copy_N{
56 static void proc(TJP* tjp, C& cc) {
57 Loki::Field< I >(cc) =
58 *tjp->arg< I >();
59 Copy_N< C, I-1 >::proc(tjp, cc);
60 }
61 };
62 template<class C>struct Copy_N<C,0>{
63 static void proc(TJP* tjp,C& cc) {
64 Loki::Field< 0 >( cc ) =
65 *tjp->arg< 0 >();
66 }
67 };
68
69 bool valid;
70 typename TJP::Result res;
71 Cache() : valid( false ) {}
72
73 bool Lookup( TJP* tjp ) {
74 return valid && Comp_N< Cache,
75 TJP::ARGS-1 >::proc(tjp, *this);
76 }
77 void Update( TJP* tjp ) {
78 valid = true;
79 res = *tjp->result();
80 Copy_N< Cache, TJP::ARGS-1 >
81 ::proc(tjp, *this);
82 }
83 };
84
85 advice execution("% Calc::%(...)")
86 : around() {
87 static Cache< JoinPoint > cc;
88
89 if( cc.Lookup( tjp ) )
90 *tjp->result() = cc.res;
91 else {
92 tjp->proceed();
93 cc.Update( tjp );
94 }
95 }
96 };

Listing A.4: Generative caching aspect.
The aspect Caching implements a generic, one-elemental cache by giving around-advice to the execution of
methods (lines 85–95). The actual parameter values (encoded in tjp) are looked up and returned from the
the cache if found (lines 89f); otherwise the original method is invoked (tjp->proceed()) and the cache is
updated. The inner template class Cache, instantiated with JoinPoint, implements the actual caching strategy.
To store the argument values, it derives from the Loki::Tuple template, instantiated with the signature of the
affected function (lines 33ff), which first has to be converted by the AC::JP2TL template meta-program (lines
14–29 ) into a Loki::Typelist. Additional template meta-programs generate the code to compare the affected
function’s argument values with the values stored in the cache (meta-program Comp_N, lines 38–52) and to copy
them into the cache (meta-program Copy_N, lines 55–67). These meta-programs are instantiated to implement
the Cache methods Lookup() (lines 74f) and Update() (lines 80f), respectively.
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(a) VC++ 2003 tangled caching aspect

AC++0.9 cycles cycles ∆

cache hit 39 54 15

cache miss 36 67 31

(b) VC++ 2003 tangled caching aspect

AC++1.0PRE1 cycles cycles ∆

cache hit 39 40 1

cache miss 36 47 11

Table A.1.: Performance overhead of the generative caching aspect.
Overhead in clock cycles in case of a cache hit and a cache miss when a simple one-elemental caching strategy
is applied to the method Vec Calc::Expensive(const Vec&, const Vec&) from Listing A.3. The column
tangled shows the overhead in case of a manual implementation of caching in the body of the method; the column
caching aspect shows the overhead if the generative caching aspect from Listing A.4 is used instead; ∆ denotes
the difference to tangled. (a) Results with AC++0.9. (b) Results with AC++1.0PRE1 (new around-advice
implementation).
[Measurements were performed on an Intel PIII E (“Coppermine”) machine running at 650 MHz under Windows
XP SP1. Cycles were measured with rdtsc for 1000 iterations and averaged over 25 series (σ < 0.1). Used
VisualC++ optimization flags: /O2 /Ot]

instead of distinct data members; thereby adapt the cache data automatically to the actual
parameter list of the affected function. The code for the methods Cache::Lookup() and
Cache::Update() is partly generated at compile time, as the number of arguments (and
therefore the number of necessary comparisons and assignments) is unknown until the
point of advice instantiation.

A.2.2.3. Performance Evaluation

The aspect Caching is indeed a generic and broadly reusable implementation of a caching
strategy. It can be applied noninvasively to functions with 1 to n arguments; each argument
being of any type that is comparable and assignable. Type safety is achieved and code
redundancy is completely avoided. The source code complexity, on the other hand, is
notably high. The encapsulation as an aspect may also result in a performance overhead,
as the aspect weaver has to create special code to provide the infrastructure for the
woven-in advice.

Table A.1 compares the performance overhead of the generative caching aspect with a
manual “in-place” implementation with AC++0.9 and AC++1.0PRE1 as aspect weavers.
For the in-place cache, cache hit represents the cost of a successful call to Lookup(),
cache miss represents the cost of an unsuccessful call to Lookup(), followed by a call
to Update().5 For the caching aspect, these numbers include the additional overhead
introduced by AspectC++. This overhead, explicitly displayed in column ∆, can be
understood as the price of applying caching by an aspect. The significantly better numbers
with AC++1.0PRE1 underline the benefits of the new around-advice implementation,
which is discussed in section A.4.

5The effect that the overhead of a cache miss is even lower than for a cache hit can be explained by the
four necessary (and relatively expensive) floating point comparisons to ensure a cache hit, while a cache
miss can ideally be detected after the first comparison. The skipped comparisons outweigh the cost of
Update().
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The additional overhead of the aspect implementations is partly induced by the fact that
AspectC++ needs to create an array of references to all function parameters to provide a
unified access to them.

A.2.2.4. Excursus: A Generic Caching Aspect in AspectJ

To understand if and how a similar genericity is reachable in a language that does not
support static meta-programming and follows a more run-time–based philosophy, I also
analyzed what a generic caching aspect would look like in AspectJ.

The AspectJ implementation (see Listing A.5) uses reflection to store the argument and
result values in the cache by dynamically creating instances of the corresponding types and
invoking their copy constructors. However, whereas in C++ the copy constructor is part
of the canonical class interface (and its absence is a strong indicator for a noncopyable
and therefore noncacheable class), in Java for many classes copy constructors are “just
not implemented”. This limits the applicability of the aspect, and, even worse, it is not
possible to detect the missing copy constructor before run-time.

Another strong issue of a reflection-based solution is performance: On a 1GHz Athlon
machine the additional cost of a cache-hit are 0.44 µs; a cache miss costs, because of
the expensive reflection-based copying, about 26.47 µs. These numbers are orders of
magnitude higher than the corresponding 0.001 µs and 0.015 µs (1 respectively 11 cycles
on a PIII-700) of the C++ solution.6 In short: A solution based on run-time reflection
instead of compile-time genericity induces a higher overhead, reduced applicability, and
may even lead to unexpected errors at run-time.

6Java measurements were performed on a 1GHz Athlon 4 (“Thunderbird”) running Sun’s Java 1.4.2_03
on a Linux 2.6.3 kernel. Because of the different setups, the Java and C++ numbers are not directly
comparable. We can however assume that the 700MHz PIII machine used for the C++ measurements
does not perform better than the 1GHz Athlon machine used for the Java measurements.
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1 public class Copy {

2 static public Object copy(Object _src) {

3 Object copy = null;

4 Class tmpClass = _src.getClass();

5 Field[] tmpFields = tmpClass.getFields();

6 boolean isPrimitive = false;

7 for (int j = 0; j < tmpFields.length

8 && !isPrimitive; j++) {

9 isPrimitive |=

10 tmpFields[j].getName() == "TYPE";

11 }

12 // if argument is primitive just copy ref

13 if (isPrimitive) {

14 copy = _src;

15 } else { try {

16 // try to invoke a copy constructor

17 Class[] initTypes = { tmpClass };

18 Constructor tmpConst =

19 tmpClass.getConstructor(initTypes);

20 Object[] initArgs = { _src };

21 copy = tmpConst.newInstance(initArgs);

22 } catch (Exception e) {

23 ...
24 } }

25 return copy;

26 } }

27

28 public class Cache {

29 boolean valid;

30 public Object result;

31 public Object[] arguments;

32

33 public Cache() {

34 valid = false;

35 }

36 public void update(Object[] _args,

37 Object _result) {

38 this.args = _args;

39 this.result = _result;

40 this.valid = true;

41 }

42 public boolean lookup(Object[] _args) {

43 // check if cache contains valid data

44 if (valid) {

45 boolean inCache = true;

46 For (int i = 0; i < this.args.length

47 && inCache; i++) {

48 inCache =

49 this.args[i].equals(_args[i]);

50 }

51 return inCache;

52 }

53 else return false;

54 } }

55

56 public aspect Caching {

57 /* A map containing all caches

58 for all cached functions */

59 Cache cc = new Cache();

60

61 public pointcut cachedFunctions() :

62 within(Calc) && execution(* * (..));

63

64 Object around() : cachedFunctions() {

65 /*get arguments */

66 Object[] args = thisJoinPoint.getArgs();

67 /* lookup arguments in cache */

68 if (cc.lookup(args)) {

69 return cc.result;

70 } else {

71 // get result by executing the original

72 Object result = proceed();

73 // copy result

74 Object resCopy = Copy.copy(result);

75 // copy arguments

76 Object[] argsCopy =

77 new Object[args.length];

78 for (int i = 0; i < argsCopy.length; i++) {

79 argsCopy[i] = Copy.copy(args[i]);

80 }

81 // perform Cache update

82 cc.update(argsCopy, resCopy);

83 return result;

84 } } }

Listing A.5: A generic caching aspect in AspectJ.
The AspectJ implementation of the generic caching aspect is structurally similar to the AspectC++ implementation
from Listing A.4. The main difference is that the actions to compare, copy, and allocate an unknown sequence
of function arguments have to be implemented with run-time mechanisms. The class Cache provides the
services to lookup() and update() a cache entry. The comparison of values in lookup() can be implemented
via the Object.equals() service. The copying of values, however, requires the use of Java run-time reflection
and is therefore delegated to a separate class. In update(), only the references to these copies are stored.
The class Copy implements the value-copier for Java object instances (given as Object) under the assumption
that the actual type implements a copy-constructor.
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A.3. AspectC++ Language Quick Reference

The following is a (slightly improved) reprint of the AspectC++ language quick reference
[SL06], which in turn is a condensed version of the AspectC++ language reference
[US06].

