Concern Impact Analysis in Configurable System
Software—The AUTOSAR OS Case’

Wanja Hofer, Daniel Lohmann, Wolfgang Schréder-Preikschat
Department of Computer Science 4
Friedrich-Alexander University Erlangen-Nuremberg
{wanja,lohmann,wosch}@cs.fau.de

ABSTRACT

System software for cost-sensitive special purpose-systems
has to be configurable and tailorable. AOSD should be ben-
eficial for this purpose, as it provides means to untangle the
system’s concerns in a very fine-grained way. An important
prerequisite for a fine-grained software design based on as-
pects is, however, that all concerns and their interactions
present in the system have been comprehensively captured
and understood.

We propose a method called Concern Impact Analysis for
this purpose. Based on a system’s specification, CIA pro-
vides a guideline to iteratively grasp the concerns present
in a system, and their interactions. A speciality of CIA is
that it also takes unspecified ”internal” concerns into con-
sideration as early as possible. We have tested CIA with
the AUTOSAR OS specification and the design of our CiAO
operating system family, where it led to a very fine-grained,
aspect-aware kernel design.

Categories and Subject Descriptors

D.2.2 [Software Engineering]: Design Tools and Tech-
niques; D.4.7 [Operating Systems]: Organization and De-
sign— Real-time systems and embedded systems

General Terms

Languages, Experimentation, Design
Keywords

Aspect-Oriented Design, AOP, AOSD, CiAO, Configurability,
AUTOSAR, Aspect-Aware Operating System

1. INTRODUCTION
1.1 Motivation and Background

*This work was partly supported by the German Research
Council (DFG) under grant no. SCHR 603/4 and SP 968/2-1

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ACPA4IS’08 - Aspects, Components, and Patterns for Infrastructure Soft-
ware. March 31, 2008, Brussels, Belgium.

Copyright 2008 ACM 1-978-60558-142-2/08/03 ...$5.00.

The employment of AOSD principles in the design and
implementation of system software is often said to lead more
or less “automatically” to a higher level of tailorability. Tai-
lorability, in the sense of being able to leave out everything
that is not needed, is one of the most important proper-
ties in the domain of cost-sensitive special-purpose systems,
such as automotive embedded systems. AOSD fosters tai-
lorability by enabling the designer to untangle the system’s
concerns in a more fine-grained way than by using traditional
decomposition techniques.

However, these benefits of AOSD can not be taken for
granted. It has been known for a long time that if tailorabil-
ity is to be reached in system software, it must be pursued
as a primary design goal from the very beginning [11]. In our
studies on increasing the separation of concerns in the PURE
and eCos embedded operating systems [14, 8], we learned
that this also holds if AOSD is applied. In both cases, AOSD
was incorporated at a relatively late stage of the project and
merely used to refactor already implemented concerns into
aspects. While this worked well with some concerns (the ap-
plication of AOP was, overall, successful), it also turned out
to be suprisingly difficult with several other concerns—some
of which we had assumed in advance as “ideal candidates”
for a separation by AOP. The design and implementation of
those “refusing” concerns was dependent on other concerns
in a way we had not expected from their functional specifica-
tion. In most cases, these subtle dependencies were caused
indirectly via a third, internal concern. In the eCos kernel,
for instance, we were not able to completely separate the
(conceptually independent) concerns of interrupt synchro-
nization and thread synchronization, because both subtly
interacted with each other via design decisions regarding the
dispatching strategy. This strategy is commonly considered
as implementation-internal and, as such, not described in a
system’s functional specification.

1.2 CiAO and AUTOSAR

Whereas in the PURE and eCos studies AOP was employed
at a relatively late stage, it has been used in the CiAO project
from the very beginning. The research question behind
CiAO is if and how the application of AOSD can lead to
operating system designs that advance the state of the art
with respect to configurability and tailorability. By means of
an aspect-aware kernel design, CIAO aims at tailorability and
configurability of even fundamental architectural and non-
functional OS concerns, such as isolation or synchronization
[9, 10]. The kernel should be aspect-aware in the sense that
it is itself minimal, but offers all necessary join points to be
ideally extensible by aspects, which implement the actual

