Towards Separation of Concerns in Model Transformation Workflows

Christoph Elsner
Siemens Corporate Technology
Software & Engineering 2
christoph.elsner.ext@siemens.com

Abstract

Model-driven software product lines are an emerging
topic in research and industry, as they promise higher de-
velopment speed and easier adaptability to customer needs.
The generation facilities for the products, however, still
have a static nature: specification languages for the com-
position of model transformations sequences (model trans-
Sformation workflows) up to now only support the specifi-
cation of simple control flows with conditional execution.
Thus, separation of concerns with respect to variable prod-
uct features is impossible. To flexibly compose model trans-
formation workflows depending on the feature selection, we
express them by a dedicated and clearly scoped domain-
specific modeling language (DSML). This facilitates to use
aspect-oriented model weaving techniques to preprocess the
workflow depending on the concrete product configuration
and, thus, prevents tangling of concerns in the base work-
flow artifacts.

This position paper motivates the need for aspect-
oriented model transformation orchestration during appli-
cation engineering and presents our concepts to achieve
this goal.

1. Introduction

Model-driven development (MDD) helps to achieve sig-
nificant productivity gain through model-based abstraction
within the analysis, architecture, and design of a software
system. Application generation is usually performed in
several steps; for instance, the Model-Driven Architecture
(MDA) [4] proposes a computational-independent model
(CIM), which is gradually transformed: first to a platform-
independent model (PIM), then to a platform-specific model
(PSM), and finally to application code.

Though this coarse-grained scheme is very useful to clas-
sify different stages of application generation, the concrete
approach chosen can vary greatly depending on the applica-
tion domain. For example, there can be intermediate trans-

Lohmann
Friedrich-Alexander University, Erlangen-Nuremberg
{lohmann,wosch} @informatik.uni-erlangen.de

Daniel Wolfgang

Schroder-Preikschat

formation steps and metamodels or additional consistency
checks in various stages. However, the approaches consid-
ered in this paper are more general than the MDA, which is
restricted to MOF [20] metamodeling and QVT [21] trans-
formations.

There already has been research about the specification
of model transformation sequences, and the terminology
differs depending on the authors. We discovered the no-
tions of model transformation chain [25], composition of
model transformations [16], modeling workflow [19], model
refinement line [30], and model service orchestration [10].
In this paper, we will use the term modeling workflow or,
in short, workflow. It emphasizes that there may be other
tasks to specify than only model transformations, for exam-
ple model loading, storing, checking, or code generation.

After evaluating current research and workflow specifi-
cation tools, we identified the lack of advanced techniques
for separation of concerns, what especially hinders the flex-
ible and modularized specification of variability in work-
flows. This, however, is particularly important in the con-
text of software product line engineering [23], where differ-
ent software products are generated based on a common set
of core assets. Depending on the selected product features
[13], which usually denote concerns or parts of concerns,
also the concrete workflow will vary. As this is currently
usually done by conditional expressions embedded in one
workflow artifact, this approach reaches its limits when a lot
of features require different workflow behavior. This may
finally result in cascades of conditional expressions simi-
lar to the #ifdef constructs of the C programming language,
which are very hard to understand, maintain, change, and
reuse.

Furthermore, one feature may require the execution of
several actions at different stages of a workflow. A sim-
ple security feature, for example, might add an authenti-
cation component model element to the PIM, enforce en-
crypted communication by adapting the PSM, and generate
source code to integrate the authentication component into
the rest of the application. In this case, the security fea-
ture would introduce several conditional constructs into the

corresponding workflow and further impair its readability.

By representing the workflow language as a domain-
specific modeling language (DSML), it is possible to use
model weaving techniques to integrate additional workflow
tasks into a base workflow model depending on the ac-
tual feature selection. In this paper, we will introduce our
concept of workflow modularization by means of aspectual
model weaving techniques. In particular, we make the fol-
lowing contributions:

e We analyze current modeling workflow specification
languages and show the lack of concepts for specifying
feature-based modularization (Section 2).

e We present our concept of aspect-oriented model
weaving for workflows, which fosters model-driven
software product lines and has feature-based modular-
ization support (Section 3).

e We embed our concept into the upcoming Modeling
Workflow Engine (MWE) [18] and the model-driven
framework openArchitectureWare [19] (Section 4).