A.3.1. Syntax Extensions

The AspectC++ syntax is an extension to
the C++ syntax as defined in the ISO/IEC
14882:2003 standard [Ins03].

class-key:
aspect

declaration / member-declaration:
pointcut-declaration
advice-declaration
slice-declaration

pointcut-declaration:
pointcut declaration

pointcut-expression:
constant-expression

advice-declaration:
advice pointcut-expression : order-declaration
advice pointcut-expression : declaration

order-declaration:
order ( pointcut-expression-list )

pointcut-expression-list:
pointcut-expression
pointcut-expression, pointcut-expression-list

slice-declaration:
slice declaration

A.3.2. Join-Point Types

Code
C, CC, CE, CCons, CDes :

any, Call, Execution, Construction, Destruction

Name
N, NN , NC, NF , NT :

any, Namespace, Class, Function, Type

A.3.3. Aspects

aspect A { ... };
defines the aspect A

aspect A : public B { ... };
A inherits from class or aspect B

A.3.4. Advice Declarations

advice pointcut : before(...) {...}
the advice code is executed before the join
points in the pointcut

advice pointcut : after(...) {...}
the advice code is executed after the join
points in the pointcut

advice pointcut : around(...) {...}
the advice code is executed in place of the
join points in the pointcut

advice pointcut : slice class : public Base;
introduces a new base class Base into the
target classes matched by pointcut

advice pointcut : slice class : public Base {...};
introduces a new base class Base and new
members

advice pointcut : slice ASlice ;
introduces the slice ASlice into the target
classes matched by pointcut; the slice (a
class fragment) has to be defined sepa-
rately in any class or namespace scope

advice pointcut : order(high, ...low);
high and low are pointcuts, which describe
sets of aspects; aspects on the left side of
the argument list always have a higher
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precedence than aspects on the right hand
side at the join points, where the order
declaration is applied

A.3.5. Match Expressions

Type Matching

"int"

matches the C++ built-in scalar type int

"% *"

matches any pointer type

Namespace and Class Matching

"Chain"

matches the class, struct, or union Chain
"Memory%"

matches any class, struct, or union whose
name starts with “Memory”

Function Matching

"void reset()"

matches the function reset having no pa-
rameters and returning void

"% printf(...)"

matches the function printf having any
number of parameters and returning any
type

"% ...::%(...)"

matches any function, operator function,
or type conversion function (in any class
or namespace)

"% ...::Service::%(...) const"

matches any const member function of the
class Service defined in any scope

"% ...::operator %(...)"

matches any type conversion function

Template Matching

"std::set<...>"

matches all template instances of the class
std::set

"std::set<int>"

matches only the template instance
std::set<int>

"% ...::%<...>::%(...)"

matches any member function from any
template class in any scope

A.3.6. Predefined Pointcut Functions

Functions

call(pointcut) N→CC

provides all join points where a named
entity in the pointcut is called

execution(pointcut) N→CE

provides all join points referring to the
implementation of a named entity in the
pointcut

construction(pointcut) N→CCons

all join points where an instance of the
given class(es) is constructed

destruction(pointcut) N→CDes

all join points where an instance of the
given class(es) is destructed

pointcut may contain function names or class
names; a class name is equivalent to the names
of all functions defined within its scope com-
bined with the || operator (see below)

Control Flow

cflow(pointcut) C→C

captures join points occurring in the dy-
namic execution context of join points in
the pointcut; the argument pointcut is for-
bidden to contain context variables or join
points with runtime conditions (currently
cflow, that, or target)

Types

base(pointcut) N→NC,F

returns all base classes resp. redefined
functions of classes in the pointcut

derived(pointcut) N→NC,F

returns all classes in the pointcut and all
classes derived from them resp. all rede-
fined functions of derived classes
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Context

that(type pattern) N→C

returns all join points where the current
C++ this pointer refers to an object
which is an instance of a type that is com-
patible to the type described by the type
pattern

target(type pattern) N→C

returns all join points where the target ob-
ject of a call is an instance of a type that
is compatible to the type described by the
type pattern

result(type pattern) N→C

returns all join points where the result ob-
ject of a call/execution is an instance of a
type described by the type pattern

args(type pattern, ...) (N,...)→C

a list of type patterns is used to provide all
join points with matching argument signa-
tures

Instead of the type pattern it is possible here to
pass the name of a context variable to which
the context information is bound; in this case
the type of the variable is used for the type
matching

Scope

within(pointcut) N→C

filters all join points that are within the
functions or classes in the pointcut

Algebraic Operators

pointcut && pointcut (N,N)→N, (C,C)→C

intersection of the join points in the point-
cuts

pointcut || pointcut (N,N)→N, (C,C)→C

union of the join points in the pointcuts
! pointcut N→N, C→C

exclusion of the join points in the pointcut

A.3.7. Join-Point API

The join-point API is provided within every
advice code body by the built-in object tjp of
class JoinPoint.

Compile-Time Types and Constants

That [type]

object type (object initiating a call)

Target [type]

target object type (target object of a call)

Result [type]

result type of the affected function

Arg<i>::Type, Arg<i>::ReferredType [type]

type of the i th argument of the affected
function (with 0≤ i < ARGS)

ARGS [const]

number of arguments

JPID [const]

unique numeric identifier for this join
point

JPTYPE [const]

numeric identifier describing the type of
this join point (AC::CALL, AC::EXECUTION,
AC::CONSTRUCTION, AC::DESTRUCTION)

Run-Time Functions and State

static const char *signature()
gives a textual description of the join point
(function name, class name, ...)

static const int args()
returns the number of arguments

That *that()
returns a pointer to the object initiating a
call or 0 if it is a static method or a global
function

Target *target()
returns a pointer to the object that is the
target of a call or 0 if it is a static method
or a global function

Result *result()
returns a typed pointer to the result value
or 0 if the function has no result value

Arg<i>::ReferredType *arg()
returns a typed pointer to the argument
value with compile-time index number

void *arg(int number)
returns a pointer to the memory position
holding the argument value with index
number

192



A.3. AspectC++ Language Quick Reference

void proceed()
executes the original code in an around-
advice

AC::Action &action()
returns the runtime action object contain-
ing the execution environment to execute
( trigger() ) the original code encapsulated
by an around-advice

Run-Time Type Information

static AC::Type type()

static AC::Type resulttype()

static AC::Type argtype(int i)
return a C++ ABI V3 conforming string
representation of the signature / result
type / argument type of the affected func-
tion
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A.4. Around-Advice Implementation in AC++-0.9 and AC++-1.0PRE1

The evaluation results from the generative caching aspect (Table A.1) and the AspectC++
benchmarks in Section 4.3.2.1 revealed a significant improvement of AC++-1.0PRE1
compared to AC++-0.9 with respect to the cost of around-advice. This effect is caused by
the better code generation of AC++-1.0PRE1.

Consider the example program below, in which some around-advice is given for all calls
to a function foo( int, int ):

1void foo( int a, int b) {}
2int main() {
3foo( 47, 11 );
4}
5

6aspect SimpleAround {
7advice call("% foo(...)") : around() {
8// before proceed()
9tjp->proceed();
10// after proceed()
11}
12};

A.4.1. Code Generation with AC++-0.9

After weaving the example program with AC++-0.9, the generated code looks (slightly
edited) as follows:

1#ifndef __ac_h_

2#define __ac_h_

3namespace AC {
4typedef const char* Type;
5enum JPType { CALL = 0x0004, EXECUTION = 0x0008,
6CONSTRUCTION = 0x0010, DESTRUCTION = 0x0020 };
7struct Action {
8void **_args;
9void *_result;
10void *_target;
11void *_that;
12void (*_wrapper)(Action &);
13void *_fptr;
14inline void trigger () { _wrapper (*this); }
15};
16template <class Aspect, int Index>
17struct CFlow {
18static int &instance () {
19static int counter = 0;
20return counter;
21}
22CFlow () { instance ()++; }
23~CFlow () { instance ()--; }
24static bool active () { return instance () > 0; }
25};
26}
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27#endif // __ac_h_

28

29#ifndef __forward_declarations_for_SimpleAround__

30#define __forward_declarations_for_SimpleAround__

31class SimpleAround;
32namespace AC {
33template <class JoinPoint>
34inline void invoke_SimpleAround_SimpleAround_a0_around (JoinPoint *tjp);
35}
36#endif
37

38void foo( int a, int b) {}
39

40struct TJP__ZN4mainEv_0 {
41typedef void Result;
42typedef void That;
43typedef void Target;
44static const int JPID = 0;
45static const AC::JPType JPTYPE = (AC::JPType)4;
46enum { ARGS = 2 };
47template <int I, int DUMMY = 0> struct Arg {
48typedef void Type;
49typedef void ReferredType;
50};
51template <int DUMMY> struct Arg<0, DUMMY> {
52typedef int Type;
53typedef int ReferredType;
54};
55template <int DUMMY> struct Arg<1, DUMMY> {
56typedef int Type;
57typedef int ReferredType;
58};
59

60AC::Action *_action;
61inline void proceed () { _action->trigger (); }
62AC::Action &action() {return *_action;}
63};
64

65static void __action_call__ZN4mainEv_0_0 (AC::Action &action) {
66::foo(*((TJP__ZN4mainEv_0::Arg<0>::ReferredType*) action._args[0]),
67*((TJP__ZN4mainEv_0::Arg<1>::ReferredType*) action._args[1]));
68}
69inline void __call__ZN4mainEv_0_0 (int arg0, int arg1){
70void *args__ZN4mainEv_0[] = { (void*)&arg0, (void*)&arg1 };
71AC::Action tjp_action__ZN4mainEv_0 = { args__ZN4mainEv_0, 0, 0, 0,
72__action_call__ZN4mainEv_0_0, 0 };
73TJP__ZN4mainEv_0 tjp__ZN4mainEv_0 = {&tjp_action__ZN4mainEv_0};
74

75AC::invoke_SimpleAround_SimpleAround_a0_around<TJP__ZN4mainEv_0> (
76&tjp__ZN4mainEv_0);
77}
78

79int main() {
80__call__ZN4mainEv_0_0 ( 47, 11 );
81}
82

83class SimpleAround {
84public:
85static SimpleAround *aspectof () {
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86static SimpleAround __instance;
87return &__instance;
88}
89static SimpleAround *aspectOf () {
90return aspectof ();
91}
92template<class JoinPoint> void __a0_around (JoinPoint *tjp) {
93typedef typename JoinPoint::That __JP_That;
94typedef typename JoinPoint::Target __JP_Target;
95typedef typename JoinPoint::Result __JP_Result;
96

97// before proceed()
98tjp->proceed();
99// after proceed()
100}
101};
102template <class JoinPoint>
103inline void AC::invoke_SimpleAround_SimpleAround_a0_around (JoinPoint *tjp) {
104::SimpleAround::aspectof()->__a0_around (tjp);
105}

The original call from main() to foo() has been replaced by a call to the wrapper function
__call__ZN4mainEv_0_0() (line 80). In this function (lines 69–77) an Action object is
allocated on the stack and initialized. This object encapsulates the complete context of the
original call, including a pointer to a wrapper function __action_call__ZN4mainEv_0_0()

that finally performs the call to foo() (line 65). The Action object is passed as part of the
join point context to the proceed() method (line 61), which uses it to invoke the original
call via the pointer to the wrapper function.