Cross-Cut
Table

Specification Explicit

Concerns

e AUToSAR

Concern
Identification

Impact
Analysis

Aspect-Aware
Design

Concern
Hierarchy

Internal
Concerns

Expert
Knowledge

Figure 1: The process of concern impact analysis: In step 1, all concerns present in the target piece of
system software are identified by both extracting explicit concerns (C) and internal concerns (D) from the
specification documents (A); some of the system-internal concerns (D) can only be gathered using systems-
engineer expertise (B). Some of the internal concerns, however, will only turn up when analyzing the other
concerns (iterative step). Step 2 consists of an analysis of the impact of all concerns on the abstract system;
the results can be depicted in a matrix cross-cut table (E) exposing important join points and a concern
hierarchy (F) revealing concern dependencies and influences. Both diagrams facilitate the following aspect-

aware design development (3).

system features.

The CiAO OS prototype is based on the OS specification
adopted by AUTOSAR [2], a consortium founded by all major
enterprises in the automotive industry in order to specify a
new system software standard for car applications. Their
OS specification [1] defines the functionality and API of the
AUTOSAR OS layer. An interesting point in the AUTOSAR
OS specification is that it actually does include tailorability
with respect to some functional and architectural concerns
to a certain extent. This makes it a promising subject for
aspect-aware kernel design.

To reach optimal tailorability in CiAO OS, it was necessary
to grasp all concerns and their necessary interactions present
in the system. A major challenge was to avoid problems
similar to those that we found in PURE and eCos: unan-
ticipated dependencies that emerged subtly (and probably
accidentally) by design decisions regarding internal concerns
that are not part of the system specification.

1.3 About This Paper

For this purpose, we developed the method that is the sub-
ject of this paper. The method of Concern Impact Analysis
(CIA) provides a guideline to iteratively grasp the concerns
(including internal concerns) present in a system, and their
interactions. The eventual goal of CIA is to prepare for
and guide to the aspect-aware design of a piece of system
software.

The rest of the paper is structured as follows: In Section 2
we present our method both in general and with the example
of AUTOSAR OS. In Section 3, we discuss some issues of
our approach; Section 4 describes some related work, and
the paper is concluded in Section 5.

2. THE PROCESS OF CONCERN IMPACT
ANALYSIS

Figure 1 briefly depicts and describes the process of concern
impact analysis as we propose it. The goal is to provide the
system software designer with the necessary input to build a
flexible and tailorable, aspect-aware design. A special focus

is given to the system-internal concerns (D), which are often
not directly reflected in a system specification. However,
it is particularly those concerns that have to be respected
from the very beginning when designing a system using AOP
because they tend to affect the system in very peculiar places
and are therefore hard to add to a system ez post. Often it
is only during the analysis of the impact of other concerns
(step 2) that system-internal concerns and their impact are
revealed and can then be investigated further. Hence, that
part of the concern impact analysis is an iterative process.

The rest of this section presents the method and its steps
in a more thorough form using the analysis of an AUTOSAR
OS kernel as an example.

2.1 Step 1: Concern Identification

As mentioned in Section 1.2, the AUTOSAR OS specifica-
tion [1] records the requirements on an embedded real-time
operating system. It is very well suited in our context since it
is partly focused on configurability through the postulation of
so-called scalability classes. These scalability classes provide
an indication for concerns that are to be kept configurable in
an AUTOSAR system; however, there are only four of them,
so they only provide for a very coarse-grained configurability.

Hence, we had a thorough look at the specification (artifact
A in Figure 1) and identified features® hidden both in the
plain-text specification and the specification of the operating
system interface (step 1 in Figure 1). Those features were
then classified and arranged in a feature diagram [6], which
reflects the variability points of the configurable system to
be built. Figure 2 depicts a very small part of the feature
diagram we built for the AUTOSAR OS specification.

As stated before, however, there are system-internal con-
cerns (artifact D in Figure 1) that are often not reflected in a
system’s specification. Classic operating system concerns of
that category include synchronization, isolation, and interac-
tion. In AUTOSAR OS, for instance, an isolation mechanism
is explicitly defined (named memory protection there), but

LA feature is a concern of importance to a certain stake-
holder [6], in this case the system deployer and the applica-
tion programmers.

