
Product Derivation for Solution-Driven
Product Line Engineering

Christoph Elsner†, Daniel Lohmann‡, Wolfgang Schröder-Preikschat‡
†Siemens AG, Corporate Technology & Research
‡Friedrich-Alexander University Erlangen-Nuremberg

†christoph.elsner.ext@siemens.com, ‡{lohmann,wosch}@cs.fau.de

ABSTRACT
Solution-driven product line engineering is a project busi-
ness where products are created for each customer individu-
ally. Although reuse of results from former projects is widely
done, configuration and integration of the results currently
is often a manual, time-consuming, and error-prone task and
needs considerable knowledge about implementation details.

In this paper, we elaborate and approach the challenges
when giving automated support for product derivation (i.e.,
product configuration and generation) in a large-scale solu-
tion-driven product line context. Our PLiC approach resem-
bles the fact that, in practice, the domain of a large prod-
uct line is divided into sub-domains. A PLiC (product line
component) packages all results (configuration, generation,
and implementation assets) of a sub-domain and offers inter-
faces for configuration and generation. With our approach
we tackle the challenges of using multiple and different types
of configuration models and text files, give support for au-
tomated product generation, and integrate feature modeling
to support application engineering as an extensive develop-
ment task.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Reusable Software

General Terms
Design

Keywords
Software Product Line Development, Solution-Driven Soft-
ware Development, Feature Modeling

1. INTRODUCTION
In classical software product line engineering (SPLE), a

software product line is defined as a set of software-intensive
systems that share a common, managed set of features sat-
isfying the specific needs of a particular market segment or

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FOSD’09, October 6, 2009, Denver, Colorado, USA.
Copyright 2009 ACM 978-1-60558-567-3/09/10 ...$10.00.

mission and that are developed from a common set of core
assets in a prescribed way [12].

SPLE, however, is not only about products in the strict
sense, which are usually created according to market needs
before being offered to the customer. It covers the realm of
software solutions as well, meaning that the customer has
high influence on the requirements of the software product
to develop, which is then created in context of a customer-
specific project leveraging reuse.

Feature modeling can guide the whole process of solution-
driven product line engineering. In fact, Siemens already
uses feature modeling to describe the problem space vari-
ability of possible products [18]. It supports scoping of the
product line, tendering, cost planning, supports communica-
tion between sales&marketing and development, and helps
scheduling development releases, testing, and evolution. For
documentation purposes, requirements trace into features
which in turn trace to the solution space assets. We de-
scribe this in further detail in [18].

Although this is far more than using feature models “as a
sketch” only, there still remains a gap between the problem
space, modeled with features, and the solution space. Sev-
eral causes currently still hinder using the feature model for
product configuration and support partly-automated prod-
uct generation from the configuration. In particular for
solution-driven product lines, where addressing customer-
specific requirements and manual implementaion play a cen-
tral role, an integrated concept for combining automated
and manual product derivation is missing.

In this paper, we will (1) describe the characteristics of
solution-driven product line engineering and then what we
see as state-of-the-art of problem space feature modeling in
industry. We (2) derive the challenges for using this feature
model for product derivation (i.e., product configuration and
generation) in a solution-driven context. We (3) propose and
discuss the PLiC approach to tackle the challenges.

2. SOLUTION BUSINESS
Solution-driven business is a project business where re-

sults are created for individual customers and their specific
problems. It is not the products fitting into a market seg-
ment or the optimized production process that is sold to
customers. The result, this is the solution or “product” of
such projects, is typically only sold once in this form. Ex-
amples of solution business are engineering of power plants,
production lines, smart homes, hospitals and their building
automation, and railway control centers.

Product Business Solution Business

n defined products, some explicitly excluded project business
configuration of fixed set of functions no product is used twice
foreseeable variability unanticipated variability
facilitate maintainability of PL platform and products facilitate/replace copy & paste
“closed world” open collection of artifacts
example: digital camera example: power plant, smart home

Table 1: Product vs. Solution Business

Solution business does not mean that every single feature
of the result is crafted from scratch. In fact, an efficient so-
lution business is urged to reuse and reapply existing know-
how and results to stay competitive. In product business
the scope of the product line is fixed by the variability the
feature model describes. In solution business, in contrast,
each new project reshapes the scope of the product line.