A.4.2. Code Generation with AC++-1.0PRE1

Compare this to the (slightly edited) output generated by AC++-1.0PRE1, in which the
implementation of proceed() (lines 75ff) is no longer based on the presence of an Action

object, but calls foo() directly:

1#ifndef __ac_h_

2#define __ac_h_

3namespace AC {
4typedef const char* Type;
5enum JPType { CALL = 0x0004, EXECUTION = 0x0008,
6CONSTRUCTION = 0x0010, DESTRUCTION = 0x0020 };
7struct Action {
8void **_args; void *_result; void *_target; void *_that; void *_fptr;
9void (*_wrapper)(Action &);
10inline void trigger () { _wrapper (*this); }
11};
12struct AnyResultBuffer {};
13template <typename T> struct ResultBuffer : public AnyResultBuffer {
14char _data[sizeof (T)];
15~ResultBuffer () { ((T*)_data)->T::~T(); }
16operator T& () const { return *(T*)_data; }
17};
18template <class Aspect, int Index>
19struct CFlow {
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20static int &instance () {
21static int counter = 0;
22return counter;
23}
24CFlow () { instance ()++; }
25~CFlow () { instance ()--; }
26static bool active () { return instance () > 0; }
27};
28}
29inline void * operator new (unsigned int, AC::AnyResultBuffer *p) { return p; }
30inline void operator delete (void *, AC::AnyResultBuffer *) { } // for VC++
31#endif // __ac_h_

32

33#ifndef __ac_fwd_SimpleAround__

34#define __ac_fwd_SimpleAround__

35class SimpleAround;
36namespace AC {
37template <class JoinPoint>
38inline void invoke_SimpleAround_SimpleAround_a0_around (JoinPoint *tjp);
39}
40#endif
41

42void foo( int a, int b) {}
43

44struct TJP__ZN4mainEv_0_0 {
45typedef void Result;
46typedef void That;
47typedef void Target;
48static const int JPID = 0;
49static const AC::JPType JPTYPE = (AC::JPType)4;
50struct Res {
51typedef void Type;
52typedef void ReferredType;
53};
54enum { ARGS = 2 };
55template <int I, int DUMMY = 0> struct Arg {
56typedef void Type;
57typedef void ReferredType;
58};
59template <int DUMMY> struct Arg<0, DUMMY> {
60typedef int Type;
61typedef int ReferredType;
62};
63template <int DUMMY> struct Arg<1, DUMMY> {
64typedef int Type;
65typedef int ReferredType;
66};
67

68void **_args;
69

70inline void *arg (int n) {return _args[n];}
71template <int I> typename Arg<I>::ReferredType *arg () {
72return (typename Arg<I>::ReferredType*)arg (I);
73}
74

75void proceed () {
76::foo(*((TJP__ZN4mainEv_0_0::Arg<0>::ReferredType*)_args[0]),
77*((TJP__ZN4mainEv_0_0::Arg<1>::ReferredType*)_args[1]));
78}
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79};
80

81inline void __call__ZN4mainEv_0_0 (int arg0, int arg1){
82void *args__ZN4mainEv_0[] = { (void*)&arg0, (void*)&arg1 };
83TJP__ZN4mainEv_0_0 tjp;
84tjp._args = args__ZN4mainEv_0;
85AC::invoke_SimpleAround_SimpleAround_a0_around<TJP__ZN4mainEv_0_0> (&tjp);
86}
87

88int main() {
89__call__ZN4mainEv_0_0 ( 47, 11 );
90}
91

92class SimpleAround {
93public:
94static SimpleAround *aspectof () {
95static SimpleAround __instance;
96return &__instance;
97}
98static SimpleAround *aspectOf () {
99return aspectof ();
100}
101template<class JoinPoint> void __a0_around (JoinPoint *tjp) {
102typedef typename JoinPoint::That __JP_That;
103typedef typename JoinPoint::Target __JP_Target;
104typedef typename JoinPoint::Result __JP_Result;
105

106// before proceed()
107tjp->proceed();
108// after proceed()
109}
110};
111namespace AC {
112template <class JoinPoint>
113inline void invoke_SimpleAround_SimpleAround_a0_around (JoinPoint *tjp) {
114::SimpleAround::aspectof()->__a0_around (tjp);
115}
116}

Hence, no Action object has to be allocated and initialized in the call-advice wrapper
__call__ZN4mainEv_0_0() (lines 81–86) and the invocation of the original call to foo()

does no longer happen indirectly via a function pointer. This code is much better optimiz-
able by current C++ back-end compilers.
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Appendix: Case Study “WeatherMon”

The goal of the “WeatherMon” study presented in the following was to evaluate AOP in
comparison to OOP for the development of software product lines for small, resource-
thrifty “deeply embedded” systems. For this purpose, a real-world example of a small
embedded system was designed and implemented from scratch as a configurable software
product line. The real-world example is an embedded weather-station product line that is
based on an AVR ATmega 8-bit microcontroller and can be equipped with various sensors
and actuators to measure and process weather data. Figure B.2 shows a picture of the
actual hardware.

Besides the AOP-based design and implementation, I also implemented an OOP-based
version of the same product line. The aim of this version is to provide a qualitative
measure for the analysis of the idioms for configurability used in the AOP-based version. A
third version was implemented with C and the C preprocessor; it provides the quantitative
measure for the cost of configurability by AOP respective OOP.
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B.1. WeatherMon Overview

A weather station basically consists of one or more sensors to gain environmental in-
formation and one or more actuators to process the gathered weather data. Figure B.1
shows the the weather-station feature model. Note that the lists of available sensors and
actuators are expected to grow in future versions, for instance, by additional sensors for
wind direction and humidity. Not visible in the feature model, but nevertheless part of the
product-line definition, is that we have to distinguish between two kinds of actuators:

Generic actuators are able to process or aggregate information of any set of sensors.
Display and XMLProto are examples for generic actuators. The XML representation
of weather information, for instance, can easily and automatically be extended for
additional sensors.

Nongeneric actuators process or aggregate sensor data of some specific sensors only.
SNGProto is an example for a specific actuator. It implements a legacy binary data
representation for compatibility with existing PC applications. This format encodes
information of certain sensors only.

A weather-station variant is configured by selecting features from a representation of the
feature model in the PURE::VARIANTS configuration tool [Beu03b]. The configuration
and variant generation process with PURE::VARIANTS is comparable to the process with
ECOSCONFIG, which I described in Section 3.1.1.1. However, a nice and unique feature

WeatherMon

Actuators

... Alarm Display PC Connection

RS232Line USBLine Protocol

SNGProto XMLProto

Sensors

Temperature Air Pressure Wind Speed ...

Figure B.1.: Feature diagram of the embedded weather-station product line.
The concept WeatherMon consists of at least one sensor and one actuator. Sensors gain information about
the environment, such as Temperature, Air Pressure, or Wind Speed. Actuators process sensor data: Weather
information can be printed on an (LCD) Display, monitored to raise an Alarm if values exceed some threshold,
and passed to a PC over a PCConnection, which can be either an RS232Line or a USBLine, using either an
XML-based data representation (XMLProto) or a proprietary binary format (SNGProto). (The coloring is for the
purpose of feature traceability with Figure B.3 and Figure B.4)
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Figure B.2.: WeatherMon configuration process with PURE::VARIANTS.
The user selects all desired features from a representation of the feature model of the configuration editor (Ê).
Each solution-space version consists of a family model and a component repository. The family model maps
features to logical implementation components (Ë), which in turn are mapped to physical implementation files
(Ì). The thereby determined set of implementation files for a concrete configuration is copied into the target
directory, and finally compiled and linked into the actual weather-station variant (Í).

of PURE::VARIANTS is that for the same problem space (defined by the feature model)
alternative versions of an implementing solution space can be specified. This was used to
manage the different versions of the WeatherMon product line (C-based, AOP-based, and
OO-based implementation), as depicted in Figure B.2.

The AOP-based and OOP-based versions of the weather-station product line provide
configurability by separation of concerns: Each feature is implemented as a distinct set of
implementation artifacts; technically, the configuration decisions are enforced by including
or omitting implementation artifacts from the output of PURE::VARIANTS.
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The C-based implementation, in contrast, was solely optimized for low resource require-
ments. Configuration is enforced by means of conditional compilation; basically the actual
code looks like the code we found in eCos (Listing 3.1). As the only purpose of the C-based
implementation is to provide the lower bounds of the resource consumption that can be
reached in the different product-line configurations, I shall not discuss it in further detail.

B.2. Designing for Configurability with AOP and OOP

In the following I present a very brief description of the OOP-based and AOP-based
implementations (which I will abbreviate as AO version respective OO version from now
on). The details about both implementations are discussed together (to set them in
contrast to each other) in section B.3.

B.2.1. Requirements

Besides the functional features that have to be implemented, the additional requirements
on the implementations can be summarized as resource thriftiness and separation of
concerns. This means in particular:

Granularity. Components should be fine-grained. Each implementation element should
be either mandatory (such as the application main loop) or dedicated to a single
feature only.

Economy. The use of expensive language features should be avoided as far as possible.
For instance, a method should only be declared as virtual if polymorphic behavior
of this particular method is required.

Pluggability. Changing the set of selected sensors or actuators should not require modifi-
cations in any other part of the implementation. This basically means that sensor
and actuator implementations should be able to “integrate themselves” into the
system.

Extensibility. The same should hold for new sensor or actuator types, which may be
available in a future version of the product line.

B.2.2. The OO Version

Figure B.3 shows the class model of the OO version. Central elements are the Weather

and Sink classes. Weather aggregates all sensors, which are registered at run time by
calling Weather::registerSensor(). The Sink class aggregates all actuators, respectively.
Internally both, sensors and actuators, are managed by chaining them into light-weight
single-linked lists (ChainBase).
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«interface»
Sensor

measure()
name()
unit()
str_val()
init()

«interface»
Actuator

before_process()
after_process()
process()
init()

ChainBase

_next

Wind

id()
measure()
name()
unit()
str_val()
init()

Pressure

id()
measure()
name()
unit()
str_val()
init()

Display

#print()
before_process()
process()
init()

SNGConnection

before_process()
after_process()
process()
init()

«alias»
PCConnection

#send()

Weather

registerSensor()
measure()
init()

Sink

registerActuator()
process()
init()

_sensors _actuatorsinit,m
easure

init,process

registerSensor registerActuator

Figure B.3.: Static structure of the OO version of the WeatherMon product line.
The class diagram shows an excerpt with two sensors and two actuators. Virtual functions are depicted in italics,
static functions are underlined.

Principle of Operation

1. Weather information is acquired by calling Weather::measure(), which in turn in-
vokes the Sensor::measure() method on each registered sensor to update the sensor
data.

2. Weather information is processed by the Sink::process() method. Sink::process()
calls Actuator::before_process() for each registered actuator to initialize the pro-
cessing.

3. Sensor information is passed to the actuators by calling Actuator::process() for
each registered sensor. Actuators retrieve the actual sensor name, unit, and mea-
sured data (as character strings) by calling the respective Sensor methods.

4. At last, data processing is finalized by Sink::process() invoking
Actuator::after_process() on each actuator.

5. The whole process is repeated by the application main loop every second.

Further details of the design will be discussed in section B.3.
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Weather

measure() •

Wind

measure()
name()
unit()
str_val()

Pressure

measure()
name()
unit()
str_val()

PressureHandling

exec("Weather::measure")
exec("Sink::process")
intro("Weather")
intro("Sink")

WindHandling

exec("Weather::measure")
exec("Sink::process")
intro("Weather")
intro("Sink")

Display

#print()

exec("Sink::process")
exec("Sink::process_data(%)")

SNGConnection

exec("Sink::process")
exec("Sink::process_data(Wind)")
exec("Sink::process_data(Pressure)")
exec("Sink::process_data(Temperature)")

Sink

process_data(Pressure) •
process() •
process_data(Wind) •

«alias»
PCConnection

#send()

_wind

_pressure

measure

measure

"measure"

"measure"

"process"

pr
oc

es
s_

da
ta

(W
in

d)

"process"

process_data(P
ressure)

Figure B.4.: Static structure of the AOP version of the WeatherMon product line.
The class and aspect diagram shows an excerpt with two sensors and two actuators. Introduced elements in
classes Sink and Weather are depicted in the color of the introducing aspect.

B.2.3. The AO Version

The class and aspect model of the AO version is shown in Figure B.4. Central elements are,
again, the classes Weather and Sink. Each sensor class is accompanied by a handling aspect,
which performs the actual integration into Weather and Sink. A handling aspect performs
two introductions: It aggregates the sensor as an instance variable into class Weather and
a sensor-specific (empty) process_data() method into class Sink. Additionally, it gives
execution-advice to Weather::measure() and Sink::process().