AUTOSAR OS

System Abstractions | | Hooks | | Protction

|Tasks| [Cat. 21SRs] [Resources] |Momory| |Timing|

Figure 2: A part of the feature diagram for an AU-
TOSAR OS system, presenting some of the identi-
fied external concerns. Hooks and protection facili-
ties are optional (empty circle), whereas system ab-
stractions are mandatory (filled circle). A filled arc
means that at least one of the features needs to be
selected.

synchronization of the kernel is completely missing although
vital if kernel state is accessed both from within tasks and
asynchronous interrupt handlers. Those concerns typically
affect many parts and other concerns in the system; they are
therefore to be identified as early as possible so that they can
be taken into account when analyzing and preparing for the
design. Furthermore, it is often those concerns that influence
the so-called non-functional properties of a system, such as
its performance or robustness. Hence, internal concerns are
to be determined and added to the concerns list by the skilled
systems engineer (artifact B in Figure 1).

2.2 Step 2: Impact Analysis

When all concerns of the target system have been identified
(artifact C and to a certain extent artifact D in Figure 1),
their impact on the system software to be built and its
components can be analyzed (step 2 in Figure 1). System
software like AUTOSAR OS often possesses

1. system services, manifested in its accessible API that
is stated in the specification if available,

2. state to be held by the kernel to be able to implement
the system services,

3. and services or important state transitions internal to
the system, which cannot be accessed directly by the
application programmer.

These are the three groups that have to be considered
when investigating the impact of each concern that was
previously identified. The first two items can be detailed
by taking a look at the AUTOSAR OS specification; there
is a comprehensive API definition consisting of the services
to be implemented. Some of these services can possibly be
integrated in service groups, being influenced by all concerns
in the same way. When investigating the impact of the
AUTOSAR OS concerns on the system, it becomes clear that
each system service and its corresponding API is introduced
by exactly one concern; hence, in our case, the mapping
of service introductions and concerns is a 1:1 relationship.
(In other systems, a service may be introduced if either
one of several concerns is present in a target configuration,
for instance.) Besides the possibility that services can be

introduced to a system’s implementation and its API, many
other concerns conceptually extend an existing system service
by providing additional behavior pre-service or post-service.
These results can be depicted in a matriz cross-cut table (see
Section 2.3).

Furthermore, through their parameter definitions, the
given API services hint at the state that is to be held and
managed by an AUTOSAR OS system in the form of in-
stantiable system entities (e.g., tasks or resources). Some
specifications even detail these system entity types by provid-
ing a concrete layout to be implemented; AUTOSAR leaves
that to the implementing party, though. The state needed
by the system is composed of state that needs to be modified
by the kernel at run time as well as constant configuration
information, which is provided statically before compile time.
Some of the concerns previously identified introduce a spe-
cific system data type; this is always done by the one concern
that also introduces the notion of that object type conceptu-
ally (e.g., the task management concern introduces a task
object type). Other concerns merely extend system data
types by single data members needed by these concerns; this
extension can itself comprise dynamically modified state or
static configuration information (e.g., a task’s state is dynam-
ically modified while its priority is basically configuration
information). Another class of impact a concern can have
is to extend the value range of member data types in OS
object types; for instance, the event management concern
introduces an additional waiting state a task can reside in.

Hence, a comprehensive list of system services and system
entity types can be compiled when taking the specification
as a starting point, eventually providing a guideline to check
for impacts of a specific concern.

The third item group, however—important internal points
in the system software—can only be established during the
concern evaluation itself. Therefore each concern has to be
checked for whether it has an influence on a point in the sys-
tem not covered by the two groups considered before; that is,
points not at all visible in the system interface. Further func-
tionality can then be given to these points by the involved
concerns. By making these influences explicit, exposing the
corresponding join points in the design is facilitated, effec-
tively enabling those features designed as aspects to give
advice to them. An example for such a point in AUTOSAR
OS is the point of dispatching to another AUTOSAR task,
which can happen detached from an API call if the system
is configured to realize preemptive scheduling. This point
is heavily cross-cut by many concerns (not all concerns are
depicted in Figure 3). Anticipating these internal points in
advance takes some degree of experience in systems engineer-
ing and strongly depends on the kind of domain the system
is being built for. It also involves partly thinking about the
system design already; see Section 3 for a discussion of that
fact.