Table 1 compares product and solution business to char-
acterize their differences. The scope of a product line in
product business is well defined. It comprises a number of
products with a set of common and individual functions.
The core asset base is managed, even when application en-
gineering adds functions or when extending the scope of the
product line. In solution business, “products” are not clearly
defined and show a high variability.

Results in solution business projects share certain charac-
teristics that are determined by the domain. It is therefore
useful to manage them together in a software product line.
However the different sub-domains of the product line may
be rather heterogeneous. They may be covered by standard
software products, or products derived from other company-
internal product lines, while others in turn might be devel-
oped from scratch.

Solution-driven product line engineering basically means
that the primary focus is on application engineering, while
domain engineering diminishes. In such a scenario, not only
the reuse of existing results, but also product-specific adapta-
tions and reactive product line evolution, that is, when that
the concrete applications drive the development of the core
product line assets, play very important roles.

3. PROBLEM SPACE
FEATURE MODELING

Feature modeling was introduced in [11] as part of the do-
main analysis and domain modeling phase to systematically
describe the common and variable features shared among
the products of a product line. A feature model represents
the features of a family of systems in the domain and the re-
lationships between them [11]. A valid selection of features
from a feature model is called a configuration. Usually, a fea-
ture model is considered to be located in the problem space;
that is the scope of the analyst who does not care about
solution details. This means that the concepts and relations
described there are condensed so that they can be under-
stood without detailed implementation knowledge. The ac-
tual architectural models and the implementation assets, in
contrast, reside in the solution space.

Scoping, in turn, is an analysis activity in domain engi-
neering to find the boundaries of the whole product line, its
reusable sub-domains, and its assets [3, 16, 17]. Because
there is no agreed definition, we define a sub-domain of a

product line as a subpart of the overall product line do-
main, whereas there is a high cohesion in its problem space,
solution space, and in company-internal organization. A
sub-domain may be, for example, the operating system, data
storage, middleware, GUI frameworks, user management, or
domain-specific services. Scoping requires being able to as-
sign business value to decisions on what should be in/out
of the product line and carry those decisions on when de-
ciding on what functionality should be built within reusable
sub-domains and assets.

Rescoping is necessary to keep the scope of the product
line optimized during its evolution. In solution business,
rescoping is triggered (at least) for every new project to
decide, if a necessary adaptation shall be developed reusable
in the context of the overall product line. In this case it
must be assigned to an appropriate sub-domain; else it is
developed product-specific without following measures for
later reuse.

Feature modeling and scoping is a good match. Features
are a natural way to describe a domain in terms of problem
space concepts [17]. They can be refined and related to so-
lution space assets, and so can carry on business value infor-
mation. A feature model can, hence, serve as scoping model
and define the overall product portfolio and a strategic vision
of the variability of the product line. The model is succes-
sively refined to map features to concrete sub-domains, and,
finally, draw trace links into implementation components of
a system. The scoping model includes all common and vari-
able features of a product. The product line architect uses
the scoping model to design the reference architecture for
all the products.

Once feature modeling is established, it can support var-
ious other planning and management tasks. In [18] we de-
scribe how it has been used within Siemens to support project
and iteration planning and controlling. In general, various
task for bridging the “communication gap” between prod-
uct management, sales&marketing, requirements manage-
ment, architecting, and development may be supported by
the data, like tendering, cost planning, and product line evo-
lution.

In our view, the essential requirement on a problem space
variability modeling language—and maybe the key success
factor of feature modeling—lies in its easy understandability.
Involved stakeholders from various backgrounds can imme-
diately grasp the concepts and understand the semantics of
feature diagrams, and, at least from the high-level point of
view, the expressiveness of (cardinality-based) feature mod-
els [6] is sufficient.

However, the downside follows when the real-world solu-
tion is to be derived from the asset base. The problem space
feature model is far from complete; it only contains high-

level concepts that are not sufficient for complete product
configuration. Although there may exist traces from fea-
tures to the sub-systems and components it affects, how to
include, exclude, connect, or parameterize a component, in
especially, how to generate the actual product, is not part
of a problem space model.