Actuators are implemented as aspects, which give execution-advice to Sink::process()

(for initialization and finalization) and the sensor-introduced Sink::process_data() meth-
ods (for the actual data processing).

Principle of Operation

1. Weather information is acquired by calling Weather::measure(), which is advised by
the handling aspects of each sensor to call the sensor’s measure() method.

2. Weather information is processed by the Sink::process() method. Sink::process()
is before-advised by any actuator that needs to initialize before processing.

3. Sink::process()is advised for each sensor to call the introduced sensor-specific
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process_data() method.

4. The sensor-specific process_data() method is advised by each actuator that pro-
cesses data of this sensor.

5. At last, data processing is finalized by Sink::process() being after-advised for any
actuator that needs to finalize its processing.

6. The whole process is repeated by the application main loop every second.

In the next section, I discuss further details of the design and also compare it to the OOP
solution.

B.3. AOP and OOP Idioms for Configurability

To achieve configurability, both versions use approach-specific idioms and patterns in the
design and implementation. In the following I analyze the AOP idioms that have to be
used to reach separation of concerns – and thereby, configurability – by comparing them
to the OOP idioms used for the same purpose.

To reach separation of concerns, three major issues had to be solved in the design.

B.3.1. Issue 1: Working with Configuration-Dependent Sensor and Actuator Sets

Both implementations have in common that the Weather and Sink classes are used to
abstract from the configured sets of sensors and actuators. These two abstractions are
unavoidable, because the main() function, which runs the endless measurement and
processing loop, should be configuration-independent and, thus, robust with respect to
extensions. However, the implementation of the 1 : n relationship of Weather or Sink and
the concrete sensors or actuators is very different:

Interface dependency between Weather, Sink and sensors, actuators

The Weather and Sink classes need to be able to invoke the measuring and processing
of data independent of the actual sensor or actuator types. Otherwise, pluggability and
extensibility would be broken:

OO version. In the OO version, this is solved by common interfaces and late binding.
Sensors have to inherit from the abstract class Sensor, actuators from the abstract
class Actuator, respectively. Weather or Sink invoke sensors or actuators via these
interfaces, thus depend on them. Sensor::measure(), Actuator::before_process(),
Actuator::after_process(), and Actuator::process() have to be declared as vir-
tual functions:
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struct Sensor : public ChainBase {

virtual void measure() = 0;

...
};

...
class Weather {

public:

...
void measure () {

for( Sensor* s = ... )

s->measure(); // virtual function call!

}

};

AO version. In the AO version, the interface dependency is exactly opposite; we have an
inverted dependency from sensors and actuators to Weather and Sink, which do not
have to know about sensors and actuators. Instead, sensors and actuators integrate
themselves by advice-based binding:

class Weather {

public:

void measure () {} // empty implementation

};

...
aspect PressureHandling {

public:

advice "Weather" : slice struct{ Pressure _pressure; };

advice execution ("void Weather::measure()") : before () {

// nonvirtual inlineable function call

theWeather._pressure.measure ();

}

...
};

Potential cost drivers. In the OO version, four methods in two classes have to be declared
and called as virtual functions. In the AO version we do not expect any extra cost as
the sensor or actuator code can be inlined.

Quantifying over sets of sensors and actuators

Weather and Sink need to be independent of the actual number of sensors and actuators
configured into the system. There is a 1 : n relationship between Weather or Sink and
sensors or actuators:

OO version. In the OO version, this is solved by a simple publisher and subscriber mech-
anism. Sensors are chained into a linked list of “publishers”, which is frequently
iterated by Weather::measure() to update the data of each sensor:
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class Weather {

static Sensor* _sensors;

public:

Sensor* firstSensor() const {

return _sensors;

}

void measure () {

for( Sensor* s = firstSensor(); s != 0;

s = static_cast< Sensor* >( s->getNext() ) )

s->measure();

}

...
};

Actuators are similarly chained into a list of “subscribers” which are invoked when
new sensor data is available. The Sink class acts as a “mediator” between sensors
and actuators. For the sake of memory efficiency, actuators do not subscribe for
single sensors but are implicitly subscribed for the complete list and ignore unwanted
sensor data at run time.

AO version. In the AO version, the interface dependency is again inverted. Weather and
Sink do not have to know about actuators and sensors. The 1 : n relationships are
realized by more than one aspect giving advice for the same Weather::measure()

and Sink::process() execution join points. Thereby, invocations of actuators and
sensors are implicitly chained at compile time.

Potential cost drivers. In the OO version, Weather and Sink as well as sensors and ac-
tuators need to carry an extra pointer for the chaining. Some additional code is
required to iterate over the chains of sensors and actuators.1

Registration of sensors and actuators

This problem is closely related to the previous one. Sensors and actuators need to be able
to register themselves for the publisher or subscriber chain:

OO version. In the OO version, registration is done at run time by calling
Weather::registerSensor() or Sink::registerActuator(). Self-registration re-
quires some C++ trickery: Each sensor or actuator is instantiated as a global
object. The registration is performed by the constructor, which is “automatically”
triggered during system startup.

AO version. In the AO version, no extra efforts are required for self-registration. The
chaining of actuators and sensors is implicitly performed at compile time by advice-
code weaving. Basically, it is the presence of some aspect in the source tree that
triggers the registration.

1The firstSensor() and getNext() operations are, however, inlined as they just perform a pointer look-up.
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Potential cost drivers. In the OO version, the use of global object instances causes some
overhead, as the compiler has to generate extra initialization code and has to put a
reference to this code in a special linker section. A system startup function has to
be provided that iterates over this section and invokes the constructors of all global
instances.

B.3.2. Issue 2: Implementation of Generic Actuators

Generic actuators process sensor data from any sensor type. For example, the Display
actuator should print the measured values of any configured sensor, regardless of the
current configuration or future extensions with new sensor types. However, this leads to
an interface dependency between actuators and sensors, because (at least) the value has
to be obtained in a generic way:

OO version. In the OO version, this is again solved by interfaces and late binding. To
enable actuators to retrieve sensor information from any sensor, the Sensor in-
terface has to be extended by three additional virtual functions: Sensor::name(),
Sensor::unit(), and Sensor::str_val():

class Display : public Actuator {

public:

UInt8 _line;

// print a line on the display, increment _line

void print(const char *name, const char *val_str, const char *unit );

...
virtual void before_process() {
_line = 1;

}

// called by Sink::process for each sensor

virtual void process( Sensor* s ) {

char val[ 5 ];

s->str_val( val );

print( s->name(), val, s->unit() );

}

};

AO version. In the AO version, this is solved with explicit join points, and quantifica-
tion of generic advice (Section 4.2). For each sensor MySensor, the corresponding
MySensorHandling aspect introduces an empty sensor-specific process_data(const

MySensor&) method into the class Sink and gives advice to Sink::process() to invoke
the introduced method:

aspect PressureHandling {

public:
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advice "Weather" : slice struct{ Pressure _pressure; };

...
// introduce an empty process_data function for the pressure

advice "Sink" :

slice struct{ void process_data( const Pressure & ) {} };

// call Sink::process_data for the pressure

advice execution("void Sink::process()") : after () {

theSink.process_data( theWeather._pressure );

}

};

The introduced process_data(const MySensor&) method represents an explicit join
point provided by the particular sensor. To bind to these join points, an actuator
gives generic advice that quantifies over all (overloaded) Sink::process_data()

functions and uses the AspectC++ join-point API to retrieve a typed reference to
the sensor instance in the advice body:

aspect Display {

...
// display each element of the weather data

advice execution("void Sink::process_data(%)") : before () {

typedef JoinPoint::template Arg<0>::ReferredType Data;

char val[5];

tjp->arg<0>()->str_val( val );

print( Data::name(), val, Data::unit() );

}

};

AspectC++ instantiates advice bodies per join point. Therefore, the calls to the
actual sensor’s str_val(), name(), and unit() methods can be bound at compile-
time. As an additional optimization, name() and unit() are implemented as static
(class) functions.

Potential cost drivers. In the OO version, three additional virtual functions are required
in the sensor classes, as well as additional virtual function calls in the actuator
classes. In the AO version, the join-point API has to be used for a uniform and type-
safe access to the sensor instance, which induces some overhead (Section 4.3.2.3).
Furthermore, the advice body of a generic actuator is instantiated once per sensor,
which may lead to code bloating effects (Section 4.4.2).

B.3.3. Issue 3: Implementation of Nongeneric Actuators

Nongeneric actuators process data of some sensors only. The legacy SNG protocol, for
instance, encodes weather data in a record of wind speed, temperature, and air pressure.
It exposes the actual data using sensor-specific interfaces. The record may be sparse,
meaning that a specific sensor feature, such as Temperature, may or may not be present in
the actual system configuration.
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OO version. In the OO version, a nongeneric actuator filters the sensors it is interested
in by run-time type checks in the process() method. Each passed sensor is tested
against the handled sensor types. If the run-time type matches a handled sensor, a
downcast is performed to get access to the sensor-specific interface:

class Pressure : public Sensor {

static const char *_id;

public:

...
static const char * id () { return _id; }

const char *name () const { return _id; }

};

...
class SNGConnection : public Actuator, protected PCConnection {

UInt8 _p, _w, _t1, _t2; // weather record

public:

virtual void before_process() { ... /* init record */ };

virtual void after_process() { ... /* transmit record */ };

...
// collect wind, pressure, temperature data

virtual void process( Sensor* s ) {

const char *name = s->name();

if (name == Wind::id()) // pointer comparison
_w = ((Wind*)s)->_w;

else if (name == Pressure::id())
_p = ((Pressure*)s)->_p - 850;

else if (name == Temperature::id()) {
_t1 = (UInt8)((Temperature*)s)->_t1;
_t2 = ((Temperature*)s)->_t2;

} }

};

The idiom commonly used for run-time type checks in C++ is the dynamic_cast

operator, which is part of the C++ run-time type interface (RTTI). RTTI is quite ex-
pensive, as it requires additional run-time support and leads to some extra overhead
in every class that contains virtual functions. To avoid this overhead, the implementa-
tion uses a “home-grown” dynamic type-check mechanism: The test is performed by
comparing the string address returned by the (late-bound) Sensor::name() method
with the address of the name string stored in the concrete class, which is also
returned by the static Sensor::id() method.2 The expensive C++ RTTI mechanism
has been disabled.

Normally, dynamic type checks are considered harmful because of a lack of extensi-
bility and the accumulated cost of type checks, which sometimes outweigh the cost

2This basically reduces the overhead of a run-time type test to a virtual function call and a pointer comparison.
As the storage for the name string has to be provided anyway, this mechanism also induces no extra
overhead in the sensor classes.

211



B. Appendix: Case Study “WeatherMon”

of a single virtual function call. However, in our case a nongeneric actuator shall be
implemented. Therefore, extensibility is not an issue and the overhead of our type
check implementation is acceptable. At the same time, alternative designs such as
visitor [GHJV95] fail, because a visitor interface would have to list a visitSensor()

method for every sensor type Sensor. However, the set of sensors is configurable
and should nowhere be hard-wired.

