
Author’s version. Please cite as: Olaf Spinczyk and Daniel Lohmann: The design and implementa-
tion of AspectC++. Knowledge-Based Systems Volume 20, Issue 7, Special Issue on Techniques to
Produce Intelligent Secure Software, October 2007, Pages 636-651.
http://dx.doi.org/10.1016/j.knosys.2007.05.004 c©2007 Elsevier B.V.

The Design and Implementation of AspectC++ ?

Olaf Spinczyk ∗ and Daniel Lohmann

Friedrich-Alexander University Erlangen-Nuremberg

Abstract

Aspect-Oriented Programming (AOP) is a programming paradigm that supports the modu-
lar implementation of crosscutting concerns. Thereby, AOP improves the maintainability,
reusability, and configurability of software in general. Although already popular in the Java
domain, AOP is still not commonly used in conjunction with C/C++. For a broad adoption
of AOP by the software industry, it is crucial to provide solid language and tool support.
However, research and tool development for C++ is known to be an extremely hard and
tedious task, as the language is overwhelmed with interacting features and hard to analyze.
Getting AOP into the C++ domain is not just technical challenge. It is also the question of
integrating AOP concepts with the philosophy of the C++ language, which is very different
from Java. This paper describes the design and development of the AspectC++ language
and weaver, which brings fully-fledged AOP support into the C++ domain.

Key words: AOP, C++, AspectC++, Programming Languages

1 Motivation

The C/C++ programming language 1 is frequently declared dead or at least dying.
Actually, it is still the lingua franca in the real world of software industry. There are
several reasons for the ongoing success of a language that is often criticized for its

? This work was supported by the German Research Council (DFG) under grant no. SCHR
603/4 and SP 968/2-1.∗ Correspondence to: Olaf Spinczyk, University of Erlangen-Nuremberg, Computer Science
4, Martensstr. 1, 91058 Erlangen, Germany, Tel.: +49 9131 8527906

Email addresses: Olaf.Spinczyk@informatik.uni-erlangen.de,
Daniel.Lohmann@informatik.uni-erlangen.de (Daniel Lohmann).
1 Throughout this paper, we use “C/C++” as an abbreviation for “C and C++” and refer to
it as a single language. C, as it is used today, is basically a subset of C++ (ignoring some
minor differences).

Preprint submitted to Elsevier Science 12 June 2006

http://dx.doi.org/10.1016/j.knosys.2007.05.004

complexity. The most important one is the existing code base, which probably is
of the dimension of some billion lines of code. Due to its multi-paradigm language
design, C++ provides the unique ability to combine modern software development
principles with high source-level backward compatibility to this enormous code
base. It integrates classical procedural programming, object-oriented programming
and, by the means of C++ templates, even generic and generative programming into
a single language. Another main reason for the ongoing usage of C/C++ is runtime
and memory efficiency of the generated code. For domains, where efficiency is a
crucial property, there is still no alternative in sight.

In face of its importance in the real world, C/C++ plays a relatively small role in
research activities and tool development related to Aspect-Oriented Programming
(AOP) [17]. This is surprising, as the most frequently mentioned examples for
aspects (synchronization, monitoring, tracing, caching, remote transparency...),
are particularly important concerns especially in the C/C++ dominated domain of
(embedded) system software [24].

Probably the biggest problem in research and tool development for C++ is the
language itself. On the technical level, one has to deal with the extraordinary complex
syntax and semantics. On the conceptual level, one has to be very careful when
integrating new concepts like AOP into a language that already supports multiple
paradigms. In the following, we discuss some of the peculiarities and difficulties of
C++ from the perspective of an aspect weaver.

1.1 Technical Level

Developing a standard-compliant parser for the C++ syntax is just a nightmare.
It is an extremely hard, tedious and thankless task. Additionally, to support a substan-
tial set of join point types, an aspect weaver has to perform a full semantic analysis,
and the semantics of C++ is even worse. Pretty basic things, like type deduction
and overload resolution, are very complicated due to automatic type conversions
and namespace/argument dependent name lookup rules. However, all this gets a
most significant raise in complexity if it comes to the support of templates. The
C++ template language is a Turing-complete language on its own [8]. Template
meta-programs are executed by the compiler during the compilation process. To
support join points in template code, an aspect weaver has to do the same. It has to
perform a full template instantiation.
Another problem is the C/C++ translation model that is built on the concept of
single translation units, whereas an aspect weaver typically prefers a global view
on the project. This and other oddities as the C preprocessor make it difficult to
integrate aspect weaving into the C++ tool chain. Moreover, even if the language
is standardized, in the real world one has to face a lot of compiler peculiarities.
Proprietary language extensions, implementation bugs and “99% C++ standard

2

conformance” are common characteristics among major compilers.

1.2 Conceptual Level

C++ has a powerful but complex static type system, with fundamental and class
types, derived types (pointer, array, reference, function), cv-qualifiers (const, volatile)
and so on. On the other hand, C++ offers (almost) no runtime type information
which facilitates a unified access to instances of any type at runtime. This focus on
static typing has to be reflected in an aspect language for C++, e.g. in the way type
expressions are matched and join point-specific context is provided. Moreover, C++
integrates multiple programming paradigms into a single language. Matching
and weaving has not only to be supported in classes, but also in global functions,
operator functions and template code.