Last but not least, variability modeling by only using fea-
ture models is quite limited. Constructive variability (in-
stantiation, references) is better expressed in languages that
support this concepts directly, and domain experts, for ex-
ample for business processes, will prefer doing certain config-
uration tasks using domain-specific languages (DSLs) such
as BPEL instead of (mis-)using feature modeling.

4. EXAMPLE SOLUTION-DRIVEN
PRODUCT LINE

To illustrate the general problem and the solution pro-
posed in this paper, let us consider the software for a medi-
cal digital assistant (MDA) product line for medical hospital
personnel. A MDA is basically a personal digital assistant
(PDA) with custom software connecting to the hospital in-
formation system. For simplification, we will consider two
sub-domains: the embedded operating system including the
middleware (OS), and the domain-specific business logic in-
cluding the graphical front-end (GUI). The OS sub-domain
is also used in other product lines (e.g., intelligent displays),
whereas the GUI sub-domain is only of use in MDAs. The
latter needs considerable configuration and manual imple-
mentation effort for each hospital, depending on the medical
services and workflows it disposes of; equipping a hospital
with MDAs is therefore solution business. Both sub-domains
have a problem space feature model describing their high-
level features. For planning purposes, the MDA product line
itself is regarded as a sub-domain and comprises a problem
space feature model, which is tied to the two other ones. The
OS sub-domain implementation mostly reuses standard soft-
ware and can be configured via separate text files, whereas
the reusable parts of the GUI sub-domain have data and
workfow models as configuration input.

5. CHALLENGES OF PRODUCT
DERIVATION SUPPORT

Connecting the problem space variability model formally
to solution space artifacts for product configuration and gen-
eration support is challenging. It requires an unambiguous
translation of the concepts of both realms. We identified the
following challenges, which, even though they also appear in
a product-driven context to a certain extent, are of major
importance for efficient product derivation for large-scale,
solution-driven product line engineering:

1. Distributed Configuration
The high-level feature model would become unman-
ageable if it contained all variability information for all
sub-domains. Instead, there should be several variabil-
ity models to divide and conquer the problem, similar
to the hierarchical decomposition of sub-domains of
the product line. Constraints between the variability
models are necessary to enforce sub-domain–crossing
dependencies. This distributed structure also goes in
line with staged and multi-level configuration [7], where

different stakeholders at different times are responsible
for configuring different sub-domains.

2. Heterogeneous Configuration
The high-level feature model constitutes our link from
problem to solution space, and the detailed variabil-
ity of some sub-domains might be described with fea-
ture models as well. However, there are also sub-
domains where other forms of configuration are much
more suited. Workflow or state machine models de-
scribe system behavior, other domain-specific (model-
ing) languages may describe deployment or replication.
Finally, the basic infrastructure often bases on plain
text configuration files. Constraints spanning different
types of configuration must be possible.

3. Solution Generation Support
Automating solution creation for those sub-domains
that are mature enough to support generation requires
connecting the configuration to implementation assets.
Heterogeneous types of product generation (e.g., based
on models and code generation, compilation, descrip-
tor files, etc.) must be supported as well as a hier-
archical mechanism to delegate generation call to all
sub-domains.

4. Handling Application Engineering
A new solution may require considerable effort for im-
plementing new features. It is crucial that product-
specific features are not neglected, but integrate neatly
into the overall configuration and generation process.

Referring to the example in Section 4, the configuration
of the MDA sub-domain is hierarchically distributed over
the two sub-domains OS and GUI, which have heterogenous
types of configuration (text files, models). Generative sup-
port only refers to separate sub-parts, and does not allow
generating an overall MDA, and the problem space feature
models are not used for actual product configuration. There
is no sub-domain spanning constraint-checking for validat-
ing a configuration, and application engineering is not in-
tegrated into the sub-domain configuration and generation
process.

6. APPROACHING THE CHALLENGES
In the following, we propose an approach to address the

mentioned challenges. We will discuss it in Section 7.

6.1 Product Line Components
In practice, the domain of a product line is divided into

sub-domains according to system boundaries and develop-
ment responsibilities. Our approach encapsulates all arti-
facts related to a sub-domain—these are configuration arti-
facts, generation artifacts, and implementation artifacts—
into one conceptual entity, a product line component (PLiC)
(see Figure 1).

