
The Linux Kernel Configurator as a Feature Modeling Tool

Julio Sincero and Wolfgang Schröder-Preikschat
Department of Computer Science 4

Friedrich-Alexander University Erlangen-Nuremberg
{sincero,wosch}@cs.fau.de

Abstract

In order to contribute to the understanding of how the
SPL community and the open source community can benefit
from each other, we present the Linux Kernel Configurator
(LKC). We describe its capabilities and explain how it can
be used for the design of feature models.

1. Introduction

A software product line (SPL) is a set of software com-
ponents that can be composed in order to deliver a spe-
cific product. The scientific community has proposed a
variety of techniques to support the development of SPLs,
feature modeling, product line scoping, feature implemen-
tation techniques, variability management, among others.
These approaches aim at producing flexible software archi-
tectures, reducing time-to-market, enabling substantialcode
reuse, and, consequently, providing high-quality software
products. The literature has plenty of study cases showing
the benefits of the adoption of such techniques.

Different sectors of the software industry have been
adopting the SPL approach in their development process.
However, another increasingly interest is the use ofopen
sourcesoftware. This can be motivated by many reasons,
but mainly, due to cost factors and the attested quality of
many open source projects. In addition, it has been shown
that some open source projects, due to its technical imple-
mentation, can be considered to be SPLs [8], even though
during its development process no methods proposed by the
SPL community were used.

Therefore, it is clear that both communities share inter-
ests and goals. We believe that for a better understanding of
how these communities could benefit from each other, tech-
nical issues should be discussed. This paper presents the
variability managementemployed by the Linux Kernel. We
present the open source tool that is used for this task, and
also, how it can be adapted to be used by the SPL commu-
nity as afeature modelingtool.

Motivation

We are specially interested in addressing the configuration
of non-functional properties (NFPs) in SPLs[9, 5]. We be-
lieve that information about NFPs should be provided dur-
ing feature selection so that the application engineer can be
aware of the impact of a determined feature on the final
product. Therefore, our idea was to extend a feature mod-
eling tool in order to appropriately present this information
that cannot be accommodated in thefeature diagram, as it
can be in the form of graphs or charts.

Nevertheless, we were not able to find any open source
feature modeling tool to bring our extensions, and also, our
goal was not to develop one from scratch. As the Linux
Kernel configurator is open source and very flexible, we de-
cided to test if it could meet our needs. It turned out that
it could be easily used as a feature modeling tool. In this
paper we demonstrate how to design features models with
it. 1

2. The Linux Kernel Configurator

The Linux Kernel Configurator (LKC) is a tool that is de-
livered within the Linux Kernel in order to enable its config-
uration (feature selection) . Its first prototype was proposed
in 2002, the current version is 1.3, and as the Linux Kernel,
it is released under the GNU General Public License.

2.1 A Little bit of History

In 2001 the community around the Linux Kernel started
to show dissatisfaction with the kernel configuration tool,
back then known asconfiguration menu language(CML1).
With the growth of the kernel, the configuration process was
getting very complicated. The tool was responsible for se-
lecting the capabilities to be built into the kernel, handling
dependencies and providing the user interface for feature
selection. Moreover, it was comprised of a mixture of code

1The aforementioned extensions regarding NFPs will be subject of an-
other publication.

written in Tcl/Tk scripts, awk scripts, pearl and C, which
made it hard to understand and to maintain[1].

In order to solve this problem, a configuration menu lan-
guage 2 (CML2) was proposed. It was amini-language
designed specifically for configuring kernels. Arulesetde-
scribing all the available options and their dependencies can
be translated into arulebasethat is read by the front-end in
order to configure the kernel[7]. After more then two years
of development, severalflame warson the mailing list, and
many improvements over the previous system, the project
was dropped and not accepted in the official kernel tree (this
fact shows how restrictive and demanding is the community
regarding new code being merged in the official tree). Nev-
ertheless, the source code is still available and it is used as
the configuration tool of other projects.

A couple of months after the discussions about the
CML2 had finished, the LKC was proposed aiming at ad-
dressing the shortcomings of both CLM1 and CML2. Ac-
cording to the author, the major advantages over CML2 are:
(a) it is written in C code (CML2 is written in Python which
makes a Python interpreter to be delivered with the kernel)
(b) a tool for the automatic converting of the CML1 config-
uration into the new one is included, (c) it is less complex
then CML2, it does not try to address problems like facili-
tating the kernel configuration for non-experts as the CML2
does.

As these three points were of great importance for the
linux developers, after around one year of testing and im-
provements, the LKC was accepted and merged in the ker-
nel2.5.45.