1.3 Our Contribution

AspectC++ is a general purpose aspect-oriented language extension to C++ designed
by the authors. It is aimed to bring fully-fledged AOP support into the C++ do-
main. Since the first language proposal and prototype weaver implementation [22],
AspectC++ has evolved significantly. While being strongly influenced by the As-
pectJ language model [16,15], AspectC++ supports in version 1.0 all the additional
concepts that are unique to the C++ domain. This ranges from global functions,
operators, const correctness and multiple inheritance up to weaving in template code
and join point-specific instantiation of templates [19].

This paper describes the design and implementation of the AspectC++ language. On
the conceptual level it shows, how we integrated AOP concepts into a language as
complex as C++. On the technical level, some interesting details about the weaver
implementation are presented. On both levels, the paper focuses on the peculiarities
and difficulties discussed in the previous section – and how we solved them in
AspectC++.

The paper is organized as follows: In the next section, we discuss related work.
Section 3 then describes the primary design goals and rationale of AspectC++.
Afterwards in section 4, we concentrate on the conceptual level by describing the
AspectC++ language and how it is integrated into C++. This is followed by two
real-world examples in section 5. Section 6 provides an overview on the weaver and
thereby discusses, how we addressed the technical level. Based on benchmarks we
furthermore discuss the resource consumption of AspectC++ programs. Finally, we
draw a conclusion from our work in section 7.

3

2 Related Work

2.1 Aspect Languages

As already mentioned, AspectC++ adopts the language model introduced by AspectJ
[16], which is probably the most mature AOP system for the Java language. The As-
pectJ language model is also used by AspectC, a proposed AOP language extension
for C. Even though there is no weaver for AspectC available, it was successfully
used to demonstrate the benefits of AOP for the design and evolution of system
software [5,6].

2.2 Early AOP Approaches.

Most of the approaches considered as “roots of AOP”, like Subject-Oriented Pro-
gramming [14], Adaptive Programming [18] or Composition Filters [3] provided a
C++ language binding in the beginning. However, with the rising of Java, the C++
support was almost discontinued.

2.3 AOP in Pure C++

A number of attempts have been suggested to “simulate” AOP concepts in pure C++
using advanced template techniques [7], macro programming [9] or Policy-based
Design [1]. In some of these publications it is claimed that, in the case of C++, a ded-
icated aspect language like AspectC++ is not necessary. However, these approaches
have the common drawback that a class has always to be explicitly prepared to be
affected by aspects, which makes it hard to use them on existing code. Moreover,
aspects have to be explicitly assigned to classes, as a pointcut concept is not available.
To our understanding, an AOP language should not make any compromise regarding
“obliviousness and quantification” [11]. The non-invasive and declarative assignment
of aspects to classes is at heart of aspect-oriented programming.

2.4 Other C++ Language Extensions

OpenC++ [4] is a MOP for C++ that allows a compiled C++ metaprogram to
transform the base-level C++ code. The complete syntax tree is visible on the
meta-level and arbitrary transformations are supported. OpenC++ provides no ex-
plicit support for AOP-like language extensions. It is a powerful, but somewhat

4

lower-level transformation and MOP toolkit. Other tools based on C++ code trans-
formation like Simplicissimus [21] and CodeBoost [2] are mainly targeted to the
field of domain-specific program optimizations for numerical applications. While
CodeBoost intentionally supports only those C++ features that are relevant to the
domain of program optimization, AspectC++ has to support all language features. It
is intended to be a general-purpose aspect language.

3 AspectC++ Goals and Rationale

3.1 Primary Design Goals

AspectC++ is being developed with the following goals in mind:

AOP in C++ should be easy. We want practitioners to use AspectC++ in their
daily work. The aspect language has to be general-purpose, applicable to existing
projects and needs to be integrated well into the C++ language and tool chain.

AspectC++ should be strong, where C++ is strong. Even though general-
purpose, AspectC++ should specifically be applicable in the C/C++ dominated
domains of “very big” and “very small” systems. Hence, it must not lead to a
significant overhead at runtime.

3.2 Design Rationale

The primary goals of AspectC++, as well as the properties of the C++ language
itself, led to some fundamental design decisions:

“AspectJ-style” syntax and semantics, as it is used and approved. Moreover, As-
pectJ was designed with very similar goals (e.g. “programmer compatibility”
[16]) in mind.

Comply with the C++ philosophy, as this is crucial for acceptance. As different
as C++ is from Java, as different AspectC++ has to be from e.g. AspectJ.

Source-to-Source weaving, as it is the only practicable way to integrate AspectC++
with the high number of existing tools and platforms. The AspectC++ weaver
transforms AspectC++ code into C++ code.

Support of C++ Templates, even if it makes things a lot more difficult. The whole
C++ standard library is build on templates, they are a vital part of the language.

Avoid using expensive C++ language features in the generated code, like excep-
tion handling or RTTI, as this would lead to a general runtime overhead.

Careful, minimal extension of the C++ grammar, as the grammar of C++ al-
ready is a very fragile building, which should not be shaken more than absolutely

5

necessary.

4 The Language

The aim of this section is, to provide an overview of the AspectC++ language and to
some of its concepts in detail. The AspectC++ syntax and semantics is very similar
to AspectJ. The basics are therefore described only briefly here, which leaves more
space to focus on C++-specific concerns and those parts of the language that are
intentionally different from AspectJ.