Since sub-domains can be hierarchically composed, this is
also possible for PLiCs. A PLiC is a development and build-
level entity, so interfacing of PLiCs works on the upper two
layers: configuration and generation layer. PLiCs are a hi-
erarchical concept, so each PLiC delegates requests for con-
figuration and generation also to child PLiCs. It provides
two interfaces: the configuration interface and the genera-
tion interface:

Configuration

Generation

Implementation

Figure 1: Product Line Component

• Configuration Interface

– Configure PLiC
Configuration is a manual task and the interface
therefore a human-machine interface. As, in prac-
tice, feature modeling alone is often not suited for
overall product configuration, we expect that var-
ious domain-specific kinds of models or textual
configuration languages become necessary. The
top level PLiC will be configurable according to
the problem space feature model, while the PLiCs
for the sub-domains may have arbitrary domain-
specific types of models for configuration. Note,
that, as PLiCs are hierarchical, this provides sup-
port for hierarchical product lines [5], so that a
whole (sub-)product line may be a part of the
overall solution-driven product line.

– Check Configuration
Checking a configuration requires evaluating con-
straints over all involved options. As these may
spread multiple kinds of configuration models and
textual files and also may cross sub-domains we
need a suitable checking mechanism. Current mod-
eling frameworks, such as EMF [10], fulfill this
purpose. All domain-specific meta models devel-
oped with EMF correspond to the meta modeling
infrastructure ECore. XText [22] facilitates rapid
development of parsers for arbitrary textual lan-
guages. It outputs a corresponding EMF model
for a file written in the language. For other types
of models there already exist ECore converters
(pure::variants [2] feature models, UML [14]) or
can be developed as well. EMF’s validation lan-
guages (OCL, oAW Check [13]) make building up
a constraint checking infrastructure over several
models and model types feasible.

• Generation Interface

– Generate Solution
During application generation the configuration is
evaluated and the product is built according to it.
For stable sub-domains, the corresponding PLiC
may encapsulate a so-called configurable product
base [4] so that the product may be derived com-
pletely by using generative techniques. For the
moment, we regard the generation facilities as a
black box, so that arbitrary types of compilation
and text and model-based generation and trans-
formation techniques may be used internally.

By bundling configuration and generation facilities directly
with the implementation assets, PLiCs approach Challenges
1 to 3. The configuration can be distributed over an ar-
bitrary number of models and heterogeneous model types
and generation is carried out hierarchically according to the
PLiC hierarchy.

To sum up, our approach implies a hierarchy, where the
root PLiC basically contains the problem space feature model
to describe variability and global constraints. Referring to
our example from Section 4 this would be the MDA prob-
lem space feature model and additional constraints. Enforc-
ing correct configuration of the sub-domains conformant to
this “abstract” feature model configuration is done via the
constraint checking infrastructure. This ensures the config-
uration of all PLiCs (e.g., the sub-domains OS and GUI)
to be valid. Finally, each PLiC generates a sub-product
corresponding to its sub-domain, which makes product gen-
eration transparent regarding the concrete generation type
(e.g., based on model transformations and code generation,
pre-processors, etc.). In our example the OS PLiC gener-
ates the operating system and the middleware that specifi-
cally suite the needs of the domain-specific services and the
graphical front-end generated by the GUI PLiC.

6.2 Supporting Solution-driven PLE
To approach Challenge 4, we have to distinguish differ-

ent types of sub-domains. For solution-driven PLE, certain
sub-domains of the solution may be derived from company-
internal sub–product-lines, while others are covered by stan-
dard software, and others need manual implementation.

6.2.1 Sub–product-lines
Company-internal sub–product-lines fit very nicely into

the overall concept. PLiCs have a hierarchical structure, so
a hierarchical product line can be built. A sub–product-
line PLiC exposes its feature model to the overall feature
model. The constraint checking infrastructure ensures a
globally valid configuration.

6.2.2 Standard Software
Incorporating standard software (e.g., for infrastructure)

into the overall product line is also straight-forward. This
means to encapsulate the standard software into a PLiC as
well, using the same mechanisms as for sub–product-lines.
This way, the detailed configuration of the standard soft-
ware can be performed in the same manner as for company-
internal sub–product-lines, and configuration constraints can
be expressed and enforced.