Finally, we will discuss further related work and relate
this paper to our superordinated research topic, which is the
decomposition and composition of product lines.

2. Comparison of Modeling Workflow Lan-
guages

Workflow languages for model transformation sequences
are very common in model-driven development. Implicitly
or explicitly, they exist in every model-driven approach. In
this section, we will compare only those that offer reason-
able tool support and that facilitate the integration of various
model-driven tasks (e.g., different model checkers or trans-
formation engines). Related work that does not meet these
requirements can be found in Section 5.

We will show that, up to now, most approaches have sev-
eral shortcomings, either with respect to the integration ef-
fort necessary to include further transformation technolo-
gies or in their flexibility of specifying model-driven pro-
cesses. Most importantly, none of the approaches offers
adequate variability management support that could pro-
vide comprehensive separation of concerns within a soft-
ware product line. As an outcome of this analysis, we will
present a concept for workflow modularization for model-
driven product lines in the subsequent Section 3.

We have evaluated the following workflow languages:

Ant: A generic build tool that also can be used for speci-
fying model transformation workflows. [1]

MCC: The MDA Control Center (MCC) presented by
KLEPPE. [15]

MOT: The ModelBus Orchestration Tool (MOT) by
GUILLOIS ET AL. [10]

UniTI: The Unified Transformation Infrastructure (UniTI)
presented by VANHOOFF ET AL. [24]

OAWWL: The openArchitectureWare workflow lan-
guage.! [19]

2.1. Integration Effort

All approaches have tool support and are agnostic with
respect to the coordinated model transformation technolo-
gies, as this was the precondition for our evaluation. The
languages they provide for specifying model transformation
workflows either have an XML or XML-like syntax (Ant,
MOT, OAWWL), are small scripting languages (MCC), or
are based on a dedicated workflow model editor (UniTI).

However, there are differences in the effort needed to in-
tegrate a new transformation technology (e.g., ATL [11])
or a concrete transformation (e.g., a ComponentModel-to-
J2EE transformation in ATL). OAWWL and Ant provide
lightweight mechanisms to write Java adaptors for differ-
ent transformation technologies (OAWWL WorkflowCom-
ponents, Ant Tasks). Concrete transformations of the tech-
nologies can then be called directly from within the respec-
tive workflow language without need for further specifica-
tions. This facilitates rapid development of adaptors with
reasonable effort.

The other approaches only concentrate on encapsulation
of single concrete transformations rather than whole trans-
formation technologies: MCC expects an eclipse plug-in
for every new transformation, MOT requires the specifica-
tion of a model service for the ModelBus middleware, and
UniTI requires to adapt a single transformation with a Java
adaptor. We thus expect the integration effort for transfor-
mations to be higher than for Ant and OAWWL.2

2.2. Flexibility

This section describes our analysis results with respect
to the flexibility of specifying modeling workflows. Like
proposed in [15], we test for the existence of basic combi-
natorial operators like sequence, parallel, and choice. Then,
we compare how flexible and with which structural as-
sumptions other model-driven tasks (model loading, stor-
ing, checking, etc.) can be integrated.

I'The acronym OAWWL is only chosen for convenient comparison and
is not used beyond this paper.

2We assume that the use of the reflective technologies can be used to
make a concrete transformation adaptor very generic. It should even be
possible to write one parameterized adaptor in Java to virtually handle ev-
ery transformation technology and concrete transformation. This is, how-
ever, neither intended by the initial specifications of these technologies nor
in the scope of this paper.

Combinatorial Operators. All approaches, of course,
handle sequential operators, and all but OAWWL support
some kind of parallel execution mechanisms (explicit paral-
lelism language operators: Ant, MCC, MOT; implicitly by
evaluation of the workflow model: UniTI). Conditional ex-
ecution of tasks (choice) is supported by all approaches but
UniTI: Ant needs to employ a special Ant Task and MCC
and OAWWL support merely basic conditional operations.
MOT uses embedded Java to evaluate conditions.