4.1 Overview and Terminology

AspectC++ is an extension to the C++ language. Every valid C++ program is also
a valid AspectC++ program. As in AspectJ, the most relevant terms are join point
and advice. A join point denotes a specific position in the static program structure
or the program execution graph, where some advice should be given. Supported
advice types include code advice (before, after, around), introductions (also known
as inter-type declaration in AspectJ) and aspect order definitions. Join points are
given in a declarative way by a join point description language. Each set of join
points, which is described in this language, is called a pointcut. The sentences of
the join point description language are called pointcut expressions. The building
blocks of pointcut expressions are match expressions (to some degree comparable
to “Generalized Type Names” (GTNs) and “Signature Patterns” in AspectJ), which
can be combined using pointcut functions and algebraic operations. Pointcuts can
be named and thereby reused in a different context. While named pointcuts can be
defined anywhere in the program, advice can only be given by aspects. The aspect

aspect TraceService {
pointcut Methods() = "% Service ::%(...)";
advice call(Methods()) : before() {

cout << "Service function invocation" << endl;
}};

gives before advice to all calls to functions defined by the pointcut Methods(), which
is in turn defined as all functions of the class or namespace Service, like void

Service::foo() or int Service::bar(char*). The special % and ... symbols are
wildcards, comparable to * and .. in AspectJ. The percent wildcard (%) matches any
name (or a part of a name) of a C++ entity. The ellipsis (...) matches any sequence
of argument types (including the C va_arg argument type used by functions like
printf), namespaces or template parameters. 2 More examples for match expres-

2 AspectJ supports with “+” a third wildcard for subtype matching. In AspectC++ this is
realized by the derived() pointcut function.

6

sions can be found in Figure 1-d. A list of the pointcut functions and algebraic
operations currently supported by AspectC++ can be found in Figure 1-e.

4.2 AspectC++ Grammar Extensions

Figure 1-a shows the AspectC++ extensions to the C++ grammar. Probably the
most important design decision for keeping the set of grammar extensions small
and simple was to use quoted match expressions. By quoting match expressions,
pointcuts can be parsed with the ordinary C++ expression syntax. The real evaluation
of the pointcuts itself can be postponed to a separate parser. This clear separation also
helps the user to distinguish on the syntax level between ordinary code expressions
and match expressions, which are quite different concepts. Additionally, it keeps the
match expression language extendable.

4.3 The Join Point Model

4.3.1 Join Point Types

AspectC++ uses a unified join point model to handle all types of advice in the same
way. This is different from AspectJ, which distinguishes between pointcuts and
advice on the one hand and GTNs and introductions on the other. As shown in
the example above, in AspectC++ even match expressions are pointcuts and can
be named. While such a coherent language design is a good thing anyway, this
is particularly useful in combination with aspect inheritance and (pure) virtual
pointcuts. In AspectC++, even the pointcuts used for introductions and baseclass
introductions can be (pure) virtual and, thus, be defined or overridden in derived
aspects. This is demonstrated in the “Reusable Observer” example in section 5.1.
Regarding the implementation, the unified model requires join points to be
typed in AspectC++. The basic join point types are Name (N) and Code (C).
A name join point represents a named entity from the C++ program, like a
class, a function or a namespace. It typically results from a match expression. A
code join point represents a node in the program execution graph, like the call
to or execution of a function. Code join points result from applying pointcut
functions to name pointcuts. The basic types are additionally separated into
more specialized subtypes like Class (NC) or Function (NF), Execution (CE)
or Construction (CCons). The aspect weaver uses the type information to ensure
that e.g. code advice (before, after, around) is only given to code join points.
Figure 1-f lists all join point types. The subtypes are, however, mostly irrele-
vant for the user, as most pointcut functions accept the basic types and treat, for
instance, a NC join point as the set of NF join points describing all member functions.

7

a) Syntax Extensions
The AspectC++ syntax is an extension to the C++ syntax defined
in the ISO/IEC 14882:1998(E) standard.

class-key:
aspect

declaration / member-declaration:
pointcut-declaration
advice-declaration
slice-declaration

pointcut-declaration:
pointcut declaration

pointcut-expression:
constant-expression

advice-declaration:
advice pointcut-expression : order-declaration
advice pointcut-expression : declaration

order-declaration:
order (pointcut-expression-list)

pointcut-expression-list:
pointcut-expression
pointcut-expression, pointcut-expression-list

slice-declaration:
slice declaration

b) Aspects

aspect A { ... };
defines the aspect A

aspect A : public B { ... };
A inherits from class or aspect B

c) Advice Declarations

advice pointcut : before(...) {...}
the advice code is executed before the join points in the
pointcut

advice pointcut : after(...) {...}
the advice code is executed after the join points in the
pointcut

advice pointcut : around(...) {...}
the advice code is executed in place of the join points in
the pointcut

advice pointcut : order(high, ...low);
high and low are pointcuts, which describe sets of aspects.
Aspects on the left side of the argument list always have a
higher precedence than aspects on the right hand side at
the join points, where the order declaration is applied.

advice pointcut : slice class : public Base;
introduces a new base class Base into the target classes
matched by pointcut.

advice pointcut : slice class : public Base {...};
introduces a new base class Base and new members.

advice pointcut : slice ASlice ;
introduces the slice ASlice into the target classes matched
by pointcut. The slice (a class fragment) has to be defined
separately in any class or namespace scope.