6.2.3 Manual Implementation
In a solution-driven PLE context, manual implementation

of assets plays a crucial role. This has both an organizational
and a technical facet. The problem space feature model
covers the former, the PLiC approach the latter.

Organizational business considerations determine how to
implement a new feature’s assets. This is where the strength
of problem space feature modeling lays. As we indicate in
Section 3 and further describe in [18], the decision on how to
implement a new feature depends on its attached business
values (implementation costs, worth for customer, strategi-
cal value, etc.). This technique can both be applied directly
to the overall solution feature model as well as be delegated
into the feature-models of certain sub–product-lines.

After the organizational decision, if a feature shall be
reusable or if not, technical considerations come into play.
Independently of the decision, the feature may be developed
within a PLiC. Each time, it may comprise detailed configu-
ration languages, generation facilities, and the actual imple-
mentation. Note, that, although a feature is implemented
solution-specific, it will usually still have configuration op-
tions for fine-tuning, multiple solution instances, etc. Only
its reusability is constrained, as the PLiC makes rigid as-
sumptions about its context, this is the features selected in
other sub-domains.

For the actual implementation of variability in a reusable
or product-specific way, there exist various possibilities (cf.
Table 2). On the one side it is possible to add, change, and
delete new artifacts within the reusable asset base. Adding,
changing, and deleting is possible on common core assets
(C), variation points (VP), and variants (V). On the other
side it is possible to add new solution-specific variations, to
override reusable assets, or even to conceal common core
asset functionality.

Reusable impl. Product-specific impl.

Add Add C, VP, V Add V
Change Change C, VP, V (Override C, VP, V)
Delete Delete C, VP, V (Conceal C)

Table 2: Manual Implementation of Assets

Overriding and concealing emerge when there is no suit-
able variation point in the reusable assets base at a certain
location, although one would be needed to perform an adap-
tation. Usually this is referred to as “patching” and is dis-
couraged; adding an explicit, additional variation point into
the reusable asset base and write a variant for it is prefer-
able. This means that, even if a feature shall be implemented
product-specific, it still might require adapting the reusable
asset base for adding a variation point.

7. DISCUSSION
The PLiC approach is currently in stage of prototypical

implementation and evaluation. The interfaces of PLiCs as
described above are simple and we have to see if hierarchical
composition and black box behavior is sufficient for both
configuration and generation. In the following, we discuss
the notion of sub-domain, configuration model consistency,
scalability, and binding times.

7.1 The Notion of a Sub-domain
The notion of sub-domains is of high relevance in indus-

trial practice of large-scale systems and is used to (hierar-
chically) structure the overall product line domain. How-
ever, there is no generally agreed definition. So, it depends
on the context if it refers to problem space, solution space,
or organization. In Section 3, we define a sub-domain of a
product line as a subpart of the overall product line domain,
whereas there is a high cohesion in problem space, solution
space, and in company-internal organization. Of course, this
does not mean there is no interfacing between sub-domains,
but that they are relatively stable and clear, in contrast to
sub-domain–internal interfacing. This enables us to bundle
all artifacts relevant to one sub-domain into a conceptual
entity with quite clear interfaces, the PLiC. The problem of

partitioning into sub-domains stems from practice and we
are convinced that problem space, solution space, and orga-
nization have to be considered together to tackle large-scale
product line engineering.

7.2 Configuration Model Consistency
From a technical point of view, evaluating the consistency

of configuration models is easiest on demand, for example
by triggering the evaluation of consistency rules in OCL ex-
plicitly. There also exists research about high performance
on access/edit constraint checking [9]. The more challeng-
ing question is how to manage creation and maintenance of
the consistency rules in order to keep the models of heteroge-
neous types valid. At the moment, we consider using general
purpose constraint checking languages, such as OCL, and to
assign rule sets to each sub-domain, whereas rules may only
access models in their own or in child sub-domains. Check-
ing the consistency of a solution then corresponds to check-
ing the rule set of the root solution-driven product line and
all sub-domain rule sets recursively.