Absence of Structural Assumptions. UniTI and MCC
make implicit assumptions on the internal structure of
model transformation workflows. In UniTI, the top-level
element is the model transformation. It may have check-
ing constraints assigned to its input and output models
and model types (platforms), but cannot integrate exter-
nal model checking facilities. MCC does also not con-
sider model-checking facilities, as it only knows Creators,
Transformers, and Finishers as primary workflow elements.
Ant, MOT and OAWWL allow the specification of arbitrary
workflows and do not imply any internal structure.

2.3. Variability Management Support

We finally analyze the workflow language features that
are suitable to meet product line needs. We assume that
variability is expressed by feature models and that a single
product is generated based on a concrete configuration of
the feature model. We identified three different measures
how to cope with product variability introduced by features
on workflow level: conditional expressions, hooking mech-
anisms, and advanced modularization mechanisms.

Feature-based Conditional Expressions. All ap-
proaches that facilitate conditional expressions can in
principle cope with product line variability. However, only
OAWWL contains specific constructs to evaluate a feature
model in a straightforward way [8]. The other approaches
do not address product line engineering specifically.

Hooking Mechanisms. When a product line comprises
many features that profoundly influence the product gener-
ation process, the numerous conditional expressions in the
workflows become hard to understand and maintain. More
sophisticated methods of separation of concerns for feature-
based modularization become necessary. Only OAWWL
facilitates to specify an additional, optional workflow task
independent of the execution order as so called workflow
advice.?

3A workflow advice specification of openArchitectureWare only
loosely corresponds to the advice-construct known from aspect-oriented
programming.

An advice specification is linked to an ordinary workflow
task, which is executed in the order it is specified in the
workflow file together with the additional logic introduced
by the advice specification. This mechanism already has
some aspect-oriented properties. However, the “pointcut”
is implicitly integrated into the advice specification and can
only reference one “join point” (a normal workflow task).
For every type of workflow task, a corresponding type of
workflow advice is necessary. Thus, workflow advice can
rather be classified as a kind of hooking mechanism.

Although the flexibility and scalability is limited due
to that, this mechanism, together with feature-based con-
ditional expressions, can already achieve some separation
of concerns within product line engineering. All other ap-
proaches, in contrast, require arranging all workflow tasks
strictly in processing order.

Advanced Modularization Mechanisms. Although
OAWWL already constitutes a great advance, workflow
tasks and advice that both must be aware of their AO
functionality have to be written for every technology (e.g.,
ATL, QVT, model checkers, etc.) needing AO support.
They are supposed to work only pairwise: a workflow
advice specification for technology X can, thus, not extend
a workflow task implemented in technology Y. So, more
complex and unforeseen workflow changes usually occur-
ring during product line evolution become tedious and hard
to manage, raising the need for more advanced structural
mechanisms.

We consider the flexible introduction of workflow tasks
as extremely useful for product lines, as this enables the or-
chestration of the whole model-driven product generation
process independent of the capabilities of the underlying
technologies. We will analyze promising approaches for
that purpose in detail in Section 3.1.

2.4. Evaluation

A summary of the evaluation can be seen in Table 1. It is
out of the scope of the paper to elect a clear winner. There
still is no common consensus, if specific workflow DSLs
are necessary or if general build tools like Ant are equally
apt to serve the purpose. It also depends on the context, if
lightweight workflow engines (like OAWWL) are sufficient
or if a heavyweight model middleware (like MOT) is nec-
essary.

We believe that a specific, lightweight workflow DSL
should serve most purposes, while facilitating a concise no-
tation with rich semantics. However, apart from this dis-
cussion, the evaluation shows that product line variability
cannot be addressed thoroughly by any of the approaches.
In the following section, we will develop a concept to meet
this shortcoming.