d) Match Expressions

Type Matching

"int"
matches the C++ built-in scalar type int

"% *"
matches any pointer type

Namespace and Class Matching

"Chain"
matches the class, struct or union Chain

"Memory%"
matches any class, struct or union whose name starts with
“Memory”

Function Matching

"void reset()"
matches the function reset having no parameters and re-
turning void

"% printf(...)"
matches the function printf having any number of param-
eters and returning any type

"% ...::%(...)"
matches any function, operator function, or type conver-
sion function (in any class or namespace)

"% ...::Service::%(...) const"
matches any const member-function of the class Service
defined in any scope

"% ...::operator %(...)"
matches any type conversion function

Template Matching

"std::set<...>"
matches all template instances of the class std::set

"std::set<int>"
matches only the template instance std::set<int>

"% ...::%<...>::%(...)"
matches any member function from any template class in
any scope

e) Predefined Pointcut Functions

Functions

call(pointcut) N→CC
provides all join points where a named entity in the point-
cut is called.

execution(pointcut) N→CE
provides all join points referring to the implementation of
a named entity in the pointcut.

construction(pointcut) N→CCons
all join points where an instance of the given class(es) is
constructed.

destruction(pointcut) N→CDes
all join points where an instance of the given class(es) is
destructed.

pointcut may contain function names or class names. A class
name is equivalent to the names of all functions defined within
its scope combined with the || operator (see below).

Fig. 1. AspectC++ Language Quick Reference

8

Control Flow

cflow(pointcut) C→C
captures join points occuring in the dynamic execution
context of join points in the pointcut. The argument point-
cut is forbidden to contain context variables or join points
with runtime conditions (currently cflow, that, or target).

Types

base(pointcut) N→NC,F
returns all base classes resp. redefined functions of classes
in the pointcut

derived(pointcut) N→NC,F
returns all classes in the pointcut and all classes derived
from them resp. all redefined functions of derived classes

Context

that(type pattern) N→C
returns all join points where the current C++ this pointer
refers to an object which is an instance of a type that is
compatible to the type described by the type pattern

target(type pattern) N→C
returns all join points where the target object of a call is an
instance of a type that is compatible to the type described
by the type pattern

result(type pattern) N→C
returns all join points where the result object of a
call/execution is an instance of a type described by the type
pattern

args(type pattern, ...) (N,...)→C
a list of type patterns is used to provide all joinpoints with
matching argument signatures

Instead of the type pattern it is possible here to pass the name of
a context variable to which the context information is bound.
In this case the type of the variable is used for the type matching.

Scope

within(pointcut) N→C
filters all join points that are within the functions or classes
in the pointcut

Algebraic Operators

pointcut && pointcut (N,N)→N, (C,C)→C
intersection of the join points in the pointcuts

pointcut || pointcut (N,N)→N, (C,C)→C
union of the join points in the pointcuts

! pointcut N→N, C→C
exclusion of the join points in the pointcut

f) Join Point Types

Code

C, CC, CE, CCons, CDes :
any, Call, Execution, Construction, Destruction

Name

N, NN , NC , NF , NT :
any, Namespace, Class, Function, Type

g) Join Point API

The JoinPoint-API is provided within every advice code body
by the built-in object tjp of class JoinPoint.

Compile-time Types and Constants

That [type]
object type (object initiating a call)

Target [type]
target object type (target object of a call)

Result [type]
result type of the affected function

Arg<i>::Type, Arg<i>::ReferredType [type]
type of the i th argument of the affected
function (with 0≤ i < ARGS)

ARGS [const]
number of arguments

JPID [const]
unique numeric identifier for this join point

JPTYPE [const]
numeric identifier describing the type of
this join point (AC::CALL or AC::EXECUTION)

Runtime Functions and State

static const char *signature()
gives a textual description of the join point (function name,
class name, ...)

That *that()
returns a pointer to the object initiating a call or 0 if it is a
static method or a global function

Target *target()
returns a pointer to the object that is the target of a call or
0 if it is a static method or a global function

Result *result()
returns a typed pointer to the result value or 0 if the func-
tion has no result value

Arg<i>::ReferredType *arg()
returns a typed pointer to the argument value with compile-
time index number

void *arg(int number)
returns a pointer to the memory position holding the argu-
ment value with index number

void proceed()
executes the original code in an around advice

AC::Action &action()
returns the runtime action object containing the execution
environment to execute (trigger()) the original code en-
capsulated by an around advice

Runtime Type Information

static AC::Type type()
static AC::Type resulttype()
static AC::Type argtype(int i)

return a C++ ABI V3 conforming string representation of
the signature / result type / argument type of the affected
function

Fig. 1. AspectC++ Language Quick Reference (continued)

9

4.3.2 Order Advice

Besides code advice (before, after, around) and (baseclass-) introductions, As-
pectC++ supports with order advice a third type of advice. Order advice is used
to define a partial order of aspect precedences per pointcut. This makes it possi-
ble to have different precedences for different join points. For example, the order
declarations

advice "Service" : order("Locking", !("Locking"||"Tracing"), "Tracing");

advice "Client" : order("Tracing", !"Tracing");

define that in the context of the class or namespace Service all advice given by
the aspect Locking should be applied first, followed by advice from any aspect but
Locking and Tracing. Advice given by Tracing should have the lowest precedence.
However, for Client the order is different. Advice given by Tracing should be
applied first. As order declarations are itself advice, they benefit from the unified
join point model. They can be given to virtual pointcuts and can be declared in the
context of any aspect. Hence, it is possible to separate the precedence rules from the
aspects they affect. The AspectC++ weaver collects all partial order declarations for
a join point and derives a valid total order. In case of a contradiction, a weave-time
error is reported.