2.2 The Linux Kernel Configurator

The LKC is basically comprised of aparserand adepen-
dency checkerthat are used as the back-end. To enable the
selection ofconfiguration options(as defined in a configu-
ration database), different front-ends (graphical, text-mode,
command-line interactive, etc.) are provided.

A configuration database is the collection ofconfigura-
tion optionsorganized in a tree structure. Every entry has
its own dependencies that are used to determine its visibil-
ity, any child entry is visible only if its parent entry is also
visible. An entry either defines aconfiguration optionor is
used to organize them[10].

The configuration file is a text file containing the en-
tries which must follow a strict syntax. The configuration
database is built as a set ofentrieswhich defineconfigura-
tion options. Line 1 of Listing 1 shows2 an entry definition,
it starts with the keywordconfig and is followed by its
name. The next lines of an entry are used to define its at-
tributes, which can be the following:

2this listing is an excerpt of the GPL [6] feature model designed with
the LKC language

type define the type of an entry, they can beboolean,
tristate3, string, hex and integer. An
example is shown on line 2 of Listing 1

input prompt is the visual name of the configuration op-
tion that is displayed to the user during configuration.
On line 1 the actual configuration name is defined as
(GPL) which will be used in the generated configura-
tion file, however, the user will see during configura-
tion the nameROOT as shown on line 2.

default value is assigned to the configuration symbol if no
value was set by the user. An example is given on line
17.

dependenciesdefine the requirements of the menu entry.
They can simply define the entry depending on a sin-
gle configuration option, as shown on line 6, or can be
in the form of logical expression using primitives like
&& (logical and), || (logical or), as shown on line 18.

reverse dependenciesare used to force the lower limit of
the value of another symbol. As shown on line 3, if the
symbolGPL is selected, the symbolM1 will automati-
cally be selected as well.

numerical ranges limit the range of possible input values
for integer andhex symbols.

help text defines theconfiguration optionhelp text to be
shown during configuration. Examples are shown on
line 21 and 31.

Listing 1. LKC language
1 c o n f i g GPL
2 boolean ”ROOT”
3 s e l e c t M1
4
5 cho i ce
6 depends on GPL
7 prompt ” Graph Type ”
8
9 c o n f i g DIRECTED

10 boolean ” D i r e c t e d ”
11
12 c o n f i g UNDIRECTED
13 boolean ” U n d i r e c t e d ”
14 endcho ice
15
16 c o n f i g NUMBER
17 d e f a u l t y i f GPL
18 r equ i r es (BFS | | DFS)
19 boolean ”Number ”
20 −−−help−−−
21 Ass igns a un ique number t o each
22 v e r t e x as a r e s u l t o f a graph

3the boolean type can be assigned toyes orno, the tristate type allows
an extra value (m) which means that the configuration option should be
included, however, as a separate module.

23 t r a v e r s a l .
24
25 c o n f i g CC
26 depends on GPL
27 r equ i r es (BFS | | DFS)
28 r equ i r es UNDIRECTED
29 boolean ” Connected Comp . ”
30 −−−help−−−
31 Computes t h e connec ted components
32 of an u n d i r e c t e d graph , which a r e . . .

A configuration database, which defines the valid config-
urations that can be derived with the front-ends, is created
using theentriesand theattributesas described above.

Moreover, in order to provide a better organization of the
entries in the configuration tree that is displayed to the user,
the following constructs are allowed:
menu Entries defined between the keywordsmenu and

endmenu are grouped together and displayed in a sep-
arate window. It may also have an attributeprompt
to name the groups of entries. An example is given
between lines 5 and 14.

choice Only one entry of those defined between the key-
wordschoice andendchoice can be selected if
its parent entry is also selected.

3. Feature Modeling with the LKC

The main contribution of this paper is to show how to de-
sign feature models using the LKCconfiguration language
described in the previous section. After the introduction of
feature models by Kang et. al.[3] many extensions were
proposed. In this work we will concentrate on the basic
syntax allowingmandatory features, optional features or
groupsandalternative groups. Regarding extra feature con-
strains, we allowimpliesandexcludes. This decision was
inspired by the work of Benavides et. al. [2], which de-
scribes the mapping from these feature model relations to
representations in the form ofconstraint satisfaction prob-
lem, boolean satisfiability problemandbinary decision dia-
grams.

Table 3 summarizes the mappings from the LKC lan-
guage to feature model relations.

Most of the mappings were relatively easy to perform.
For themandatoryrelation, the parent feature forces the
selection of the child by the use of a reverse dependency
(select). The optional relation is described by using
a dependency between the child and the parent feature
(depends on). Theor group is designed by creating re-
verse dependencies between the children and the parent, this
was done inside a menu definition in order to group the
children together. Thealternative groupcan be described
by including configuration options (the children) inside a

Figure 1. The LKC graphical interface

choice definition, which has the same semantic as ofal-
ternative groupin feature models.