Ant MCC MOT UniTI OAWWL
General Criteria
Language XML Textual XML Tree-Editor | XML-like
Language Base Parser Grammar? | XML-Schema ECore Parser
Scope Build Tool | Workflow Workflow Workflow | Workflow
Integration Effort
Integration of New Technologies (Integr. Basis) \ + (Techn) \ o (Trafo) \ o (Trafo) \ o (Trafo) \ + (Techn)
Flexibility
Combinatorial Operators (Seq., Parallel, Choice) +|+|o +|+|o ++|+ +|+|- +|-|o
Absence of Structural Assumptions + - + - +
Variability Management Support
Feature-based Conditional Expressions 0 0 o - +
Hooking Mechanisms - - - - +
Advanced Modularization Mechanisms - -

+: Full Support | o: Limited Support | -: No Support

Techn: One Adaptor per Transformation Technology Necessary
Trafo: One Adaptor per Transformation Implementation Necessary

Table 1. Comparison of Modeling Workflow Langages

3. Feature-Based Workflow Modularization

To modularize workflows based on their variability, as
well as to facilitate their flexible composition, we will first
analyze promising techniques for this purpose. Then, we
present a concept for aspect-oriented workflow modulariza-
tion and composition based on model-driven weaving tech-
niques.

3.1. Feature-Based Modularization Tech-
niques

There exist several techniques for the separation of con-
cerns. We will present and compare language-agnostic,
language-aware and DSML-based approaches.

Language-Agnostic Approach. Basic tooling for
feature-based modularization is already integrated into
common commercial product line tools [2, 17]. They
provide simple means for composing textual artifact frag-
ments to a compound text artifact depending on the current
product configuration. They are not aware of the internal
semantics of the languages the artifacts are written in and
only rely on textual concatenation and pattern matching.

Language Extension Approach. In principle, all work-
flow languages can be extended with aspect-oriented or
multi-dimensional language constructs, similar to the way
Aspect] [14] and Hyper/J [22] extend Java. Depending on
the configured product features, certain workflow tasks im-
plemented as aspects or hyperslices are part of the product

generation workflow or not. As described in Section 2.3, the
OAWWL already has basic AO-like features. They could be
extended to provide full obliviousness and quantification [6]
to facilitate insertion of arbitrary workflow tasks at various
positions and even allow more profound structural changes
in the workflow process. For business workflows expressed
in the Business Process Execution Language (BPEL), there
exists such a language extension called AO4BPEL [3]. We
will discuss this approach further in Section 5.

DSML Approach. When the language is a DSML and,
thus, is based on a metamodel, model weaving techniques
[5, 7, 9] can be applied to compose a workflow model from
model fragments. A weaving model generated out of the
current product configuration then controls which model
fragments have to be composed to form the product gen-
eration workflow.

Comparing these three approaches, we consider the
language-agnostic one as too low-level to meet the specific
needs of workflow composition. Simply concatenating ar-
tifact fragments or using pattern substitution will usually
render the editor support for the workflow language unus-
able. Simple text fragments cannot provide any means of
obliviousness, since every location where a fragment may
be inserted must be explicitly foreseen. When using pattern
substitution, in contrast, one must consider all possible syn-
tax variations in every pattern. As pattern matching also is
not aware of the semantics of the workflow language, ex-
pressions usually get quite complex and hard to maintain.

In contrast, we regard both the language extension ap-

proach and the DSML approach as equally promising. If
the workflow language has no explicit metamodel founda-
tion, AO-like extensions are the viable solution. If the lan-
guage is a DSML, on the other hand, the latter approach
seems to be more convenient. Model weaving languages
are specialized on easy processing of data structures, con-
trary to the transformation of abstract syntax trees, which is
often done with normal programming languages. Thus, the
rich set of model processing facilities of the MDD weaving
environment can be used and should lead to more efficient
development.

3.2. Concept for Feature-Based Workflow
Modularization

We will now present our concept of feature-based work-
flow modularization for model-driven product lines. As
already indicated, we favor the use of model weaving for
this purpose, as we premise that the workflow language is
a DSML and, thus, is based on a metamodel. We never-
theless adopt aspect-oriented terminology [14], as there are
quite some similarities between both research fields. Ac-
tually, model weaving can also provide quantification and
obliviousness, as this is just a matter of how a model weaver
interprets the input models [9].

Figure 1 outlines the general concept. Optional and al-
ternative workflow fragments are encapsulated in workflow
aspects containing the information both where and what to
manipulate in the base workflow. Mappings from features
to aspects ensure that a workflow weaver can produce the
workflow artifact corresponding to a product configuration.
As can be seen from the figure, the overall concept does
not imply any model-driven technology and, thus, could
also be implemented by classical, non-model-driven aspect-
oriented means.