2.3 Output E: Matrix Cross-Cut Table

The first result artifact to be provided by the analysis in
order to facilitate the subsequent design process is a compre-
hensive matriz cross-cut table. This kind of diagram aims at
summarizing the concerns and their impact on the system
and at revealing critical join points. For an excerpt of the
table that we prepared for AUTOSAR OS, see Figure 3;
it shows a few of the concerns and impact points of the
three groups detailed in Section 2.2 (system services, state,

Configurable Concerns

Tasks

ISRs Category 1
ISRs Category 2
Kernel Sync
Timing Protection
Invalid Parameters
Hooks

GetActApplicationMode ()
Start0S()

Shutdown0S ()
ActivateTask()
TerminateTask ()
ChainTask()

Schedule()

GetTaskID()
GetTaskState()
EnableAllInterrupts()
DisableAllInterrupts()
ResumeAllInterrupts()
SuspendAllInterrupts()
ResumeOSInterrupts()
Suspend0SInterrupts ()
GetISRID()
DisableInterruptSource()
EnableInterruptSource()

PODDDD
DD DD
(]
easamaasmsasma [nterrupts Disabled

CACE=ECE=X}

ee
ess

Task &)
ISR Category 2

O |PoSDD

Cat. 2 ISR Execution
System Start-Up [
Task Switch

Appl.—Kernel Transition ©
Kernel-Appl. Transition J

o 03®
[X&)

Figure 3: An excerpt of the matrix cross-cut table
for an AUTOSAR OS system, showing the impact
of configurable concerns on AUTOSAR system ser-
vices (multirow 1), state held by the system (mul-
tirow 2), and system-internal points (multirow 3);
@ = introduction of service/state, ® = modifica-
tion/extension of an existing type, ® = modifica-
tion after service execution / OS-internal pointcut,
© = modification before service execution / OS-
internal pointcut, ® = modification before and after
service execution / OS-internal pointcut.

internal transitions), and how the concerns affect each other.
Consider, for example, the task management concerns: It
introduces the implementation of six task-related services
to the system and its API, as well as internal state to be
held for each task. Furthermore, the system-internal start-up
point is given additional functionality, which stems from the
AUTOSAR feature of autostarted tasks. The timing protec-
tion concern, however, does not introduce any services at
all; instead, it adds additional behavior before or after six of
the listed services. Additionally, the state held per task and
category 2 ISR is extended by timing-specific information.
Finally, this concern needs to be informed whenever a new
control flow is dispatched (category 2 ISR or task).

A well-prepared matrix cross-cut table can be analyzed
in multiple dimensions. A horizontal analysis, for instance,
focuses on the system services and how they are introduced
or modified. Hence, it can be seen if a service is introduced by
a single concern (as is the case with all AUTOSAR services;
i.e., there is exactly one @ per row) or when either one of a
group of features is present in a given system configuration.
Moreover, heavily cross-cut services can be easily spotted

and targeted for a careful design of those exact services
and the join points they provide. Similar points apply to
the investigated OS object types and system-internal points;
those of interest to multiple stakeholders can be designed
accordingly. For instance, both the timing protection concern
and the hooks concern (amongst yet other concerns) are
interested when a task switch takes place in the system.
That is why this point has to be given extra thought; for
example, which feature has to be activated first, since this has
an impact on the time budget for the current task managed
by the timing protection concern. Furthermore, since the
cross-cut table clearly lists consumers of such internal state
transitions, it becomes clear that these join points have to
be exposed for the aspects implementing the concerns to
be able to attach to. This is not always straight-forward;
consider, for instance, that after advice given to the internal
dispatch() function (implementing the task switch) does
not work as expected since that function conceptually returns
in the context of another control flow.