4.3.3 Matching C++ Entities

As already mentioned in section 1.2, C++ has a rather complex type system, con-
sisting of fundamental types (int, short, ...) and class types (class, struct, union),
derived types (pointer, array, reference, function) and types optionally qualified by
cv-qualifiers (const, volatile). Besides ordinary functions and member functions,
C++ also supports overloading a predefined set of operator functions. Classes can
define type conversion functions 3 to provide implicit casts to other types. And
finally, classes or functions can be parameterizable with template arguments.
The AspectC++ match expression language covers all these elements, because in
C++ they are an integral part of a type’s or function’s name or signature. Hence, they
should be usable as a match criteria. The match expression language is defined by
an own grammar, which consists of more than 25 rules. We are therefore not going
to describe it in detail, but present match expressions for function signatures as one
example for AspectC++’s support for matching “C++ specific” entities.

3 often called type conversion operators, too, as they are defined using the operator
keyword (e.g. “operator int()”)

10

Expression Matches

“% IntArray::%(...)” 1–6 Any function, operator function, or type

conversion function in IntArray

“% IntArray::%(...) const” 1, 5 Any const -function, -operator function,

or -type conversion function in IntArray

“% IntArray::%<...>(...)” 3 Any instance of any template -function,

-operator function, or -type conversion

function in IntArray

“% IntArray::%<short>(...)” (3) Any <short> instance of any template

-function, -operator function or -type con-

version function in IntArray

“...::operator %(...)” 5, 6 Any type conversion function

“...::operator %*(...)” 5, 6 Any type conversion function that con-

verts to a pointer type

“% IntArray::operator =(...)” 4 Any assignment operator in IntArray

Table 1
Matching of C++-specific function signatures

class IntArray {
public:
int count() const; (1)
void clear(); (2)
template< class T > init(const T* data, int n); (3)
IntArray &operator =(const IntArray &src); (4)
operator const int*() const; (5)
operator int*(); (6)

};

The Class IntArray consists of members that use cv-qualifiers (1, 5), templates
arguments (3), operator overloading (4), and type conversion functions (5, 6). Table
1 demonstrates, how these elements are matched by various match expressions.
Additional examples, including match expressions for type and scope, can be found
in Figure 1-d.

4.3.4 Intentionally Missing Features

AspectC++ intentionally does not implement the get() and set() pointcut functions,
known from AspectJ to give advice for field access. Even if desirable, they are
not implementable in a language that supports free pointers. Field access through
pointers is quite common in C/C++ and implies a danger of “surprising” side effects
for such advice.

11

1 File: ObserverPattern.ah
2

3 aspect ObserverPattern {
4 // data structures to manage subjects and observers
5 ...
6 public:
7 // Interfaces for each role
8 struct ISubject {};
9 struct IObserver {

10 virtual void update (ISubject *) = 0;
11 };
12

13 // To be defined / overridden by the concrete derived aspect
14 // subjectChange() matches execution of all non-const methods
15 pointcut virtual observers() = 0;
16 pointcut virtual subjects() = 0;
17 pointcut virtual subjectChange() = execution("% ...::%(...)"
18 && !"% ...::%(...) const") && within(subjects());
19

20 // Add new baseclass to each subject/observer class
21 // and insert code to inform observers after a subject change
22 advice observers () : slice class : public ObserverPattern::IObserver;
23 advice subjects() : slice class : public ObserverPattern::ISubject;
24

25 advice subjectChange() : after () {
26 ISubject* subject = tjp->that();
27 updateObservers(subject);
28 }
29 void updateObservers(ISubject* subject) { ... }
30 void addObserver(ISubject* subject , IObserver* observer) { ... }
31 void remObserver(ISubject* subject , IObserver* observer) { ... }
32 };
33 ______________________
34 File: ClockObserver.ah
35

36 #include "ObserverPattern.ah"
37 #include "ClockTimer.h"
38

39 aspect ClockObserver : public ObserverPattern {
40 // define the pointcuts
41 pointcut subjects() = "ClockTimer";
42 pointcut observers() = "DigitalClock"||"AnalogClock";
43

44 public:
45 advice observers() : slice class {
46 public:
47 void update(ObserverPattern::ISubject* sub) {
48 Draw();
49 }
50 };
51 };

Fig. 2. Reusable Observer-Pattern Aspect

4.4 Join Point API

The join point API (Figure 1-g) is another part of AspectC++ that is heavily influ-
enced by the “C++ philosophy”. Compared to Java, C++ has a less powerful runtime
type system, but a more powerful compile-time type system. In Java, basically
everything is a Java.lang.Object at runtime, which facilitates the development of
generic code, as instances of any type can be treated as Object at runtime. In C++

12

1 namespace win32 {
2 struct Exception {
3 Exception(const std::string& w, DWORD c) { ... }
4 };
5

6 // Check for "magic value" indicating an error
7 inline bool IsErrorResult(HANDLE res) {
8 return res == NULL || res == INVALID_HANDLE_VALUE;
9 }

10 inline bool IsErrorResult(HWND res) {
11 return res == NULL;
12 }
13 inline bool IsErrorResult(BOOL res) {
14 return res == FALSE;
15 }
16 ...
17