Problem Space Solution Space

(@)
c £
S g
3
o s Workflow Base
Domain Features Aspects Workflow
Specific Problem Specific Solution
5 _g’ [Workflow }\ .
2% Weaver C)ﬂ
o O
= c
28

Configuration Woven Workflow

Figure 1. Outline of Workflow Weaving

The figure already indicates where design decisions are
necessary: for workflow aspects and for the workflow
weaver. As we work in the context of MDD, both workflow
aspects and the base workflow have a model representation
consisting of model elements.

Workflow Aspect. The workflow aspect must be able to
specify the affected join points and the advice implementa-
tion.

e A join point is a point in the control flow during work-
flow execution. We assume that we can specify this
point by referencing a certain model element of the
base workflow. This element will usually be a simple
or compound workflow task. In some cases, it might
be useful to reference groups of model elements (e.g.,
to introduce parallel execution with respect to several
consecutive workflow tasks).

e A pointcut references a set of join points. Although
the sequential structure of workflows shows no urgent
demand for quantification, in some cases (like the in-
evitable logging) it may render useful. Pointcut oper-
ations should allow checking for equality and pattern
matching for attributes of a join point model element
itself as well as for subordinated model elements.

e An advice specification must be able to formulate the
advice type (e.g., before, after, around). It will usu-
ally introduce new model elements and thus implement
positive variability [8]. To implement negative vari-
ability, around advice can be specified to substitute or
remove model elements.

As the aspect language is a DSML, it can reference the
workflow-specific model elements of the workflow DSML.
We expect that, except these references, the workflow as-
pect DSML actually can have a generic, reusable AO
metamodel that can be processed by a generic, workflow-
agnostic weaver. The AO metamodel could then also be
used for other languages based on the same metamodeling
technology.

In the first instance, we plan to specify aspects as models
by using a simple model editor based on the AO metamodel.
In a further step, we then will analyze ways for rapidly spec-
ifying the AO language’s concrete syntax, which will usu-
ally depend on the language to extend.

Workflow Weaver. The workflow weaving takes place in
two stages.

e The product-line-aware weaving initiator evaluates
the mappings from features to workflow aspects and
generates an intermediate weaving model according to
the current feature selection.

e The generic aspect weaver then performs the actual
weaving in the second stage. It only relies on the AO
metamodel to perform weaving and is thus workflow-
agnostic. The output of the generic aspect weaver is an
executable woven workflow.

4. Integration Into the openArchitectureWare
Framework

openArchitectureWare (0AW) [19] is a comprehensive
framework for model-driven software development with an
already large number of users in industry and research. We
will describe the most important technologies of the current
(at the time of writing) version 4.3 and we will show how
our approach will complement them.

4.1. openArchitectureWare

The oAW framework comprises of a language for model-
to-model transformations, XTend, and for model-to-text
transformations, XPand. It describes modeling workflows
by the 0AW workflow language (OAWWL, as described in
Section 2). Hence, it can easily integrate external transfor-
mation technologies and other workflow tasks. Both XTend
and XPand have full aspect orientation support [27] and
are, thus, very well suited to formulate separation of con-
cerns on transformation and generator level, respectively.
As described, the workflow language also has some aspect-
oriented capabilities to express variability (see Section 2.3).
However, we identified that it reaches its limits when more
complex and unforeseen changes to the workflow become
necessary.

4.2. Modeling Workflow Engine

The prospective version 5.0 of the oAW framework
will contain various changes and improvements. Most no-
tably in the context of this paper, the workflow language
will become autonomous as Modeling Workflow Engine
(MWE) within the Eclipse Modeling Framework Technol-
ogy (EMFT) project [18]. The developers of MWE kindly
provided us with insights into the plans as well as into the
source code of the upcoming version. It will be DSML-
based and thus satisfy the needs we identified for flexi-
ble workflow modularization. Furthermore, there are plans
to support the specification of parallel execution and more
complex conditional expressions, what we also identified as
shortcomings in Section 2.