Vertical analyses, however, are oriented at the different
concerns and focus on the impact from their perspective.
For instance, simple “verbal pointcuts” (i.e., simple phrases
exactly describing a target set of services) can be identified
for those concerns homogeneously cross-cutting many ser-
vices and having a similar impact on them. These verbal
pointcuts can then be used to build actual pointcuts formu-
lated in the used aspect language later on. The AUTOSAR
concern checking for invalid parameters, for instance, can
be described as influencing “all services with an OS object
data type as a parameter”, whereas the concern checking for
disabled interrupts affects “all services except the interrupt
services”. This subanalysis furthermore provides an indica-
tion for the aspect-oriented mapping in the later design and
implementation stages by clearly summarizing the impact of
each concern on services, state, and system-internal points.

2.4 Output F: Concern Hierarchy

The second type of diagram developed during the con-
cern impact analysis is a concern hierarchy diagram; it is
supposed to depict the dependencies and influences among
the concerns to be implemented (see Figure 4). Its goal is
to make the interaction of the involved concerns explicit in
order to be able to respect that in the system’s design and
implementation. The concern hierarchy also needs to include
the kernel-internal concerns, which are otherwise often ne-
glected in the design process, leading to inappropriate or
inflexible designs.

The concern hierarchy diagram integrates the knowledge
gathered in the matrix cross-cut table in order to go a step
further and arrange the concerns according to their “uses” and
“influences” relationships. A “uses” relationship indicates a
dependency of a concern on another one, whereas “influences’
can be seen as a rather loose and optional coupling between
two concerns; it effectively means that if one or all of the
target components do not exist, this does not constitute an
error. This is the kind of flexibility that allows otherwise
tangled concerns to be well separated into distinct design
artifacts. Consider, for instance, Figure 4 and the concern
checking for out-of-range values, which only applies to alarm
and schedule table services. Hence, the concern influences
the corresponding alarm and schedule table management
concern, but is not dependent on it. If that target concern
is not present in the configured system, the check concern

)

Service Out of Range
Protection Checks

Calls with
IRs 2 Disabled

Calls with

‘ IRs 2 Enable

IRs 1 Enable Invalid Wrong
w/o Disable Parameters Context

w/o Disable | |IRs 1 Disabled
I I

1

Refined Alarm Task Alarm Event

Abstractions Alarms | | Callbacks| | | Alarms | | | | |
| | | [
h 4 v Yy Y

Alarm and Schedule
Table Management

Resource
Management

Event
Management
[

Additional
Abstractions

|
v v v v v

"

ISR Category 2 ISR Category 1 Hook
Task Management ‘ ‘ Management Management Management 0s Control
T
| | |
Internal Preemption
Policies ‘ Policy ‘ ‘ Kernel Sync ‘ ‘ Legend
|
‘ ‘ 0S-Managed Control Flows
0S Application ‘
Protection | | Partitioning [Containing User-Provided Code]
Facilities A A f ‘
‘ ‘ Memory Timing
Protection Protection > uses
| L S o R SO
) | [— — influences
SEFV’CE' Stack Missing Non-Trusted Calls on
Protection Monitoring End Check | | Shut-Down | | Foreign Objects

Figure 4: The concern hierarchy diagram for an AUTOSAR OS system, depicting the dependencies and
influences involved. (In this picture, the Service Protection layer is divided into two layers for reasons of

graphical feasibility.)

merely does not have any join points to apply its functionality
to, but nevertheless fullfills its requirement not to allow any
out-of-range values.

Besides depicting relationships, the concern hierarchy dia-
gram is used to group concerns into groups that are collec-
tively influenced or used by other concerns. If those groupings
can be determined by some commonality, a step towards a
pointcut for the influencing aspect’s advice is taken that can
be used in the design. Consider, again, the AUTOSAR OS
concern hierarchy in Figure 4. Most of the service protection
concerns have an influence on as many as five other concerns.
These five concerns can be denominated by their common
property “containing user-provided code”; it is exactly those
parts of the system that need to be checked by the service
protection concerns for potentially illegal circumstances.

All in all, the matrix cross-cut table and the concern
hierarchy diagram build a basis for the successive aspect-
aware design and the UML diagrams depicting it by clarifying
the concerns in a system software and their relationships.
The designer is therefore enabled to develop a comprehensive
design that respects all concerns and concern interactions.