18 // Translates a Win32 error code into a readable text
19 std::string GetErrorText(DWORD code) { ... }
20

21 pointcut Win32API() = "% CreateWindow %(...)"
22 || "% BeginPaint (...)"
23 || "% CreateFile %(...)"
24 || ...
25 } // namespace Win32
26

27 ____________________
28

29 aspect ThrowWin32Errors {
30

31 // template metaprogram to generate code for
32 // streaming a comma-separated sequence of arguments
33 template< class TJP, int N >
34 struct stream_params {
35 static void process(ostream& os, TJP* tjp) {
36 os << *tjp->arg< TJP::ARGS - N >() << ", ";
37 stream_params < TJP, N - 1 >::process(os, tjp);
38 } };
39 // specialization to terminate the recursion
40 template< class TJP >
41 struct stream_params < TJP, 1 > {
42 static void process(ostream& os, TJP* tjp) {
43 os << *tjp->arg< TJP::ARGS - 1 >();
44 } };
45

46 advice call(win32::Win32API()) : after() {
47 if(win32::IsErrorResult(*tjp->result())) {
48 ostringstream os;
49 DWORD code = GetLastError();
50

51 os << "WIN32 ERROR " << code << ": "
52 << win32::GetErrorText(code) << endl;
53 os << "WHILE CALLING: "
54 << tjp->signature() << endl;
55 os << "WITH: " << "(";
56

57 // Generate joinpoint-specific sequence of
58 // operations to stream all argument values
59 stream_params < JoinPoint ,
60 JoinPoint::ARGS >::process(os, tjp);
61 os << ")";
62 throw win32::Exception(os.str(), code);
63 } }
64 };

Fig. 3. An Aspect to Throw Win32 Errors as Exceptions

13

there is no such common root class. C++, by the means of overloading and templates,
facilitates the development of generic code that can be instantiated with any type
at compile-time. In general, Java promotes genericity at runtime 4 , while the C++
philosophy is to use genericity at compile time. For this purpose, we extended the
AspectJ idea of a runtime join point API by a compile-time join point API, which
provides static type information about the current join point at compilation time.
The compile-time join point API is visible to advice code as class JoinPoint. Pro-
vided information includes, besides other type information, the sequence of argument
types and the result type of the affected function. JoinPoint::Result is an alias
for the function’s result type. The number of function arguments is available as
compile-time constant JoinPoint::ARGS. The function argument types are provided
through the template class JoinPoint::Arg<i>::Type. We intentionally used an
integer template for this purpose, as it makes it possible to iterate at compile time
over the sequence of argument types by template meta-programs. Such usage of the
compile-time join point API is demonstrated in the “Win32 Errorhandling” example
in section 5.2.
The runtime join point API is visible to advice through the pointer tjp, which refers
to an instance of JoinPoint. By using tjp, it is possible to retrieve the dynamic
context, like the pointer to the actual result value (tjp->result()). Note that the
function to retrieve the value of an argument is overloaded. If the index of the
argument is known at compile-time, the template version tjp->arg<i>() can be
used. It takes the index as template parameter and (later at runtime) returns a typed
pointer to the value. Otherwise, the unsafe version tjp->arg(i) has to be used,
which takes the index as a function parameter and returns an untyped void pointer to
the value.
The class JoinPoint is not only specific for each join point, it is furthermore tai-
lored down according to the individual requirements of the actual advice. If, for
instance, tjp->result() is never called in the advice code, the function is removed
from JoinPoint and no memory is occupied by the reference to the result value at
runtime. This “pay only what you actually use” is important for facilitating AOP
in the domain of embedded systems, where small memory footprints are a crucial
concern.

In AspectC++, the join point API also implements the functionality to proceed
to the intercepted original code from around advice (tjp->proceed()). It is also
possible to store the context information of the intercepted function (returned by
tjp->action()) and delegate its execution to another function or thread. This offers
a noticeable higher flexibility than in AspectJ, where proceed() can only be called
from the advice code itself.

4 This is even true with Java generics introduced in Java 5.0, which are basically a syntactic
wrapper around the “treat everything as an object” philosophy.

14

4.5 Language Summary

The previous sections presented only a subset of the AspectC++ language features.
We left out details about (context binding) pointcut functions, algebraic operations,
or the semantics of code advice, as they are very similar to AspectJ. Other elements,
like the aspect instantiation, are different from AspectJ, but left out because of space
limitations. Nevertheless, these features are available in AspectC++, too.

5 Examples

In the following sections, the expressive power of the AspectC++ language is
demonstrated by two real-world examples. The first demonstrates using virtual
pointcuts with baseclass introductions for a reusable implementation of the observer
pattern. The second example is an aspect that checks the result codes of Win32
API functions and throws an exception in case of an error. It demonstrates how to
use the compile-time join point API to exploit the power of C++ template meta-
programming in advice code.