AO version. In the AO version, this is again based on the explicit join points provided by
sensors. The only difference to a generic actuator is that a nongeneric actuator gives
advice for specific Sink::process_data() overloads only instead of quantifying over
all potential sensors with generic advice:

aspect SNGConnection : protected PCConnection {

UInt8 _p, _w, _t1, _t2; // weather record

...
// let this aspect take a higher precedence than <Sensor>Handling

advice process () : order ("SNGConnection", "%Handling");

advice execution("void Sink::process(const Weather&)")

: before () { ... /* init record */ }

advice execution("void Sink::process(const Weather&)")

: after () { ... /* transmit record */ }

// collect wind, pressure, temperature data by giving specific advice

advice execution("void Sink::process_data(...)") && args (wind)

: before (const Wind &wind) {
_w = wind._w;

}

advice execution("void Sink::process_data(...)") && args (pressure)

: before (const Pressure &pressure) {
_p = pressure._p - 850;

}

advice execution("void Sink::process_data(...)") && args (temp)

: before (const Temperature &temp) {
_t1 = (UInt8)temp._t1;
_t2 = temp._t2;

}

};

Potential cost drivers. Run-time type checks in the OO version induce nevertheless some
overhead. In the AO version, some overhead is induced by the args() pointcut
function (Section 4.3.2.4), which is used here to get the actual sensor instance.

B.3.4. Design Summary

The OO version as well as the AO version of the embedded weather-station product
achieve a good separation of concerns and, thereby, configurability. In particular, the
requirements described in section B.2.1 are met by both versions:
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Granularity is achieved by the OO version as well as the AO version. Each implemen-
tation component is either mandatory (such as the Weather and Sink classes), or
dedicated to a single feature only.

Economy is achieved as far as possible. In the OO version, only methods that have to
be available via a generic interface are declared as virtual. RTTI is not used, as the
required run-time type checks can be implemented with less overhead. In the AO
version, join-point–specific context information is used only sparingly.

Pluggability is achieved as well. In both versions, no component has to be adapted if
the set of selected sensors/actuators is changed. Sensors and actuators basically
integrate themselves if their implementation component is present in the configured
source tree. The OO version uses global instance construction for this purpose. In
the AO version, the integration is performed by advice.

Extensibility is also achieved. In the OO version, new sensor or actuator types just
need to implement the common Sensor or Actuator interface. In the AO version,
new sensor or actuator types just need to provide some aspect that performs the
integration into Weather or Sink.

Overall, AOP and OOP turned out to be equipollent with respect to a “design for config-
urability” in the “WeatherMon” study. We identified, however, more potential cost drivers
in the OO design. Especially virtual functions were unavoidable in many places to realize
loose coupling and genericity of components. In the next section, I analyze how this
affects scalability and memory demands of the product line.

B.4. The Cost of Configurability in Deeply Embedded Systems

In the following I evaluate the scalability of the embedded weather-station product line
and analyze the particular cost of separation of concerns with AOP or OOP for such small
and deeply embedded systems.

B.4.1. Setup

Six different configurations of the weather station were generated as an AO, OO, and C
version. For each variant and version I measured:

• The static memory demands, which are determined by the amount of generated
machine code (text), static initialized data (data), and static noninitialized data
(bss).

• The dynamic memory demands, which are determined by the maximum stack space
used by the running application (stack).3

3The weather station software uses no heap, which otherwise would also contribute to dynamic memory
demands.
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• The run time of a complete measure-and-process–cycle.

On the actual hardware, text occupies flash memory space. Data occupies flash memory
and RAM space, as it is writable at run time and therefore has to be copied from flash into
RAM during system startup. Bss and stack occupy RAM space only.

Static memory demands (text, data, bss) could easily be retrieved directly from the linker
map file. Dynamic memory demands (stack) and run time had to be measured in the
running targets:

Measuring Stack Utilization

The common technique for run-time stack monitoring is to initialize the entire stack space
with some specific magic pattern during system startup. The maximum amount of stack
used can then be measured at any time by searching (from the bottom of the stack) for the
first byte where the pattern has been overwritten. This technique was used to implement
stack measurement as an additional sensor type. Understanding stack measurement as
just another sensor had some nice advantages: Because of the achieved pluggability (in
the AO and OO versions) it was very easy to apply stack measurement to any WeatherMon
configuration. Of course, some extra care had to be taken to ensure that the maximum
stack utilization is not caused by the stack measurement sensor itself. For this reason, the
stack measurement implementation uses only global variables, which do not occupy stack
space. By analyzing the generated machine code I furthermore made sure that the stack
utilization of the stack sensor methods is minimal among all sensors. As all sensor methods
are invoked from the same call depth level and at least one “real” sensor besides stack
measurement is used in a weather station configuration, it can thereby be guaranteed
that stack measurement itself does not tamper with the maximum stack utilization. In the
actual targets, the thereby acquired maximum stack utilization remained stable after a
short startup time and could be read from one of the attached generic actuators.

Measuring Runtime

Runtime measuring was not implemented as another sensor type, as it would have
been too difficult to distinguish the run time taken by the sensor processing itself from
the run time of the target to measure. Instead, I used a less invasive approach that
could be implemented with just two additional assembler statements: In the application
main loop, a digital I/O port of the AVR microcontroller is set to high before the call
to Weather::measure() and reset to low after the return of Sink::process(). The result
is a rectangular signal on this port, which was recorded and analyzed with a storage
oscilloscope.4 A high period in the signal represents the run time taken by a complete
Weather::measure() plus Sink::process() cycle. After a short startup time, period and
phase of the signal remained stable and the length of the high phase could be measured.

4Tektronix TDS 2012, 100MHz resolution
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Figure B.5.: Footprint and cost scalability for different configurations.
Depicted are the various configurations of the WeatherMon product line and the resulting RAM and Flash
footprint for the C, AO, and OO versions of the solution space. The emphasized numbers mark common RAM or
Flash hardware limits (compare Table 2.1). If memory consumption exceeds one of these thresholds, a switch to
a bigger and more expensive microcontroller is necessary. Note that the OO version generally requires a more
expensive microcontroller.

B.4.2. Overall Scalability

As the graphs in Figure B.5 show, the resulting RAM and Flash demands of the weather-
station software scale quite well with the amount of selected features. The “Barometer”
configuration, consisting of just the features Air Pressure and Display, induces significantly
smaller memory demands than the “Deluxe-PC” configuration, which bundles three
sensors (Temperature, Air Pressure, Wind Speed) and two actuators ( Display, PC Connection
using XMLProto over RS232Line). The memory requirements of the other examined
configurations are in between. The noticeably high amount of Flash memory required by
the “Thermometer” configuration (Temperature, Display) can be explained by the fact that
this sensor is connected via the I²C bus to the microcontroller, which requires additional
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variant version text data bss stack = flash = RAM time (ms)

Air Pressure, Display C 1392 30 7 34 1422 71 1.21

AO 1430 30 10 38 1460 78 1.21

OO 2460 100 22 44 2560 166 1.29

Air Pressure, Display, C 1578 104 7 34 1682 145 60.40

RS232Line, XMLProto AO 1622 104 12 38 1726 154 59.20

OO 3008 206 26 44 3214 276 60.80

Air Pressure, Wind Speed, C 1686 38 14 55 1724 107 2.96

Display AO 1748 38 18 61 1786 117 2.96

OO 3020 146 33 65 3166 244 3.08

Temperature, Display C 2378 28 8 34 2406 70 1.74

AO 2416 28 11 38 2444 77 1.73

OO 3464 98 23 44 3562 165 1.82

Temperature, Wind Speed, C 2804 90 17 35 2894 142 76.40

Air Pressure, RS232Line, AO 2858 90 23 41 2948 154 76.40

XMLProto OO 4388 248 39 41 4636 328 76.40

Temperature, Wind Speed, C 3148 122 17 57 3270 196 79.60

Air Pressure, RS232Line, AO 3262 122 24 63 3384 209 77.60

XMLProto, Display OO 5008 300 44 67 5308 411 80.00

Table B.1.: Memory usage and run time of the AO and OO versions for different configurations.
Measured were the text, data, bss, and stack memory demands (Byte) and the time of a complete measure()

and process() cycle. Flash = text + data, RAM = data + bss + stack
[All variants were woven and compiled with AC++-1.0PRE3 and AVR-G++-3.4.1 using -Wall -fno-rtti -Os -fno-
exceptions -fomit-frame-pointer -ffunction-sections optimization flags.]

driver code that does not have to be included for other sensors.

Overall, all three versions meet the goal of scalability, which is an indicator for achieved
granularity. In every case, however, the OO version requires significantly more memory
space than its AO counterpart, which comes very close to the C version. Depending on the
configuration, the required amount of RAM is up to 138 percent higher in the OO version,
while the AO version takes only an extra of 10 percent at maximum (up to 13 byte) – both
compared to the C-based version that does not provide configurability by separation of
concerns. The amount of Flash memory is up to 91 percent higher in the OO version, but
only 4 percent at maximum in the AO version. The net difference between using AOP and
OOP has to be considered as even higher, as all versions of each configuration are linked
with the same (configuration-, but not version-dependent) set of device drivers whose
memory requirements are included in these numbers.5

5The driver library is actually an early prototype of the CiAO OS for the AVR platform. Parts of the driver
code are implemented as inline functions, so it is not possible to differentiate between driver-induced and
application-induced code here.
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B.4.3. Memory Cost

Table B.1 breaks down the required overall amount of RAM and flash memory into their
origins. The OO variants induce especially higher static memory demands. The text
sections of the OO variants are up to 78 percent, the data sections up to 284 percent
bigger than in the AO variants. The following cost drivers can be mainly accounted for
this:

Virtual functions are the main source of additional code and data, as they induce over-
head on both the caller and the callee side. On the caller side, each call to a virtual
function requires, compared to advice code inlining, at least 16 additional byte in
the machine code. On the callee side, virtual function tables have to be provided
(4 byte + 2 byte per entry, data), object instances need to carry a pointer to the
virtual function table (2 byte per instance), and constructors to initialize the vtable
pointer of an instance have to be generated (at least 24 byte per class, text). In the
“Barometer” configuration (Air Pressure and Display), for instance, 52 byte of the
data section are occupied solely by virtual function tables.6

Regarding code size, the situation may become even worse in larger projects: Due to
late binding, the bodies of virtual functions are never removed from the final image
by means of function-level linking. Thus, “dead” function code that is never called
at run time becomes nevertheless part of the text section.

Dynamic data structures are another source of additional overhead. The chaining of ac-
tuators and sensors induces 8 additional data byte in the “Barometer” configuration,
plus some extra code to access and iterate over the lists.

Static instance construction causes some more “hidden” code to be generated. For each
translation unit that defines one or more object instances with static linkage, the
compiler has to generate a specific initialization-and-destruction function (88 bytes,
text). Pointers to these functions are additionally stored in the data section.

Regarding dynamic memory usage (stack), the differences between the AO and OO version
are less significant. The OO variants only need a few byte (up to 16%) more stack space
than the related AO variants. This seems surprising – given that virtual function calls can
not be inlined, therefore lead to a higher call depth and, thus, higher stack utilization. Part
of this effect can be explained by the fact that the AOP version requires some additional
stack space as well (2-4 byte), namely by context-binding pointcut functions and the
join-point API (Section 4.3.2.3). The main reason is, however, that the maximum virtual
function call depth is with 2 levels quite low. As the AVR architecture provides 32 general-
purpose registers, which are also used for passing function parameters, it can furthermore
be considered as quite “stack-friendly”. On other CPU architectures (such as Intel x86),
the differences between AO-based and OO-based solutions would be more significant.

