
Originally published in the Proceedings of the ACM/IEEE 12th International Conference on Model
Driven Engineering Languages and Systems. Vol. 5795. Berlin/Heidelberg, Germany, Springer, 2009.
ISBN 978-3-642-04424-3. The original publication is available at http://www.springerlink.com.

Variability Modelling Throughout the Product Line
Lifecycle

Christa Schwanninger†, Iris Groher‡, Christoph Elsner†, Martin Lehofer*

†Siemens Corporate Technology Erlangen,
‡Johannes Kepler University Linz, *Siemens VAI Linz

{Christa.Schwanninger, Christoph Elsner.ext, Martin Le-

hofer.ext}@siemens.com, Iris.Groher@jku.at

Abstract. This paper summarizes our experience with introducing feature
modelling into several product lines within Siemens. Feature models are used
for solving various tasks in the product line lifecycle, starting with scoping the
reusable asset base up to support for actual product configuration. Using feature
models as primary artefacts for managing variability early in the lifecycle, we
could improve the efficiency and transparency of scoping activities consider-
ably and made the development efforts way easier to schedule. On the other end
of the lifecycle, feature models lowered the engineering efforts in solution busi-
ness in supporting product configuration and instantiation.

1 Introduction

Product line engineering [1, 2] denotes a collection of engineering techniques sup-
porting the efficient reuse of a common set of core assets when developing similar
products. There are three main measures to achieve this reuse: proper scoping of the
domain and deriving platform scoping decisions from business considerations, man-
aging variability, and building up a reuse culture. Siemens business groups have a lot
of domain knowledge and many success stories to tell; nevertheless staying competi-
tive requires constant improvement and a product line approach is very promising to
decrease time-to-market for those business groups developing similar or successive
products in the same domain.

Feature modelling [3] was introduced as part of the domain analysis and domain
modelling phase to systematically describe the common and variable features shared
among the products of a product line. We found that feature modelling supports sev-
eral areas of product line engineering very well, especially scoping [4] and the con-
figuration and derivation [5] of products from the reuse infrastructure, but also activi-
ties like project planning and tracking, testing and customer negotiations.

We introduced feature modelling as a concept together with appropriate tool sup-
port in several business groups within Siemens, mainly to support either scoping and
project planning or (partly) automatic product configuration and derivation. In this
experience paper, we will describe the introduction processes in two business groups
together with the improvements achieved, and the lessons learned.

2 Experiences with Feature Models for Scoping

The first group we report on comprises one platform unit developing reusable core
assets and several application engineering units. This distribution of responsibility
requires considerable effort to communicate the platform scope and support for trans-
parent tracking of asset development. Application units add features to each product
and want to know exactly what the platform will deliver when. Feature modelling
supported all steps for setting up a product line approach described subsequently.

2.1 Structure the requirements and build up a domain vocabulary

Why? The business group had structured their requirements mainly in use cases
before. While this made the requirements easily understandable, it was hard to deter-
mine if they were complete and what the commonalities and variations were in the
platform. Moreover, many of the 5000 requirements were not included in the use case
descriptions because this was not really feasible for some parts of the overall domain,
e.g. UI frameworks or frameworks for data management.

How? The feature model was built in a top-down and a bottom-up manner. Top
down a couple of sub-domains were identified with two of them being workflow-
driven. These workflows are kind of standardized, so they can easily be utilized to
check for the complete coverage of these sub-domains. In a bottom-up approach the
existing requirements, which partly used to be assigned to use cases, were grouped
underneath the top-down features. The feature model thus lead to a rearrangement of
existing requirements, giving the opportunity to identify missing areas and to make
the whole requirements base easier to understand through hierarchical decomposition.
Overall, the user visible features became top level features, while internal features
either ended up in the lower level of the feature model or in separate, more technical
sub-domain feature models. Consequently, we classified the feature nodes into differ-
ent types with a different set of attributes depending on their characteristics. The fea-
ture modelling tooling [6] is integrated with the requirements management tooling.
The requirements meta model resembles most of the feature modelling meta model.
This allows for importing the feature models into the requirements management tool
and adding additional information and traces there.

2.2 Use feature modelling for the platform scoping negotiation process

Why? The business group is split into a domain engineering and several applica-
tion engineering units. Requirements for the reusable asset base are not mined from
customer contracts, but come from application engineering. Negotiations about which
functionality should be a commonality and should therefore be supported by the plat-
form had traditionally high conflict potential. Every application unit tried to get as
much of their specific functionality into the platform as possible because platform
development was pre-funded by application units. The challenge was then to consis-
tently de-scope from all the requirements that had no or only low reuse potential.

How? The use case structure of the requirements had made a commonality/var-
iability analysis among all involved units very hard. With the feature model that con-
sists of user visible features on the top level and getting more detailed with features
that reflect functional specification decisions a good communication basis is set up for
negotiation. The application engineering units are interested in this detailed informa-
tion about platform internals because they partially extend the platform features with
product specific features or variants. The feature model is used as central repository
for feature negotiation. First of all it makes it a lot easier to identify commonalities
among applications because it forms a common vocabulary. Second, information
about the value of a feature for each customer (i.e. how important is this feature to
support a product and estimations how often this product will be sold) together with
cost estimations of the platform development unit are the basis for prioritizing fea-
tures. The decisions on what should be part of the business group became more trans-
parent, decreasing the conflict potential considerably.

2.3 Trace features to the architecture

Why? For safety reasons, collecting tracing data is an important issue when de-
veloping medical software. Before the feature model was created, single requirements
were traced from market requirements down to design specifications. However, this is
very work-intensive, error-prone, and inefficient to maintain and even not required by
regulation organizations.