Using this mapping we were able to design several fea-
ture models. So far we did not find any feature model con-
struction that could no be modeled with the LKC. Figure 3
depicts the screenshot of the LKC graphical front-end dis-
playing the feature model of the Graph Product Line (GPL)
[6] which was proposed as a standard problem for evaluat-
ing product lines. As we have4 an implementation of this
product line where the features are implemented by means
of conditional compilation, the output of the configurator
could be used (it is a set of pre-processordefines) in the
compilation process of the GPL product line.

4. Future Work

As described previously we aim at extending the LKC
front-end to present information about non-functional prop-
erties and use it as our feature modeling tool, these exten-
sions are currently being implemented. Moreover, the de-
sign of a very simple textual feature modeling language and
a tool to transform it in the LKC language format is cur-
rently under development.

5. Conclusion

In order to contribute to the understanding of how the
SPL community and the open source community can ben-
efit from each other, we presented the configuration tool of

4generated using the Colored Integrated Development Environment
(CIDE)[4]

M
A

N
D

A
T

O
R

Y

P

C

c o n f i g P
boolean ”P”
s e l e c t C

c o n f i g C
boolean ”C”

O
P

T
IO

N
A

L

P

C

c o n f i g P
boolean ”P”

c o n f i g C
depends on ”P”
boolean ”C”

O
R

P

C1 C2 C3

menu ”P”
c o n f i g P

boolean
c o n f i g C1

boolean ”C1”
s e l e c t P

c o n f i g C2
boolean ”C2”
s e l e c t P

c o n f i g C3
boolean ”C3”
s e l e c t P

endmenu

A
LT

E
R

N
A

T
IV

E

P

C1 C2 C3

cho i ce
prompt ”P”

c o n f i g C1
boolean ”C1”

c o n f i g C2
boolean ”C2”

c o n f i g C3
boolean ”C3”

endcho ice

IM
P

L
IE

S

A

B

c o n f i g A
boolean ”A”
r equ i r es B

c o n f i g B
boolean ”B”

E
X

C
L

U
D

E
S

A

B

c o n f i g A
boolean ”A”
r equ i r es !B

c o n f i g B
boolean ”B”
r equ i r es !A

Table 1. Mapping: Feature relations to LKC
language

one of the most popular open source projects. We showed
how it is used to describe configuration databases, and we
have also explained how to describe the semantics of feature
models using its language. The feasibility of the approach
presented in this work, corroborates with the assumption of
similarities between the technical goals that these two com-
munities pursue.

References

[1] The linux 2.5 kernel summit.
http://lwn.net/2001/features/KernelSummit/, 2005.

[2] D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-Corts. A
first step towards a framework for the automated analysis of
feature models. InManaging Variability for Software Prod-
uct Lines: Working With Variability Mechanisms, 2006.

[3] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peter-
son. Feature-Oriented Domain Analysis (FODA) Feasibility
Study. Technical report, Carnegie Mellon University, Soft-
ware Engineering Institute, Pittsburgh, PA, Nov. 1990.

[4] C. Kästner, S. Apel, and M. Kuhlemann. Granularity in soft-
ware product lines. InICSE, pages 311–320, 2008.

[5] D. Lohmann, O. Spinczyk, and W. Schröder-Preikschat. On
the configuration of non-functional properties in operating
system product lines. InProceedings of the 4th AOSD Work-
shop on Aspects, Components, and Patterns for Infrastruc-
ture Software (AOSD-ACP4IS ’05), pages 19–25, Chicago,
IL, USA, Mar. 2005. Northeastern University, Boston (NU-
CCIS-05-03).

[6] R. E. Lopez-Herrejon and D. Batory. A standard problem
for evaluating product-line methodologies.Lecture Notes in
Computer Science, 2186:10–??, 2001.

[7] E. S. Raymond. The cml2 resources page.
http://www.catb.org/ esr/cml2/.

[8] J. Sincero, H. Schirmeier, W. Schröder-Preikschat, and
O. Spinczyk. Is The Linux Kernel a Software Product Line?
In F. van der Linden and B. Lundell, editors,Proceedings
of the International Workshop on Open Source Software and
Product Lines (SPLC-OSSPL 2007), Kyoto, Japan, 2007.

[9] J. Sincero, O. Spinczyk, and W. Schröder-Preikschat. On
the Configuration of Non-Functional Properties in Software
Product Lines. InProceedings of the 11th Software Product
Line Conference, Doctoral Symposium (SPLC ’07), 2007.

[10] R. Zippel. The linux kernel configurator.
http://www.xs4all.nl/ zippel/lc/.