5.1 Reusable Observer

Reusable implementations of design patterns are a well known application of
AOP [13]. The listing in Figure 2 shows an AspectC++ implementation of the
observer protocol [12]. The abstract aspect ObserverPattern defines interfaces
ISubject and IObserver (lines 8–11), which are inserted via baseclass introduc-
tions into all classes that take part in the observer protocol (lines 22-23). These
roles are represented by pure virtual pointcuts subjects() and observers(). Thus,
their definition is delegated to derived concrete aspects. A third virtual pointcut,
subjectChange(), describes all methods that potentially change the state of a subject
and thereby should lead to a notification of the registered observers (line 17). The
pointcut is defined as execution(“%...::%(...)” && !”%...::%(...) const”) &&

within(subjects()). It evaluates to the execution of all non-const methods that are
defined within a class from subject(). This is a reasonable default. However, it can
be overridden in a derived aspect if, for instance, not all state-changing methods
should trigger a notification. Finally, the notification of observers is implemented by
giving after execution advice to subjectChange() (lines 25–28).
The ClockObserver aspect is an example for a concrete aspect derived from
ObserverPattern. To apply the pattern, the developer only has to define the pure
virtual pointcuts subjects() and observers() (lines 41–42) and to write the intro-
duction that inserts update() into the observer classes (lines 45–50).

15

“Reusable Observer” is a typical application of aspects in the world of object-
orientation. The ObserverPattern implementation is even more generic than the
AspectJ implementation suggested by Hannemann [13], where the derived aspect
has to perform the baseclass introductions for the Observer and Subject interfaces.
Purpose and name of these interfaces are, however, implementation details of the
protocol and should be hidden. Moreover, the derived aspect has to define the
subjectChange() pointcut in any case. In AspectC++ this is not necessary, as it is
possible to take advantage from the C++ notion of non-modifying (const) meth-
ods in match expressions and thereby find all potentially state-changing methods
automatically.

5.2 Win32 Errorhandling

Every program has to deal with the fact that operations might fail at runtime. Today,
most developers favor exceptions for the propagation of errors. However, especially
in the C/C++ world, there are still thousands of legacy libraries that do not support
exception handling, but indicate an error situation via the function’s return value.
In the Win32 API, for instance, an error is indicated by returning a special “magic
value”. The corresponding error code (reason) can then be retrieved using the
GetLastError() function. The actual “magic value” needed to check the result
depends on the return type of the function. BOOL functions, for instance, return FALSE,
while HANDLE functions return either NULL or INVALID_HANDLE_VALUE. The aim of the
ThrowWin32Errors aspect (Figure 3) is to perform the appropriate check after each
call to a Win32 function and thereby transform the Win32 model of error handling
into an exception based model. This is actually very useful for developers that have
to work with the Win32 API.

The ThrowWin32Errors aspect gives after advice for all calls to functions defined by
the win32::Win32API() pointcut (Figure 3, lines 21–24). The advice code checks for
an error condition using the win32::IsErrorResult() helper function. This function
performs the check against the type-dependent “magic values”. It is overloaded for
each return type used by Win32 functions. (lines 6–16). The compiler’s overload
resolution deduces (at compile-time) for each join point the correct helper function
to call. Note that this generic implementation of the advice code is only possible,
because tjp->result() returns a pointer of the real (static) type of the affected
function.
The win32::Exception object thrown in case of an error should include all context
information that can be helpful to figure out the reason for the actual failure. The
most tricky part to solve here is to build a string representation from the actual
parameter values. In AspectJ one would iterate at runtime over all arguments and call
Object.toString() on each argument. However, in C++ it is not possible to perform
this at runtime, as C++ types do not share a common root class that offers generic
services like toString(). The C++ philosophy of genericity is based on static

16

typing. Retrieving a string representation of any object is realized by overloading the
stream operator ostream& operator < <(ostream&, T) for each type T. Therefore,
we have to iterate at compile-time over the join point-specific list of argument types
to generate a sequence of stream operator calls, each processing (later at runtime) an
argument value of the correct type. This is implemented by a small template meta-
program (lines 33–44), which is instantiated at compile-time with the JoinPoint

type (line 39) and iterates, by recursive instantiation of the template, over the join-
point-specific argument type list JoinPoint::Arg<I>. For each argument type, a
stream_params class with a process() method is generated, which later at runtime
will stream the typed argument value (retrieved via tjp->arg<I>()) and recursively
call stream_params::process() for the next argument (lines 35–37, 42–43). Again,
the compiler automatically deduces the actual operator to call for a specific argument
type during overload resolution.

The “Win32 Errorhandling” example shows, how aspects can be used with the
procedural paradigm followed by C-style legacy libraries. It furthermore demon-
strates, how advice code can take advantage of the generic and generative program-
ming paradigm offered by C++ templates 5 . A recent paper demonstrates, that this
combination of AOP and templates can lead to very generic and efficient aspect
implementations [19].

5.3 Examples Summary

The “Reusable Observer” and “Win32 Errorhandling” examples show, how As-
pectC++ can be used with very different “styles” of C/C++ code, that is, with the
different programming paradigms integrated into the C++ language. They also il-
lustrate that certain AspectC++ concepts fit well into the C++ philosophy of static
typing, which enables developers to write very expressive aspect code.

6 The Weaver

The AspectC++ weaver ac++ is a source-to-source front-end that transforms As-
pectC++ programs into C++ programs 6 . The woven code can then be built with any
standard-conforming C++ compiler, like g++ or VisualC++. AspectC++ programs
have already been executed on a broad variety of platforms, ranging from the small-
est 8 bit micro-controllers to 64 bit servers. The following sections provide some
details about the weaver implementation.