6The AVR RISC core uses a Harvard architecture, thus vtables can not be placed in the text section.
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B.4.4. Run-Time Cost

Table B.1 also lists the measured run times. In all configurations that support a serial
connection the measurement and processing cycle time is mainly dominated by the
transmission time over the serial interface. Here the cost is almost the same. In all other
configurations the performance of the AO version and the C implementation are equal.
The run-time overhead of the OO version is between 4 and 6.6 percent. It can be explained
with the extra cost of virtual function calls.

B.5. Summary

With respect to the evaluation of AOP as a means to implement configurability in soft-
ware product lines for resource-thrifty embedded devices the “WeatherMon” study was
successful:

• It could be shown that AOP provides excellent means to design and implement for
configurability in software product lines. Thanks to the match mechanism and the
advice concept, it becomes very easy to design loosely coupled components that
automatically integrate themselves into the system. This facilitates fine granularity,
pluggability, and extensability.

• To a certain degree, similar benefits are also achievable with OOP and design pat-
terns. The OO version, however, induces dramatically higher memory requirements,
which has a direct impact on the hardware cost: In all cases, the “luxury” of a
clear separation of concerns by OOP makes it necessary to apply a more expensive
microcontroller than with the scattered C implementation. For the AO version, in
contrast, there is no single case in which the clear separation of concerns does
induce higher hardware cost than with the C version. Separation of concerns by
AOP clearly is affordable – even in the domain of deeply embedded systems.

Considering that expressiveness deficiencies of OOP have been the motivating factor for
the development of AOP (Section 2.3), it might be somewhat surprising that AOP revealed
only quantitative but no hard qualitative benefits over OOP in the “WeatherMon” study.
The reason is that all the WeatherMon features represent fine-grained configuration options
that affect only a few join points – there is only little need for quantification in these
cases.
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Kurzfassung

Mehr als 98 Prozent der weltweiten, jährlichen Mikroprozessorproduktion wird in einge-
betteten Systemen verbaut – überwiegend in massenproduzierten Gegenständen des
täglichen Bedarfs, wie beispielsweise Autos, Haushaltsgeräte, oder Spielzeug. Eingebet-
tete Systeme sind daher einem enormen Hardware-Kostendruck ausgesetzt. Systemsoft-
ware für eingebettete Systeme muss nicht nur unterschiedlichste Anforderungen und
Plattformen erfüllen, sie muss vor allem auch ausgesprochen genügsam sein im Bezug
auf die erforderlichen Hardware-Ressourcen. Um gegen proprietäre Systeme bestehen
zu können (und damit Wiederverwendung zu ermöglichen), ist es erforderlich, dass
Systemsoftware-Produktlinien für eingebettete Systeme hochgradig konfigurierbar und
maßschneiderbar sind. Technisch muss diese Flexibilität in einer Weise umgesetzt werden,
die dem Anspruch der Ressourcengenügsamkeit gerecht wird.

Stand der Kunst für die ressourcenschonende Implementierung feingranularer Konfig-
urierbarkeit in Systemsoftware ist die bedingte Übersetzung unter Zuhilfenahme des
C-Präprozessors. Dieser Ansatz führt jedoch zu schlecht wartbarem Code – er skaliert
nicht. Gleichzeitig wachsen die Konfigurierbarkeitsanforderungen an Systemsoftware.
Der neue AUTOSAR-OS Industriestandard verlangt beispielsweise, dass auch grundle-
gende architekturelle Strategien des Systems, wie die zu verwendenden Schutz- und
Isolationmaßnahmen, konfigurierbar ausgelegt werden.

Diese Arbeit untersucht die Eignung der aspektorientierten Programmierung (AOP)
als grundlegenden Mechanismus für die Implementierung von Konfigurierbarkeit in
ressourcenbeschränkten Systemen. Es wird gezeigt, dass die gezielte und pragmatische
Verwendung von AOP zu einer deutlichen Verbesserung bei der Trennung der Belange
in konfigurierbarer Systemsoftware führt, ohne dass dieses Nachteile im Bezug auf die
Genügsamkeit hat. Der vorgestellte Ansatz der aspektgewahren Betriebssystementwick-
lung ermöglicht es darüber hinaus, selbst grundlegende Architektureigenschaften als
konfigurierbare Merkmale aufzufassen und zu implementieren.

Der Ansatz wird am Beispiel von aktuellen Betriebssystemen aus dem Umfeld der einge-
betteten Systeme evaluert. Die entstandene CiAO-Betriebssystemfamilie verbindet eine
konkurrenzfähige Implementierung des AUTOSAR-OS-Standards mit einer hochgradig
konfigurierbaren Architektur. CiAO ist das erste Betriebssystem, das von Beginn an mit
Aspekttechniken entworfen und entwickelt wurde.
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Motivation

Etwa 98 Prozent der hergestellten Mikroprozessoren (alleine im Jahr 2000 mehr als acht
Milliarden Einheiten) finden Verwendung in einem eingebetteten System. Eingebettete
Systeme sind Spezialzweckrechner, oft zu finden in Gegenständen des täglichen Bedarfs
(wie zum Beispiel Autos, Hausgeräte oder Spielzeug), wo sie spezielle Berechungs- und
Steuerungsaufgaben übernehmen. Als elementarer Bestandteil von Massenprodukten
sind eingebettete Systeme einem enormen Kostendruck ausgesetzt. Wenige Cent bei den
Herstellungskosten können entscheidend sein für Erfolg oder Misserfolg auf dem Markt.
Dies hat Einschränkungen bei den verfügbaren Hardwareressourcen (wie CPU-Leistung
und Speicherkapazität) zur Folge; 8-Bit-Prozessoren mit wenigen KiB Speicher sind eine
übliche Konfiguration.

Die Beschränkungen der Hardware haben Konsequenzen für den Entwurf und die Entwick-
lung von Betriebssystemen und anderer Systemsoftware. Systemsoftware für eingebettete
Systeme muss auf einfache Weise für die jeweilige konkrete Anwendung maßzuschneidern
sein. Eine Möglichkeit ist dabei der Entwurf der Systemsoftware als Softwareproduktlinie,
welche zusammen mit einem Konfigurationswerkzeug ausgeliefert wird. Damit kann der
Anwendungsentwickler aus einer Menge von feingranularen Merkmalen auswählen und
sich eine maßgeschneiderte Variante für den jeweiligen Zweck generieren lassen.

Bei der Implementierung der Systemsoftware muss diese Flexibilität in einer Weise
durchgesetzt werden, die den Hardwareeinschränkungen gerecht wird. Stand der Kunst
ist dabei, feingranulare Konfigurationsoptionen mittels bedingter Übersetzung durch den
C-Präprozessor durchzusetzen. Die Implementierung eines konfigurierbaren Merkmals
(zum Beispiel eine Synchronisationsstrategie) wird dabei mit #ifdef – #endif Blöcken
in die Implementierung anderer Merkmale eingebettet. Die resultierende Verteilung des
Codes bei einer solchen Implementierung führt jedoch zu schlechter Lesbarkeit und Wart-
barkeit; werden gar mehrere Konfigurationsoptionen so implementiert, ist das Ergebnis
eine “#ifdef Hölle”.7 Listing 1.1 zeigt ein reales Beispiel aus dem Betriebssystem eCos
[eCo]. Obwohl wir es in diesem Beispiel nur vier Konfigurationsoptionen gibt, ist der
Code bereits kaum noch zu verstehen. Die Implementierung von Konfigurierbarkeit durch
bedingte Übersetzung skaliert nicht.

7Der Begriff “#ifdef Hölle” ist Hacker-Jargon. Seine erste dokumentierte Verwendung findet sich in einem
Usenet-Beitrag von BRIAN HOOK vom 5. November 1993 in comp.os.opengl.
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Cyg_Mutex::Cyg_Mutex() {

CYG_REPORT_FUNCTION();

locked = false;

owner = NULL;

#if defined(CYGSEM_KERNEL_SYNCH_MUTEX_PRIORITY_INVERSION_PROTOCOL_DEFAULT) && \

defined(CYGSEM_KERNEL_SYNCH_MUTEX_PRIORITY_INVERSION_PROTOCOL_DYNAMIC)

#ifdef CYGSEM_KERNEL_SYNCH_MUTEX_PRIORITY_INVERSION_PROTOCOL_DEFAULT_INHERIT

protocol = INHERIT;

#endif

#ifdef CYGSEM_KERNEL_SYNCH_MUTEX_PRIORITY_INVERSION_PROTOCOL_DEFAULT_CEILING

protocol = CEILING;

ceiling = CYGSEM_KERNEL_SYNCH_MUTEX_PRIORITY_INVERSION_PROTOCOL_DEFAULT_PRIORITY;

#endif

#ifdef CYGSEM_KERNEL_SYNCH_MUTEX_PRIORITY_INVERSION_PROTOCOL_DEFAULT_NONE

protocol = NONE;

#endif

#else // not (DYNAMIC and DEFAULT defined)

#ifdef CYGSEM_KERNEL_SYNCH_MUTEX_PRIORITY_INVERSION_PROTOCOL_CEILING

#ifdef CYGSEM_KERNEL_SYNCH_MUTEX_PRIORITY_INVERSION_PROTOCOL_DEFAULT_PRIORITY

// if there is a default priority ceiling defined, use that to initialize

// the ceiling.

ceiling = CYGSEM_KERNEL_SYNCH_MUTEX_PRIORITY_INVERSION_PROTOCOL_DEFAULT_PRIORITY;

#else

// Otherwise set it to zero.

ceiling = 0;

#endif

#endif

#endif // DYNAMIC and DEFAULT defined

CYG_REPORT_RETURN();

}

Listing 1.1: Konstruktor der Mutex-Klasse aus eCos.
Die gewählte Strategie zur Verhinderung von Prioritätsumkehreffekten wird in der Klasse Cyg_Mutex mit Hilfe
des Präprozessors durchgesetzt. Das Ergebnis ist eine “#ifdef Hölle”.

Ungeachtet dieser Problematik steigen die Anforderungen an die Konfigurierbarkeit von
eingebetteten Betriebssystemen weiter. Ein gutes Beispiel ist der neue AUTOSAR OS
Betriebssystemstandard [AUT06b], der Konfigurierbarkeit auch im Hinblick auf die ver-
wendeten Strategien zur zeitlichen und räumlichen Isolation verlangt. Die dafür er-
forderlichen Varianten mit einer einzigen Kernimplementierung abzudecken, ist eine
große Herausforderung. Entscheidungen über derart fundamentale Systemstrategien (wie
die Entscheidung ob und wie Adressraumgrenzen durchgesetzt werden sollen) werden
üblicherweise in einer frühen Phase der Betriebssystementwicklung getroffen. Sie führen
zu den grundlegenden, “architekturellen” Entwurfsentscheidungen, die viele weitere
Bausteine der Systemimplementierung beeinflussen.