3. DISCUSSION

A noteworthy side effect of the third point of the analysis
(identifying the concern influence on system-internal points)
is that thinking about important internal state transitions
partly implicates already thinking about the design and
implementation of the system; this is usually deferred until
after the analysis. In our opinion, this is necessary and even
essential for a successful aspect-aware design since such a
design requires to capture and expose important join points
to be tackled by aspect advice. This, however, is only possible
by partly bringing forward some of the design decisions. That
is why the analysis is not performed solely from the interface
perspective, but also with a basic design in mind.

Before designing the kernel of our CiAO operating system,
we used the concern impact analysis on the AUTOSAR OS
specification to provide the input for the design decisions to
be taken. The two output diagrams (i.e., the matrix cross-cut
table and the concern hierarchy) were generally very helpful
since they give a concise and untangled overview of the system
with its concerns and their influences. However, it turned
out that some points had to be implemented differently than
was anticipated in the analysis. Consider, for instance, the
internal pointcut candidate “task switch” that was identified
to be needed by several concerns (two of those are shown
in Figure 3). This denotation is too far away from the
implementation, though, since a task switch can refer to
an internal context switch or an external (AUTOSAR) task
switch, which are two related but different things. Hence,
this needed to be distinguished further in order to determine
which concerns need which of the two task switch notions.
Thus, again, some degree of implementation knowledge is
already needed in the analysis.

Since we both designed our kernel in an aspect-aware and
AUTOSAR-like way, we gained experience in how well those
two worlds can be combined. Using our concern impact anal-
ysis on the AUTOSAR OS specification enabled us to reach
a very good separation of concerns already at the analysis
level, which, thanks to AOP, could mostly be transferred to
the design and implementation stages of the system. Several
AUTOSAR concerns, especially from the service protection
class, are homogeneously cross-cutting, which can be well
tackled by means of a single piece of advice. Other concerns
feature a very straight-forward representation in the design
since AOP concepts like flexible pointcut matching allow
those concerns to be expressed very directly and explicitly.

Though we developed CIA in the context of building an
embedded operating system, we are positive that the gen-
eral process is helpful and applicable to other domains of

configurable software as well; CIA helps to clarify inter-
concern dependencies in order to develop a sophisticated
aspect-oriented design eventually. However, regular software
might not pose that many difficulties with hidden internal
concerns as does system software, and, hence, CIA might not
contribute as much value as in the system software domain.

4. RELATED WORK

There is a whole sub-branch of AOSD research that is dedi-
cated to the topic of early aspects in requirements engineering.
The importance of identifying cross-cutting concerns at this
stage in the software development process has long been
known; however, most of the corresponding papers argue
that this is needed to reach increased traceability and there-
fore facilitate concern evolvability [12]. CIA, however, was
mainly developed to allow for a good aspect-aware design of a
system. Furthermore, CTA targets system software, whereas
other research targets software in general and does not refer
to and respect common system software concerns [4].

The need to weaken the obliviousness paradigm in the
contruction of complex software has also been recognized by
other research groups. Sullivan et al., for instance, found
that oblivous software designs extended by aspects later
leave important abstractions implicit in program details [15];
therefore, they propose design structure matrices (DSMs [3])
to depict concern dependencies. DSMs, however, depict the
dependencies among different types of artifacts, including
concerns (basic and cross-cutting), interfaces, and implemen-
tations; CIA and cross-cut matrices focus on the investigation
of concern impact on concrete system implementation arti-
facts only.

Other related work identified the implicit superimposition
of concern behavior at the same join point as being one of the
main challenges of AOP [7]. Undesired emerging behavior
and conflicts may result; therefore, Durr et al. propose a
technique to detect those conflicts, which is applicable to ar-
bitrary pieces of software [7]. CIA, however, was derived from
a concrete system software project and proposes concrete
analysis steps and output diagrams for this domain.

Other research groups also identified the need to expose
AOP join points, especially in the context of system software
engineering. If the design does not expose those to begin
with, the necessary amount of refactoring can become intol-
erable [13]. Another approach is to develop domain-specific
aspect languages for the system software domain [5]. In
either case, a clear idea of the concern interactions is needed
to develop the design of the system itself or the one of the
aspect weaver and its features, respectively.