7.3 Scalability
The question remains, if such a generic checking infras-

tructure scales when it comes to large-scale product lines.
Next to hard dependencies (requires, excludes), there may
be weak ones, for example regarding the influence on execu-
tion time or memory usage. These may be covered similar
to COVAMOF [19], where weak constraints have attached
textual information indicating the impact of a configuration
on certain system qualities.

7.4 Binding Times
Having different binding times within the product line

could be done via dividing the Check Configuration service
(see Section 6.1) into several services. Each service would
represent a binding stage and could introduce stricter con-
straints. However, we have not elaborated on that issue yet.

8. RELATED WORK
We resemble staged and multi-level configuration of fea-

ture models [7] to some extent, as we have a hierarchical
model structure that refines from abstract feature to a more
and more concrete configuration. However, staged configu-
ration only supports one type of variability model, a feature
model. This is the case for many other reported applications,
like decision modeling [8], COVAMOF [19], or OVM [15].
In contrast, our approach is free in using various domain-
specific modeling languages; we only expect the top level
model to be a feature model to link to the problem space.

In contrast to our feature notion, which is rather abstract
and driven from problem space considerations, feature-ori-
ented software development (FOSD, [1]) operationalizes a
feature as an increment in program functionality that im-
plements a requirement. A sub-domain, as we define it,
consists of a set of increments and rules specifying valid com-
binations (similar to the feature-oriented view on a product
line). Ideally, in FOSD, each feature is implemented sepa-
rately in a so-called feature module to separate the concerns
(SoC) of the features. Our approach requires SoC on sub-
domain level, while we currently do not explicitly consider
SoC within a sub-domain. This means features may be im-
plemented applying strict SoC or not. We aim at imple-
menting SoC on sub-domain-level by classical means, in es-

pecially, providing variation points (e.g., by design patterns)
in one sub-domain, while other sub-domains may provide
corresponding variants.

Product derivation systems based on version management
software [20, 21], manage the reusable asset base (the prod-
uct line platform) and the reused assets in the actual prod-
ucts separately and preserve dependencies between reusable
and reused asset. It follows the assumption that the devel-
opment of platform and products generally happens inde-
pendent of each other, but that at some points (e.g., secu-
rity updates) merges from platform to product assets or vice
versa become necessary. In our approach, we try to avoid
solution-specific overrides or concealing of assets. Instead,
we would prefer to add a variation point to the reusable as-
set base whenever possible. As, in our application context,
the number of concurrent solutions is rather limited (3 to
10) this still seems feasible to us.

9. SUMMARY AND FUTURE WORK
In this paper, we have elaborated and approached the

challenges when doing product configuration and generation
in a large-scale product line context in solution business. We
identified the following four challenges: the need for decen-
tralized configuration, for heterogeneous configuration, for
explicit product generation support, and for supporting ap-
plication engineering as extensive task. We tackle the chal-
lenges with the PLiC approach. It resembles the fact that
the domain of a large-scale product line is divided into sub-
domains. A PLiC (product line component) encapsulates
all configuration, generation, and implementation artifacts
of a sub-domain. A hierarchical composition of PLiCs then
constitutes the overall solution-driven product line. Our ap-
proach facilitates decentralized and heterogeneous configu-
ration by allowing multiple models, arbitrary model types,
and constraints that may span sub-domains. It gives prod-
uct generation support by hierarchical delegation of gen-
eration calls, and, by integrating a problem space feature
model into the derivation process on solution space side, we
can give explicit support for application engineering as an
extensive development process.

Before applying the approach in a real-world context still
a lot of research remains to be done. Our next step will be
to set up a prototype satisfying the identified characteristics
and elaborate on the more technical details of sub-domain–
spanning product configuration, consistency checking, and
product generation.

Acknowledgments
We thank Christa Schwanninger and Ludger Fiege for their
valuable feedback on earlier versions of this paper.

10. REFERENCES
[1] D. Batory. Feature-oriented programming and the

AHEAD tool suite. In Proceedings of the 26th
International Conference on Software Engineering
(ICSE ’04), pages 702–703. IEEE Computer Society
Press, 2004.

[2] D. Beuche. Variant management with pure::variants.
Technical report, pure-systems GmbH, 2006.
http://www.pure-systems.com/fileadmin/

downloads/pv-whitepaper-en-04.pdf, visited
2009-03-26.