Benötigt wird ein besserer Ansatz für die Implementierung von Konfigurierbarkeit in
Systemsoftware-Produktlinien.

Die aspektorientierte Programmierung (AOP) [KLM+97] ist eine vielversprechende
Möglichkeit. AOP bietet zusätzliche Sprachmittel für eine feingranulare Trennung der
Belange, was einen Ausweg aus der “#ifdef Hölle” sein könnte. Eine besondere Stärke
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Abbildung 1.1.: Implementierung eines “querschneidenden Belangs” mit und ohne AOP.
Die Säulen stehen für Quelltextartefakte (z. B. Klassen); ein Belang gilt as gut modularisiert, wenn er eigenständig
in dedizierten Quelltextartefakten gekapselt wurde. (a) Ohne AOP ist die Implementierung “querschneidender
Belange” verteilt über die Implementierung der anderen Belange. (b) Mit AOP kann die Implementierung
“querschneidender Belange” in eigene Quelltextartefakte, genannt Aspekte, separiert werden.

von AOP ist dabei die Separierung von “querschneidenden Belange”: das sind Belange,
die sich ansonsten über die Implementierung anderer Belange verteilen (Abbildung 1.1).
Mit der Hilfe von AOP könnte es deshalb möglich sein, auch grundlegende Betriebssys-
temstrategien als konfigurierbare Merkmale bereit zu stellen.

Zweck der Arbeit

Diese Arbeit untersucht die Zweckmäßigkeit von AOP als grundlegenden Mechanis-
mus zur Implementierung von Konfigurierbarkeit in Betriebssystem-Produktlinen für
ressourcenbeschränkte eingebettete Systeme. Das Ziel ist dabei zu zeigen, dass die
gezielte Verwendung von AOP zu einer deutlichen Verbesserung bei der Implementierung
von Konfigurierbarkeit in Betriebssystemen führt, ohne dass dafür Nachteile bei den
Hardwarekosten zu befürchten sind.

Ein positiver Einfluss von AOP auf die Wartbarkeit und Erweiterbarkeit von Betriebssystem-
code konnte bereits anhand von Beispielen mit FreeBSD [CK03] und Linux gezeigt werden
[ÅLS+03, FGCW05]. Eine vorangegangene Dissertation [Spi02] und einige Workshop-
Papiere [MSGSP02, SL04] aus dem Umfeld der eigenen Arbeitsgruppe konnten außerdem
Verbesserungen durch AOP bei der Konfigurierbarkeit der PURE Betriebssystemfamilie
[BGP+99b] aufzeigen.

Die bisherigen Ergebnisse sind vielversprechend. Nichtsdestotrotz konnte damit die
Frage, ob die Verwendung von AOP für die Implementierung von Konfigurierbarkeit in
Systemsoftware in der Breite Vorteile unter dem Strich erbringt, noch nicht vollständig
beantwortet werden:

1. Die vorangegangenen Arbeiten konzentrierten sich auf qualitative Resultate bei der
Verwendung von AOP, d. h. auf den damit erzielbaren Einfluss auf Wartbarkeit
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und Konfigurierbarkeit. Was bislang fehlt, gerade auch angesichts der angedachten
Verwendung in ressourcenbeschränkten Systemen, ist eine umfassende Analyse der
quantitativen Auswirkungen von AOP.

Fragen: Welche AOP-Sprachmerkmale führen zu Mehrkosten im Bezug auf Laufzeit
und Speicherbedarf? Ist es möglich, diese Kosten zu reduzieren? Ist die
Ausdrucksstärke einer mächtigen AOP-Sprache ein bezahlbarer Luxus bei der
Softwareentwicklung für ressourcenbeschränkte eingebettete Systeme?

2. In den vorangegangenen Arbeiten wurde AOP überwiegend als “letzter Strohalm”
zur Implementierung von Konfigurierbarkeit verwendet, die auf anderem Wege
nicht erreichbar schien. Immer noch unbeantwortet ist die Frage, wie sich AOP
als Implementierungstechnik für Konfigurierbarkeit generell im Vergleich zu den
bekannten Ansätzen schlägt.

Fragen: Ist mit AOP eine mindestens gleichwertige oder sogar bessere Effizient
und Flexibilität erreichbar? Was sind gute Vorgehensweisen für die Implemen-
tierung von Konfigurierbarkeit mit Aspekten?

3. In den vorangegangenen Arbeiten wurde AOP ausschließlich im Nachhinein zur
Extraktion von Belangen aus bestehenden Systemen verwendet. Weiterhin unbeant-
wortet ist die Frage, wie sich die Verwendung von AOP auswirkt, wenn man ein
Betriebssystem von Anfang an unter der Berücksichtigung von Aspekttechniken
entwirft und entwickelt.

Fragen: Was sind gute Entwurfsregeln für den aspektorientierten Betriebssystem-
bau? Welche Vorteile lassen sich erreichen? Wird es durch die Verwendung
von Aspekttechniken möglich, selbst grundlegende, architekturelle Betriebssys-
temstrategien als konfigurierbare Merkmale bereit zu stellen?

Diese Arbeit baut auf den vorhandenen Arbeiten auf, bietet Antworten auf die genannten
Fragen und erweitert den Stand der Kunst durch Aspektgewahrheit bei der Entwicklung
konfigurierbarer Systemsoftware.

Titel und Ziele

Diese Arbeit hat den Titel “Aspektgewahrheit bei der Entwicklung konfigurierbarer Sys-
temsoftware”. Gewahrheit (englisch awareness) ist die Substantivierung des Adjektives
gewahr (aware), was soviel bedeutet wie “having knowledge or perception of a situation
or fact” [McK05]. Im Merriam-Webster Online Dictionary8 finden wir außerdem: “AWARE

[...] mean[s] having knowledge of something [...] AWARE implies viligance in observing or
alertness in drawing inferences from what one experiences.”

8http://www.merriam-webster.com/dictionary/aware
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Demnach hat Gewahrheit zwei wesentliche Konnotationen: (hartes, faktenbasiertes)
Wissen (knowledge) und (eher weiches, erfahrungsbasiertes) Bewusstsein (perception).
Ziel dieser Arbeit ist es, Wissen und Bewusstsein bezüglich der Besonderheiten von AOP
für die Implementierung von Konfigurierbarkeit in ressourcenbeschränkten Systemen zu
erweitern. Dieses erfordert Arbeiten auf drei verschiedenen Ebenen, der Sprachebene, der
Implementierungsebene und der Entwurfsebene:

Sprachebene: Auf der Sprachebene soll gezeigt werden, dass durch einen zielgerichteten
Entwurf der Aspektsprache, hohe Ausdrucksstärke in Verbindung mit Kosten-
neutralität erreichbar ist. Dazu soll im Detail untersucht werden, welche AOP-
Sprachmerkmale welche Kosten verursachen und Möglichkeiten aufgezeigt werden,
diese zu verbessern.

Implementierungsebene: Aufbauend auf diesen Ergebnissen soll auf der Implemen-
tierungsebene gezeigt werden, dass AOP qualitativ und quantitativ den Vergleich
mit dem Stand der Kunst besteht. Dabei soll im Detail untersucht werden, welche
Faktoren eine Konfigurierung durch Aspekte begünstigen oder erschweren.

Entwurfsebene: Aufbauend auf diesen Ergebnissen soll schließlich auf der Entwurfse-
bene gezeigt werden, dass durch eine konsequente Verwendung von AOP sogar
grundlegende Architektureigenschaften als konfigurierbare Merkmale implementiert
werden können. Dabei sollen Vorgehensweisen und Regeln für die aspektgewahre
Entwicklung von Betriebssystemen aufgestellt werden.

Aufbau der Arbeit

Es folgt ein kurzer Überblick über den weiteren Aufbau der Arbeit:

Kapitel 2: Hintergrund, Kontext und Stand der Kunst (Seiten 9–45)
Drei größere Themenbereiche sind relevant für diese Arbeit: Systemsoftware für
eingebettete Systeme, Software-Produktlinien und Aspektorientierte Programmierung.
Das zweite Kapitel führt den Leser in diese Themenbereiche ein und diskutiert den
aktuellen Stand der Kunst.

Kapitel 3: Problemanalyse und Forschungsansatz (Seiten 47–66)
Stand der Kunst für die kostenneutrale Durchsetzung feingranularer Konfigurier-
barkeit im Code ist die Verwendung des Präprozessors. Dieser Ansatz skaliert jedoch
nicht – während gleichzeitig die Anforderungen an Betriebssystem-Produktlinien
steigen. Im dritten Kapitel werden die Probleme im Detail analysiert (anhand
von Beispielen aus eCos und AUTOSAR OS), die Forschungsvermutung for-
muliert (dass die Situation durch AOP erheblich verbessert werden kann) und
der Forschungsansatz für eine diesbezügliche Evaluation von AOP vorgestellt.

Kapitel 4: Sprachebene: Evaluierung und Verbesserung von AspectC++ (Seiten 67–98)
Die Evaluation von AOP beginnt auf der Sprachebene. Im vierten Kapitel werden
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die Sprachmittel von AOP im generellen und von AspectC++ im Speziellen einer
detaillierten Untersuchung unterworfen, um deren Kosten und Nutzen für die
Implementierung von Konfigurierbarkeit zu verstehen. Im Rahmen dieser Arbeit
sind dabei außerdem umfangreiche Verbesserungen an AspectC++ entstanden, die
ebenfalls kurz vorgestellt werden.

Kapitel 5: Implementierungsebene: Konfigurierbarkeit durch AOP in der Praxis (Seiten
99–120)
Fokus des fünften Kapitels ist die Implementierungsebene. In diesem Kapitel wird
AOP in die Praxis gebracht, indem einige der Belange aus eCos, die bislang mit Hilfe
des Präprozessors konfiguriert wurden, in Aspekte extrahiert werden. Das Ziel ist
zu verstehen, ob und unter welchen Bedingungen die vermuteten Vorteile von AOP
tatsächlich zum Tragen kommen, wenn AOP in der Breite bei der Implementierung
von Konfigurierbarkeit in Systemsoftware für eingebettete Systeme eingesetzt wird.

Kapitel 6: Entwurfsebene: Aspektgewahre Betriebssystementwicklung (Seiten 121–169)
Im sechsten Kapitel geht es dann um die Entwurfsebene. Der Ansatz der aspektge-
wahren Betriebssystementwicklung wird anhand der CiAO-Betriebssystemfamilie
demonstriert. CiAO, die Abkürzung steht für CiAO ist Aspekt-Orientiert, ist eine
hochkonfigurierbare Betriebssystem-Produktline, die im Rahmen dieser Arbeit ent-
standen ist. Dabei kamen von Beginn an Aspekttechniken zum Einsatz, wodurch
CiAO im Ergebnis sowohl die Konfigurierbarkeit grundlegender architektureller
Eigenschaften als auch außerordentliche Granularität und Variabilität bietet.

Kapitel 7: Zusammenfassung und Ausblick (Seiten 171–175)
Im siebten Kapitel wird die Arbeit schließlich zusammengefasst und es werden Ideen
für weiterführende Arbeiten angesprochen.