4.3. XWeave

With XWeave [9], the oAW framework also contains fa-
cilities for generic, aspect-oriented model weaving. It cur-

rently only provides positive variability. More complex
pointcuts can be formulated external to the aspect model
in a dedicated expression language.

4.4. Future Plans

As the MWE is still under heavy development, it is too
early to provide a concrete implementation of our concept
for feature-based workflow modularization. The developers
gave us the opportunity to follow the current early develop-
ment stage. As soon as there will be a stable version of the
workflow DSML, we will begin to analyze the capabilities
of XWeave to support different workflow weaving scenarios
with positive and negative variability and pointcuts of dif-
ferent complexity. So, we will be able to draw conclusions
regarding the further development of XWeave to extend it
to a fully-fledged generic modeling aspect weaver as well
as for giving feedback on MWE for the purpose of weaving
workflows.

As identified in Section 3.2, besides a generic aspect
weaver, a weaving initiator is necessary, which generates
a weaving model depending on the selected features. We
plan to integrate it and the other described concepts as a
case study into the home automation product line Smart-
Home [28], which already has integrated various state-of-
the-art aspect-oriented and model-driven technologies and
development techniques. Eventually, we will be able to val-
idate our approach by refactoring the modeling workflow
of SmartHome based on its features, which comprise, for
example, security and various comfort functions.

5. Related Work

As the most promising approaches for modeling work-
flow specification languages have already been dealt with in
Section 2, we will now only discuss related approaches that
do not claim to have tool support or which do not have ad-
equate means for integrating external workflow tasks. Fur-
thermore, we will address approaches that are not directly
related to modeling workflows, but nevertheless comprise
similar concepts.

The Transformation Composition Modelling Framework
of OLDEVIK describes black-box model transformations hi-
erarchically with an UML2 class diagram and composes
them by means of activity diagrams. No tool support is pro-
vided.

WAGELAAR [29] proposes a DSML with a textual con-
crete syntax for model transformation composition. Based
on the DSML, an Ant [1] build script is generated, which
performs the actual transformation. In his approach, every
model transformation needs a dedicated metamodel element
in the DSML. This makes his textual syntax very concise.
The author does not address the scalability problem and the

additional implementation overhead introduced when ev-
ery transformation integrated into the transformation chain
needs its own metamodel representation.

Several model transformation languages, like the
XTend language from openArchitectureWare or the
Query/View/Transformation (QVT) language [21] of the
MDA approach, facilitate the execution of external program
code (e.g., Java). This, in principle, allows the integration of
external transformations by using program code adaptation
layers. With their rich feature sets, they can evaluate con-
ditions and perform model-checking right in place. How-
ever, integrating other model checkers, as well as loading
and storing models into files, is out of their scope.

Stragego/XT [26] is a program transformation language
and toolset that transforms abstract syntax trees (ASTs) by
applying pattern-based rewrite rules. So called strategies
control which rules shall be applied in which order. Stratego
offers the strategy operators choice and sequence according
to our comparison in Section 2.2, but no parallel operator,
as it rather intended for working on one AST at a time. It
comprises interesting additional operators specifically for
program transformations, like non-deterministic and recur-
sive application of rules. Furthermore, strategies also define
the AST traversal direction (bottom-up, top-down, etc.) of
rules. Depending on the application domain, these opera-
tors might also be useful for MDD. None of the in Section 2
compared approaches supports these operators. However, a
model transformation is usually much coarser-grained than
a rewrite rule for an AST, so that, for example, recursion
and traversal direction are rather features of model transfor-
mation technologies than of modeling workflow languages.

There also exists an aspect-oriented extension of Strat-
ego [12] offering fine-grained join points, pointcuts, and ad-
vice constructs on strategy and rule level. In comparison to
our approach, it is a specific language extension and does
not aim to support aspect orientation for several DSML us-
ing the same metamodeling technology.

AO4BPEL [3], as already mentioned in Section 3.1, is as
well a specific aspect-oriented language extension. Its im-
plementation is based on a modified BPEL engine, which
checks at all potential join points, if an aspect has specified
it in its pointcut. This allows easy and dynamic weaving of
BPEL aspects with the drawback of less performance. As
we plan to implement generic aspect-oriented mechanisms,
we will not change the workflow engine but perform weav-
ing on model level prior to workflow execution.