S. SUMMARY AND CONCLUSIONS

System software provides no business value on its own. Its
sole purpose is to ease the development and integration of
applications. Hence, system software should be tailorable to
exactly the amount of abstraction and functionality needed
by the intended application.

To provide optimal tailorability, the features of a piece of
system software have to be decomposed and designed in a
very fine-grained way. This is especially challenging as the
functional concerns of system software tend to interact with
each other via internal, often non-functional system concerns
in non-trivial ways.

Based on a system’s specification and the engineer’s exper-

tise, the CIA method reveals these “hidden players” and their
interactions early in the software design. The resulting ex-
plicit representation of all system concerns, their join points
and dependencies facilitates a fine-grained, aspect-aware de-
sign of system software, such as AUTOSAR OS.

6. ACKNOWLEDGMENTS

Many thanks go to the anonymous reviewers, who provided
us with excellent and comprehensive hints on how to improve
this paper and which topics we should tackle and discuss in
the future.

7. REFERENCES

[1] AUTOSAR. Specification of operating system (version
2.0.1). Technical report, Automotive Open System
Architecture GbR, June 2006.

[2] AUTOSAR homepage. http://www.autosar.org/.

[3] C.Y. Baldwin and K. B. Clark. Design Rules: The
Power of Modularity. MIT Press, 2000.

[4] 1. Brito and A. Moreira. Towards a composition process

for aspect-oriented requirements. In Aspect-Oriented

Req. Engineering and Arch. Design Wshop, 2003.

Y. Coady, C. Gibbs, M. Haupt, J. Vitek, and

H. Yamauchi. Towards a domain-specific aspect

language for virtual machines. In 1st W’shop on

Domain-Specific Aspect Languages (DSAL), 2006.

[6] K. Czarnecki and U. W. Eisenecker. Generative

Programming. Methods, Tools and Applications. 2000.

P. Durr, T. Staijen, L. Bergmans, and M. Aksit.

Reasoning about semantic conflicts between aspects. In

2nd European Interactive Workshop on Aspects in

Software (EIWAS ’05), 2005.

[8] D. Lohmann, F. Scheler, R. Tartler, O. Spinczyk, and
W. Schréder-Preikschat. A quantitative analysis of
aspects in the eCos kernel. In FuroSys 06, pages
191-204, Apr. 2006.

[9] D. Lohmann, J. Streicher, W. Hofer, O. Spinczyk, and
W. Schréder-Preikschat. Configurable memory
protection by aspects. In PLOS ’07, Oct. 2007.

[10] D. Lohmann, J. Streicher, O. Spinczyk, and
W. Schréder-Preikschat. Interrupt synchronization in
the CiAO operating system. In AOSD-ACP4IS 07,
New York, NY, USA, 2007.

[11] D. L. Parnas. Designing software for ease of extension
and contraction. IEEFE Trans. Softw. Eng.,
SE-5(2):128-138, 1979.

[12] L. Rosenhainer. Identifying crosscutting concerns in
requirements specifications. In Proceedings of the
Aspect-Oriented Requirements Engineering and
Architecture Design Workshop, 2004.

[13] J. Siadat, R. J. Walker, and C. Kiddle. Optimization
aspects in network simulation. In AOSD 06, pages
122-133, Mar. 2006.

[14] O. Spinczyk and D. Lohmann. Using AOP to develop
architecture-neutral operating system components. In
11th SIGOPS Europ. W’shop 04, pages 188192, 2004.

[15] K. Sullivan, W. G. Griswold, Y. Song, Y. Cali,

M. Shonle, N. Tewari, and H. Rajan. Information
hiding interfaces for aspect-oriented design. In 10th
European Software Engineering Conference, pages
166175, 2005.

5

7

	Introduction
	Motivation and Background
	CiAO and AUTOSAR
	About This Paper

	The Process of Concern Impact Analysis
	Step 1: Concern Identification
	Step 2: Impact Analysis
	Output E: Matrix Cross-Cut Table
	Output F: Concern Hierarchy

	Discussion
	Related Work
	Summary and Conclusions
	Acknowledgments
	References