An die sieben Hauptkapitel schließen sich noch zwei Anhänge an, die als relevant er-
achtetes begleitendes Material beinhalten:

Anhang A: AspectC++ (Seiten 177–198)
Der erste Anhang enthält weiterführende Informationen zu AspectC++ und den
zugehörigen Werkzeugen. Das Kapitel umfasst eine kurze Spracheinführung, An-
wendungsbeispiele und eine detaillierte Analyse der verbesserten Codegenerierung,
die im Rahmen dieser Arbeit entstanden ist.

Anhang B: Fallstudie “Wetterstation” (Seiten 199–218)
Im zweiten Anhang wird eine weitere Fallstudie präsentiert. In der “Wetterstation”-
Fallstudie werden AOP und OOP bezüglich ihrer Eignung für die Entwicklung
von Software-Produktlinien für kleinste, tief eingebettete Systeme qualitativ und
quantitativ verglichen.
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Typographische Konventionen

Die Einführung eines neuen Begriffs sowie die Akzentuierung eines wichtigen Ergebnisses
wird durch Fettdruck aufgezeigt. In einigen Fällen wird ein Begriff verwendet, jedoch erst
im folgenden Absatz formal eingeführt. In diesen Fällen wird der Begriff zunächst kursiv
gesetzt. Kursive Schrift ist darüber hinaus das generell verwendete Stilmittel für Hervorhe-
bungen. Programmiersprachliche Bezeichner werden in der Schriftart Schreibmaschine
gesetzt; Bezeichner, die sich auf konzeptionelle Merkmale beziehen, hingegen in serifen-
loser Schrift. Die Namen von Personen, Werkzeugen und Kommandozeilenprogramme, wie
z.B. Übersetzer und Binder, werden als KAPITÄLCHEN gesetzt.
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Zusammenfassung und Ausblick

In dieser Arbeit wurde die Eignung von AOP als grundlegender Mechanismus für die
Implementierung von Konfigurierbarkeit in Betriebssystemproduktlinien für die Domäne
der eingebetteten Systeme untersucht. Das Ziel war zu zeigen, dass eine gezielte und breite
Anwendung von AOP den Stand der Kunst bei der Implementierung von Konfigurierbarkeit
erheblich verbessern kann, ohne dabei Nachteile im Hinblick auf Hardwarekosten in Kauf
nehmen zu müssen.

Zusammenfassung

Zwei grundsätzliche Problemfelder motivierten die Untersuchung von AOP für die Im-
plementierung von Konfigurierbarkeit in Betriebssystem-Produktlinien für eingebettete
Systeme:

Problem 1: Die bedingte Übersetzung, der aktuelle Stand der Kunst für die Imple-
mentierung feingranularer Konfigurierbarkeit, führt zur Vermischung anstelle der
angestrebten Trennung der Belange. Das Verfahren skaliert nicht, führt über kurz
oder lang in die “#ifdef Hölle” und ist bereits an seine Grenzen gestoßen.

Problem 2: Die heute verfügbaren konfigurierbaren Betriebssysteme sind trotz allem
noch nicht konfigurierbar genug. Sie bieten keine Konfigurierung architektureller
Strategien. Zwar sind diese Strategien für die Anwendung transparent, sie beein-
flussen jedoch wichtige nichtfunktionale Belange. Konsequenterweise sollten sie als
konfigurierbare Merkmale ausgelegt sein.

Beide Problemstellungen sind im Grunde durch Querschnittsbelange verursacht, weshalb
die aspektorientierte Programmierung als vielversprechender Ansatz im Hinblick auf eine
Besserung angesehen wurde. Es war jedoch vollkommen unklar, ob AOP im Hinblick auf
Ausdrucksstärke (qualitativ) und Ressourceneffizienz (quantitativ) gegen die bisherigen
Ansätze bestehen kann. Ferner war offen, ob es auf diese Weise tatsächlich möglich wird,
architekturelle Strategien als konfigurierbare Merkmale zu implementieren.

Der gewählte Forschungsansatz zur Untersuchung dieser Fragestellung basierte auf der
Analyse und Evaluation der Eignung von AOP auf drei unterschiedlichen Abstraktionsebe-
nen: Sprachebene, Implementierungsebene und Entwurfsebene.
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Ergebnisse der Sprachebene: AOP verursacht keine inheränten Zusatzkosten, die eine
Verwendung in der Domäne der ressourcebeschränkten eingebetteten Systeme per
se in Frage stellen würden. Unbedingt erforderlich sind jedoch (1) die Bindung von
Advice und Verknüpfungspunkten zur Übersetzungszeit und (2) Sprachkonzepte für
kostenneutrale, statische Advice-Polymorphie.

Ergebnisse der Implementierungsebene: AOP verursacht ebenfalls keine Zusatzkosten
bei Verwendung in echter Systemsoftware, selbst wenn hunderte von Verknüp-
fungspunkten betroffen sind. Anhand der “eCos” Studie konnte gezeigt werden,
dass AOP im Hinblick auf Kosten und Ausdrucksstärke den Vergleich mit bedingter
Übersetzung besteht und gleichzeitig zu einer deutlich besseren Trennung der Be-
lange im Code führt. Insgesamt konnte gezeigt werden, dass der Einsatz von
AOP für die Lösung von Problem 1 zweckmäßig ist.

Auf der anderen Seite musste jedoch auch festgestellt werden, dass die einfache
Separation der Implementierung von Architektureigenschaften in Aspekte die Kon-
figurierbarkeit nicht signifikant verbessert.

Ergebnisse der Entwurfsebene: Für die Konfigurierbarkeit auch architektureller Strate-
gien ist es hingegen erforderlich, dass die Systemsoftware von vorneherein im
Hinblick auf die Trennung von Strategien und Mechanismen entworfen und im-
plementiert wird. Die Entwurfsregeln für den aspektgewahren Betriebssystembau
ermöglichen diese durchgängige Trennung von Strategien und Mechanismen bei der
Implementierung eines Betriebssystemkerns. Damit lassen sich auch grundlegende
Architektureigenschaften konfigurierbar gestalten. Dieses konnte am Beispiel des
AUTOSAR-OS Standards und der CiAO Betriebssystem-Produktlinie gezeigt wer-
den. CiAO vereint ausgesprochen konkurrenzfähige Laufzeit- und Speicherkosten
mit der Möglichkeit, auch architekturelle Eigenschaften zu konfigurieren. Damit
konnte gezeigt werden, dass der Einsatz von AOP für die Lösung von Problem
2 zweckmäßig ist.

Wissenschaftlicher Beitrag

Diese Arbeit erweitert den Stand der Kunst in mehreren Bereichen. Die folgende Auflistung
beschreibt noch einmal die wesentlichsten Beiträge:

• Das Konzept des generic advice, welches Advice-Polymorphie in überwiegend
statisch getypten Sprachen wie AspectC++ erst ermöglicht. Nur durch generic
advice war es letztlich möglich, Advice-Quantifizierung bei der Implementierung
von architekturellen Strategien zu verwenden.

• Die umfassende Analyse und teilweise Verminderung der Kosten der AspectC++-
Sprachmerkmale und die daraus resultierenden Handlungsempfehlungen für den
Einsatz von AOP in ressourcenbeschränkten eingebetteten Systemen. Entwickler
derartiger Systeme können sich damit sicher sein, dass die Trennung der Belange
durch AOP keine zusätzlichen Kosten verursacht.
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• Der Beweis, dass mit AOP eine deutlich bessere Trennung der Belange in der
Implementierung konfigurierbarer Systemsoftware erreichbar ist. Die Code-Qualität
aktueller Systemsoftware, wie dem eCos Betriebssystem, kann deutlich verbessert
werden ohne dass dieses zu zusätzlichen Kosten auf der Hardwareseite führt.

• Die Methode der aspektgewahren Betriebssystementwicklung, welche die AOP-
Grundideen von Obliviousness, Quantification, und Awareness neu austariert und
erfolgreich bei der Entwicklung der CiAO-Betriebssystemfamilie zum Einsatz kam.

• Der Beweis, dass es mit aspektgewahrer Betriebssystementwicklung möglich wird,
selbst grundlegende architekturelle Eigenschaften konfigurierbar zu gestalten.

• Die CiAO-Betriebssystemfamile, welche das erste Betriebssystem überhaupt ist,
dass von vorneherein mit AOP-Konzepten entworfen und entwickelt wurde. CiAO
kann dabei mit einer konkurrenzfähigen Implementierung des AUTOSAR-OS Stan-
dards aufwarten.

Weiterführende Ideen

Die ideale Aspektsprache für Systemsoftwareentwicklung. Obgleich die Implemen-
tierung von CiAO und AspeCos in AspectC++ erfolgreich war, zeigte sich dabei auch, dass
die Verwendung von AOP bei der Implementierung gerade auch hardwarenaher System-
belange Herausforderungen und Anforderungen mit sich bringt, die bislang nicht optimal
durch die Sprache unterstützt werden. Grundsätzlich erstrebenswert für die Anwendung
in dieser Domäne wären Spracherweiterung, die eine deutlich bessere Kontrolle über den
generierten Code ermöglichen. Es sollte beispielsweise möglich sein, übersetzerspezifische
Attribute für die Kontrolle von Aufrufkonventionen, Funktionseinbettung und ähnlichem
auch auf Advice anzuwenden. Ebenfalls wünschenswert wären Sprachmittel, um die
Applizierung von Advice an fragilen Stellen explizit einschränken zu können. Eine weit-
ere wichtige Verbesserung wäre Sprachunterstützung für explizite Verknüpfungspunkte,
beispielsweise durch die Möglichkeit Programmelemente, Code-Blöcke oder sogar einzelne
Anweisungen durch einen Annotations-Mechanismus zu markieren.

Die Optimierung nichtfunktionaler Systemeigenschaften. In der Problemanalyse
wurde kurz das Verhältnis zwischen nichtfunktionalen und architekturellen Eigenschaften
angesprochen (siehe Abschnitt 3.1.2). Da nichtfunktionale Eigenschaften überwiegend
emergent sind, können sie nur indirekt beeinflusst werden. Die Motivation für konfigurier-
bare Architektureigenschaften geht letztlich auf die Erfahrung zurück, dass gerade diese
Eigenschaften einen hohen Einfluss auf das nichtfunktionale Verhalten des Gesamtsystems
haben. Demnach sind konfigurierbare Architektureigenschaften ideale Stellschrauben für
die Optimierung eines Systems bezüglich bestimmter nichtfunktionaler Eigenschaften,
wie zum Beispiel Latenz, Performance, oder Speicherbedarf.

Mit der konfigurierbaren Architektur bietet CiAO nun gute Vorraussetzungen für derartige
Optimierungen. Offen ist jedoch weiterhin, wie man die beste (oder wenigstens eine
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hinreichend gute) Konfiguration für eine bestimmte Anwendung und die für sie charakter-
istische Auslastung findet. Der Ansatz alle möglichen Varianten, welche die funktionale
Spezifikation erfüllen, manuell oder automatisch zu generieren und durchzutesten, dürfte
schnell an Grenzen stoßen – die Anzahl der möglichen Varianten wächst exponentiell
mit der Anzahl konfigurierbarer architektureller Eigenschaften. Benötigt werden also
Heuristiken und Werkzeuge für eine sinnvolle Vorabbewertung der möglichen Merk-
malsselektionen, um so die Anzahl der zu untersuchenden Varianten auf ein praktisch
handhabbares Maß zu beschränken.
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