6. Conclusion and Outlook

In this paper, we introduced our concept of model-driven
workflow modularization by means of aspectual model
weaving techniques. First, we analyzed current model-

ing workflow specification languages and showed the lack
of concepts for specifying feature-based modularization.

Then, we presented a concept for aspect-oriented work-
flow model weaving aimed at model-driven software prod-
uct lines. We embedded our concept into the upcoming
Modeling Workflow Engine (MWE) and highlighted our fu-
ture steps towards an implementation and its evaluation by
means of a case study.

The strict separation of concerns, which we foster
throughout this paper, has a particular reason: we especially
are interested in the terms and conditions for the decom-
position and composition of whole product lines. Product
generation of a compound product originated from several
product lines is a potentially highly complex task. Several
product generation processes, one of each product line, may
have to interact to create the final product. Thus, a clear in-
terface for interaction is necessary, and, for model-driven
product lines, model transformation workflows result to be
a promising integration point for that purpose.

7. Acknowledgements

We would like to thank Markus Volter, Christa Schwan-
ninger and the anonymous reviewers for their valuable com-
ments on earlier drafts of this paper, as well as Sven Efftinge
and Patrick Schonbach for providing insights into the devel-
opment of the Modeling Workflow Engine.

References

[1] The Apache Ant Project. http://ant.apache.org.

[2] D. Beuche. Variant management with pure::variants. Tech-
nical report, pure-systems GmbH, 2003. http://www.pure-
systems.com/.

[3] A. Charfi and M. Mezini. = Aspect-Oriented Web Ser-
vice Composition with AOABPEL. In Proceedings of the
2004 European Conference on Web Services(ECOWS '04).
Springer-Verlag, 2004.

[4] R. S. et al. Model Driven Architecture. OMG white paper,
2000.

[5] M. D. D. Fabro, J. Bzivin, F. Jouault, E. Breton, and
G. Gueltas. AMW: a generic model weaver. In Proceed-
ings of the Ire Journe sur l’Ingnierie Dirige par les Modles
(IDM05), 2005.

[6] R.E.Filman and D. P. Friedman. Aspect-oriented program-
ming is quantification and obliviousness. In Workshop on
Advanced SoC (OOPSLA ’00), Oct. 2000.

[7] J. Gray, Y. Lin, and J. Zhang. Automating Change Evolution
in Model-Driven Engineering. IEEE Computer, 39(2):51—
58, 2006.

[8] L. Groher and M. Voelter. Expressing Feature-Based Vari-
ability in Structural Models. Proceedings of the Workshop
on Managing Variability for Software Product Lines (SPLC
,07), 2007.

[9] I Groher and M. Voelter. XWeave: models and aspects in
concert. Proceedings of the 10th International Workshop on
Aspect-oriented modeling, pages 35—40, 2007.

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

J.-B. Guillois and F. Jaouen. D3.3-2a Orchestration Tool -
Tutorial. http://www.modelware-ist.org/, 2006.
F. Jouault and I. Kurtev. Transforming models with ATL. In
Satellite Events at the MoDELS 2005 Conference, volume
3844/2006 of Lecture Notes in Computer Science, pages
128-138, Heidelberg, BW, Germany, 2006. Springer-Verlag.
K. T. Kalleberg and E. Visser. Combining Aspect-Oriented
and Strategic Programming. In Proceedings of the 6th In-
ternational Workshop on Rule-Based Programming (RULE),
ENTCS, pages 168—177. Elsevier, 2005.

K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peter-
son. Feature-Oriented Domain Analysis (ODA) Feasibility
Study. Technical report, Carnegie Mellon University, Soft-
ware Engineering Institute, Pittsburgh, PA, Nov. 1990.

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. G. Griswold. An overview of Aspect]. In J. L.
Knudsen, editor, Proceedings of the 15th European Confer-
ence on Object-Oriented Programming (ECOOP ’01), vol-
ume 2072 of Lecture Notes in Computer Science, pages 327—
353. Springer-Verlag, June 2001.