[3] J. Bosch. Design and Use of Software Architectures,
Adopting and Evolving a Product Line Approach.
Addison-Wesley, 2000.

[4] J. Bosch. Maturity and evolution in software product
lines: Approaches, artefacts and organization. In
Proceedings of the 2nd Software Product Line
Conference (SPLC ’02), pages 257–271, Heidelberg,
Germany, 2002. Springer-Verlag.

[5] J. Bosch. Expanding the scope of software product
families: Problems and alternative approaches. In
C. Hofmeister, I. Crnkovic, and R. Reussner, editors,
Quality of Software Architectures, Lecture Notes in
Computer Science. Springer-Verlag, 2006.

[6] K. Czarnecki, S. Helsen, and U. W. Eisenecker.
Formalizing cardinality-based feature models and their
specialization. Software Process: Improvement and
Practice, 10(1):7–29, 2005.

[7] K. Czarnecki, S. Helsen, and U. W. Eisenecker. Staged
configuration through specialization and multilevel
configuration of feature models. Software Process:
Improvement and Practice, 10(2):143–169, 2005.

[8] D. Dhungana, R. Rabiser, P. Grünbacher, and
T. Neumayer. Integrated tool support for software
product line engineering. In Proceedings of the 22th
IEEE International Conference on Automated
Software Engineering (ASE ’07), pages 533–534, New
York, NY, USA, 2007. ACM Press.

[9] A. Egyed. Scalable consistency checking between
diagrams-the viewintegra approach. In Proceedings of
the 16th IEEE International Conference on Automated
Software Engineering (ASE ’03), Washington, DC,
USA, 2001. IEEE Control Systems Magazine.

[10] Eclipse modeling framework homepage.
http://www.eclipse.org/emf/.

[11] K. Kang, S. Cohen, J. Hess, W. Novak, and
S. Peterson. Feature-oriented domain analysis (FODA)
feasibility study. Technical report, Carnegie Mellon
University, Software Engineering Institute, Pittsburgh,
PA, Nov. 1990.

[12] L. Northrop and P. Clements. Software Product Lines:
Practices and Patterns. Addison-Wesley, 2001.

[13] OpenArchitectureWare homepage.
http://www.openarchitectureware.org/.

[14] Object Management Group (OMG). Unified modeling
language (UML) 2.1.2 superstructure specification.
formal/2007-11-02, November 2007.

[15] K. Pohl, G. Böckle, and F. J. van der Linden.
Software Product Line Engineering: Foundations,
Principles and Techniques. Springer-Verlag, 2005.

[16] K. Schmid. A comprehensive product line scoping
approach and its validation. In Proceedings of the 24th
International Conference on Software Engineering
(ICSE ’02), New York, NY, USA, 2002. ACM Press.

[17] K. Schmid. Planning Software Reuse - A Disciplined
Scoping Approach for Software Product Lines. PhD
thesis, Stuttgart, 2003.

[18] C. Schwanninger, I. Groher, C. Elsner, and
M. Lehofer. Variability modelling throughout the
product line lifecycle. In Proceedings of the
ACM/IEEE 12th International Conference on Model
Driven Engineering Languages and Systems, to
appear. Springer-Verlag, 2009.

[19] M. Sinnema, S. Deelstra, J. Nijhuis, and J. Bosch.
COVAMOF: A framework for modeling variability in
software product families. In Proceedings of the 11th
Software Product Line Conference (SPLC ’07),
Heidelberg, Germany, 2007. Springer-Verlag.

[20] C. Thao, E. V. Munson, and T. N. Nguyen. Software
configuration management for product derivation in
software product families. In Proceedings of the 15th
Annual IEEE International Conference and Workshop
on the Engineering of Computer Based Systems, pages

265–274, Washington, DC, USA, 2008. IEEE Control
Systems Magazine.

[21] J. van Gurp and C. Prehofer. Version management
tools as a basis for integrating product derivation and
software product families. In Proceedings of the
Workshop on Variability Management - Working with
Variability Mechanisms at SPLC 2006, pages 48–58.
Fraunhofer IESE, 2006.

[22] Eclipse XText homepage.
http://www.eclipse.org/Xtext/.