How? The detailed tracing is replaced by tracing of features, which are an order of
magnitude less than requirements, to architectural entities. In parallel to feature mod-
els, an architectural entity model reflecting the static structure of the architecture is
built. This model is hierarchical like the feature model, only with subsystems, compo-
nents and classes as the elements of this hierarchy. Features trace into the architec-
tural elements in a many-to-many relationship. From this model it is then possible to
investigate the effect of requirements on single architectural building blocks either in
design specifications attached to building blocks or in the code.

2.4 Support project and iteration planning and project controlling with
feature modelling

Why? After using the feature model for scoping, it is only consequent to use it for
project planning and controlling as well. The development process is an agile, itera-
tive one, therefore features are ideal items to be put into backlogs and be planned in
iterations.

How? The features of the feature model are used as first class artefacts for project
planning and controlling. They are augmented with attributes regarding the accept-
ance criteria for each feature, development status, and schedule. Therefore, the com-
mon vocabulary is not only present in product management and development but also
in project planning and controlling. Furthermore, the linkage to the architecture mod-
els allows tracking the degree of completion of each feature. For iteration planning
the features are further decomposed into iteration features that can be implemented in

a single iteration. The iteration features are the smallest units for planning, but they
are always seen in the context of their parent feature and are planned in a way that
iteration features belonging to one feature are assigned to consecutive iteration steps.

2.5 The feature model as product derivation support

Using the feature model for platform configuration and derivation is a long term
goal. To achieve this it is not sufficient to establish links form features to architectural
building blocks. All variations have to be linked to the concrete variation implementa-
tions in solution space, e.g. to configuration parameters or removable application code
building blocks. A derivation infrastructure has to be developed that evaluates the
links and configures the application, e.g., by setting the parameters or by omitting
building blocks according to the feature selection.

3 Experience with Variability Modelling for Product Derivation

Siemens VAI is the world’s leader in the domain of engineering and building
plants for the iron, steel, and aluminium industry and uses variability modelling tech-
niques for product derivation in its CC-L2 product line. The product line provides
process automation to continuous casting plants in steel mills and consists of several
applications on different technical platforms like C++, Java and .Net, at a total of
about 2 MLoC. Modelling techniques are used heavily in the server core, which con-
sists of more than 800 components. To the average customer, about 600 selected
components are delivered and custom extensions to the product line are made.
With their academic partner, the Christian Doppler Laboratory for Automated Soft-
ware Engineering they developed the DOPLER approach [5]. Based on detailed sales
support documents and the problem space knowledge of product management, the
features and the variability of the product line were mined and consolidated into a
model. This model has extended product derivation capabilities, as the features are
attached with questions in natural language. During application engineering, answer-
ing the questions in close cooperation with the customer leads to decisions triggering
the feature selection and therefore to a concrete product configuration. The resulting
models are used as domain-specific language (DSL) to resolve the problem space
variability together with the customer based on concrete product requirements.
The solution space of the CC-L2 product line comprises a component-based architec-
ture. Because of the clearly defined mapping between problem space and solution
space variability it is possible to automatically select and configure the assets required
to build the desired product.

In the last years, the product line approach helped Siemens VAI to deliver more
than 150 projects on schedule and on budget. Before, they had serious problems with
code changes causing problems during start-up of plants. They were able to signifi-
cantly reduce project execution time and travel times. Through defining a PLE evolu-
tion and planning process, Siemens VAI was able to reduce their development efforts
and increased the reuse of software components

4 Lessons Learned and Conclusion

Important lessons learned while using feature models for scoping are:
! Early involvement of solution space knowledge: It is necessary to consider solu-

tion space knowledge early when identifying features and variants of a product
line. In our examples products or systems were already built before the migra-
tion to product line engineering was started. The structure of existing systems
helps to identify meaningful sub-domains. Linking features to existing solution
space assets, or at least to architectural entities that are under design, helps to es-
timate cost early and keeps the whole effort grounded.

! Co-development of feature model: Development should be integrated early in
building the feature model. There is considerable knowledge about past products
or systems in development that helps to establish parts of the feature model with
its variability quickly. The communication between product management and
development furthermore leads to a common understanding of the requirements
on the one hand and of the cost to implement those requirements, especially
variability, on the other.

! Sub-domain division: Covering the whole problem domain with one feature
model is too complex, if the goal is to model not only variability but to cover the
whole system including all commonalities. Therefore, domains should be di-
vided into sub-domains modelled in separate feature models.

At the other end of the life cycle feature models are very well suited to build DSLs
for supporting automatic product derivation. The vast majority of variability in our
domains is configurative variability. The hierarchical form of feature models makes
them easy understandable by all stakeholders, not only the customer.

We did not do a project yet that combined feature modelling at both ends of the
product line lifecycle. However, within the first described business group, we want to
augment the feature model built for scoping to support product derivation.

5 References

1. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. Addison-Wesley
(2001)

2. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering: Foundations,
Principles, and Techniques. Springer (2005)

3. Kang, K.C., et al., Feature-oriented domain analysis (FODA) feasibility study. Technical
Report CMU/SEI-90TR-21, Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA, USA (1990)

4. Schmid, K.: A comprehensive product line scoping approach and its validation. In: 24th
International Conference on Software Engineering, pp. 593--603. ACM (2002).

5. Rabiser, R., Gruenbacher, P., Dhungana, D.: Supporting Product Derivation by Adapting
and Augmenting Variability Models. In: 11th International Software Product Line Confer-
ence, pp.141—150. IEEE (2007)

6. pure systems GmbH. Variant Management with pure::variants. Technical Whitepaper
(2006)