A. Kleppe. MCC: A Model Transformation Environment.
In Proceedings of the Second European Conference on
Model Driven Architecture — Foundations and Applications
(ECMDA-FA °06), volume 4066/2006 of Lecture Notes in
Computer Science, pages 173—187. Springer-Verlag, 2006.
A. Kleppe, editor. Proceedings of the First European Work-
shop on Composition of Model Transformations (ECMDA-
CMT °06), 2006.

C. W. Krueger. Biglever software gears and the 3-tiered spl
methodology. In OOPSLA °07: Companion to the 22nd
ACM SIGPLAN conference on Object oriented program-
ming systems and applications companion, pages 844—845,
New York, NY, USA, 2007. ACM.

Eclipse Modeling Framework Technology (EMFT) - Model-
ing Workflow Engine (MWE). http://www.eclipse.
org/modeling/emft/?project=mwe.
OpenArchitectureWare Homepage.
//www.openarchitectureware.org.
Object Management Group (OMG). Meta Object Facility
(MOF) Specification. formal/2002-04-03, April 2002.

http:

(21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

Object Management Group (OMG). Meta Object Facility
(MOF) 2.0 Query/View/Transformation Specification, Ver-
sion 1.0. formal/08-04-03, April 2008.

H. Ossher and P. Tarr. Multi-dimensional separation of con-
cerns and the hyperspace approach. In Symposium on Soft-
ware Architectures and Component Technology: The State
of the Art in Software Development. Kluwer Academic Pub-
lishers, 2000.

K. Pohl, G. Bockle, and F. J. van der Linden. Software Prod-
uct Line Engineering: Foundations, Principles and Tech-
niques. Springer-Verlag, 2005.

B. Vanhooff, D. Ayed, S. V. Baelen, W. Joosen, and
Y. Berbers. UniTI: A Unified Transformation Infrastruc-
ture. In Proceedings of the 10th International Conference
on Model Driven Engineering Languages and Systems 2007,
pages 31-45, 2007.

B. Vanhooff, S. V. Baelen, A. Hovsepyan, W. Joosen, and
Y. Berbers. Towards a Transformation Chain Modeling Lan-

guage. In Proceedings of the 6th International Workshop
(SAMOS °06) at Embedded Computer Systems: Architec-

tures, Modeling, and Simulation. Springer-Verlag, 2006.

E. Visser. Program transformation with Stratego/XT. In
Domain-Specific Program Generation, volume 3016/2004
of Lecture Notes in Computer Science, pages 216-238, Hei-
delberg, BW, Germany, 2004. Springer-Verlag.

M. Voelter and I. Groher. Handling Variability in Model
Transformations and Generators. Proceedings of the 22st
ACM Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications (OOPSLA '07), 2007.
M. Voelter and I. Groher. Product Line Implementation us-
ing Aspect-Oriented and Model-Driven Software Develop-
ment. Proceedings of the 11th Software Product Line Con-
ference (SPLC ’07), pages 233-242, 2007.

D. Wagelaar. Blackbox Composition of Model Transforma-
tions using Domain-Specific Modelling Languages. In Pro-
ceedings of the First European Workshop on Composition of
Model Transformations (ECMDA-CMT ’06), 2006.

A. Yie, R. Casallas, D. Deridder, and R. V. D. Straeten.
Multi-Step Concern Refinement. In Proceedings of the
Workshop on Early Aspects (AOSD-EA '08), 2008.

http://www.modelware-ist.org/
http://www.eclipse.org/modeling/emft/?project=mwe
http://www.eclipse.org/modeling/emft/?project=mwe
http://www.openarchitectureware.org
http://www.openarchitectureware.org

	. Introduction
	. Comparison of Modeling Workflow Languages
	. Integration Effort
	. Flexibility
	. Variability Management Support
	. Evaluation

	. Feature-Based Workflow Modularization
	. Feature-Based Modularization Techniques
	. Concept for Feature-Based Workflow Modularization

	. Integration Into the openArchitectureWare Framework
	. openArchitectureWare
	. Modeling Workflow Engine
	. XWeave
	. Future Plans

	. Related Work
	. Conclusion and Outlook
	. Acknowledgements

