Sloth: Let the Hardware Do the Work!*

Wanja Hofer, Daniel Lohmann, Fabian Scheler, Wolfgang Schréder-Preikschat
Friedrich—Alexander University Erlangen—Nuremberg
{wanja,lohmann,scheler,wosch}@cs.fau.de

* This work was partly supported by the German Research Council (DFG) under grants no. SCHR 603/4 and SCHR 603/7-1.
Wanja Hofer was supported by the German Academic Exchange Service (DAAD) under grant no. D/09/40595.

1. MOTIVATION

Traditional priority-driven real-time kernels distinguish
between tasks, which are scheduled and dispatched by a
software scheduler, and (possibly different kinds of) inter-
rupt service routines (ISRs), which are scheduled and dis-
patched by the hardware platform. In our Sloth® system, we
get rid of the software scheduler and let the hardware do the
scheduling and dispatching work for tasks, too. We do this
by designing and implementing every task as an interrupt
handler on the hardware platform.

2. PLATFORM-AWARE DESIGN

Our Sloth kernel targets embedded OS kernels of the OSEK
class, which is an OS standard whose implementations are
widely deployed in the automotive industry. The main idea
behind Sloth is to make selected use of platform proper-
ties in the design without being fully platform-dependent.
The figure shows an overview of our Sloth design and how
common OS abstractions are mapped to it. For schedul-
ing, each task is assigned an IRQ source—a platform-specific
IRQ abstraction—during the system configuration.

Synchronous task activations (e.g., Task 1) performed by
tasks or ISRs are mapped to an interrupt request to the
corresponding IRQ source. On many platforms, this corre-
sponds to a single memory-mapped register write instruc-
tion. If the newly activated task has a higher priority than
the currently running one, the hardware will immediately
service the request; otherwise, it will delay it until the CPU
priority has dropped.

Accessing shared resources with a stack-based priority ceil-
ing protocol to avoid priority inversion is performed by rais-
ing and lowering the CPU priority accordingly. By raising
the priority to the maximum of all tasks that can potentially
lock the mutex, dispatching of those tasks is delayed until
after the mutex is unlocked (and the priority is lowered).

Alarm-activated tasks (e.g., Task 4) are assigned a timer-
connected TRQ source during the configuration. This way,
when a timer expires, the corresponding task is automati-
cally scheduled by the hardware and dispatched as soon as
the CPU priority is low enough.

"Real” ISRs (e.g., ISR 2)—that is, those that are asyn-
chronously triggered by hardware periphery—are transpar-
ently integrated into the system’s priority space, scheduled
and delayed like regular tasks.

The name honors both the lazy animal breed and the
deadly sin.

prio=1||RQ Source
Act(T1
ct (D) request Taskl) CPU
Hardware [pw IR prio=2|RQ Source curprio=X
Periphery Q request ISR2] IRQ
Arbi-
tration
o3 .
prio IRQI_ S(l)(t31rce —>] Unit IRQ Vector
request as Table
Timer Alarm Exp. prio=4 IRQ Source N
System request| Task4

3. PRELIMINARY RESULTS

In order to evaluate its properties, we have implemented
Sloth on the Infineon-TriCore platform (commodity hard-
ware used in the automotive industry). Our new design
has several promising implications for the implemented Sloth
system:

e The Sloth implementation is very concise (< 200 SLOC),
being a very easy subject to verification.

e Sloth’s memory footprint is about 700 bytes small, de-
pending on and scaling with the number of OS abstrac-
tions used.

e Sloth’s execution times in system-service microbench-
marks are between 5% and 60% than those of a com-
mercial competitive, but software-based OSEK imple-
mentation. Sloth’s particular strengths are situations
where rescheduling and dispatching are necessary.

e Since Sloth has a unified control-flow design, the sys-
tem synchronization is very easy and uniform (altering
the CPU priority); furthermore, it is not susceptible
to the real-time problem of rate-monotonic priority in-
version (high-priority tasks being interrupted by low-
priority ISRs).

4. FUTURE WORK

Our current design does not support blocking tasks with
state (stack) of their own. Nevertheless, Sloth is suitable for
the implementation of a broad class of real-time systems,
including RMA and DMA systems. Still, we want to in-
vestigate how blocking functionality fits into our design and
how it should be implemented. Furthermore, we want to im-
plement Sloth on other platforms like the ARM Cortex-M3
and Intel x86 with the APIC to further evaluate its applica-
blity.