5 It is, of course, inconvenient to use template meta-programming to build just a string of
argument values. However it is the only way of doing this in C++ at all.
6 The ac++ weaver and documentation are available from http://www.aspectc.org/

17

6.1 Translation Process

A C++ program consists of a set of self-contained 7 translation units. The translation
process is performed in two steps. First, the compiler transforms each translation unit
into an object file, which contains binary code augmented by symbol information
that describes all externally visible and unresolved symbols. Then, the linker binds
all object files and creates the executable code by resolving all dependencies.
Various development tools like IDEs or program builders like make strongly rely
on this two-step translation process. Thus, for the sake of easy integration, the
ac++ command is called for each translation unit and produces C++ code that
can be directly fed into the C++ compiler. On the one hand this design decision
facilitates the implementation of wrapper programs, which hide ac++ from the build
environment. On the other hand this significantly restricts the knowledge of the
aspect weaver to single translation units. To overcome this limitation the following
problems had to be solved.

6.1.1 Visibility of aspects

Aspects should be able to affect code in any translation unit. Therefore, a mechanism
is needed to include the definition of an aspect in all translation units. Programmers
should not be forced to include the definition by hand using the C++ preprocessor
directive #include. This would violate the “obliviousness” goal. Therefore, we
adopted the “forced include” mechanism known from many C++ compilers for
that purpose. In practice, this means that aspect definitions are stored in “aspect
header files” (*.ah). The location of these files is provided on the command line
and the weaver automatically includes all aspect headers in the currently processed
translation unit.

6.1.2 Link-Once Code

Traditionally, a C/C++ linker does not accept two externally visible symbols with the
same name to be defined in two different translation units. This is problematic for a
C++ aspect weaver, because there are many situations, in which global objects have
to be generated. Examples are the instances of singleton aspects and introductions of
static attributes or non-inline functions. As the ac++ weaver always processes only a
single translation unit, there is no global knowledge, which would help to find the
right place for inserting the generated code. To solve this problem, ac++ exploits the
so-called COMDAT feature of state-of-the-art C++ compilers. A standard-compliant
C++ compiler sometimes has the same problem as ac++. For example, non-inline
member functions or static attributes of template classes are allowed to be defined
in header files. To avoid the problem of duplicate symbols the compiler and linker

7 anything that is used either has to be defined or declared.

18

Scanner Preprocess. Parser and
Semantics

Manipulator

WeaverTracker Dog

C++ Source

Planner

Tokens Tokens

Tokens

CommandsSyntax Trees Aspect&Class DB

Plan

AspectC++

PUMA

Join Points

Project RepositoryAspectC++ Source

Fig. 4. Architecture of the AspectC++ Weaver

use “vague linkage”. Thus, by using certain code generation patterns COMDAT can
also be used by the weaver. In most cases, generated global code is transparently
wrapped by a template class.

6.1.3 Information sharing

To provide at least a “partial global” knowledge ac++ accesses a global project
repository. This is a file, which describes processed translation units by listing
join points, aspects, and advice. It can be used by one ac++ incarnation to save
information for other ac++ incarnations running later. For example, it would be
impossible to provide a project-wide unique ID (Figure1-g) for each join point
without the project repository. As a side-effect the project repository can also be
used by IDEs, like the Eclipse ACDT 8 , to visualize join points.

6.2 Architecture and Implementation

Figure 4 illustrates the architecture of ac++ by showing the main building blocks
and the data flow during a program transformation from AspectC++ to C++. The
weaver implementation is based on PUMA, a framework for C++ code analysis
and transformation. PUMA is developed in-line with AspectC++ by our group. It
contains a complete C++ front-end, which supports standard ISO C++ 98 as well
as many g++ and VisualC++ language extensions. The ac++ weaver has a weight of
85 ksloc, from which are 70 ksloc used solely by the PUMA framework, that is for
analyzing and manipulating C++ code.

The weaving process starts in PUMA with scanning, preprocessing, parsing, and a
full semantic analysis of the source code. The semantic analysis includes complete
function call resolution, necessary to implement call advice, and full template in-
stantiation, needed for matching and weaving in template instances.

8 available from http://acdt.aspectc.org/

19

The ac++ level first processes the resulting syntax tree. The Tracker Dog is responsi-
ble to find all points in the code, which might be affected by advice. The resulting
potential join points are passed to the Planner, which also uses the Aspect&Class
Database from the Parser and Semantics (PUMA level). The planner internally
parses and analyses pointcut expressions (including pointcut type checks) and cal-
culates the sets of matching join points. For each join point the planner sets up a
plan that is later used by the Weaver to generate a sequence of code manipulation
commands. The code manipulation is performed again on the PUMA-level by the
Manipulator.

The PUMA framework itself is implemented in AspectC++. Aspects are, for in-
stance, used to adapt the system to compiler-specific peculiarities. The PUMA core
implements only the standard C++ grammar. All additional compiler-specific gram-
mar extensions are woven in by aspects. Currently such grammar extensions are
implemented for VisualC++ (10 aspects, 12 introductions, 13 execution advice) and
g++ (1 aspect, 15 introductions, 15 execution advice).

6.3 Code Generation

6.3.1 JoinPoint Structure

AspectC++ generates a C++ class with a unique name for each join-point that is
affected by advice code. By performing static code analysis on the advice and tem-
plates instantiated by advice (with JoinPoint as a template parameter) ac++ avoids
to generate unneeded elements in this class. The following code fragment shows a
part of the JoinPoint structure for a call join point in the “Win32 Errorhandling”
example.

struct TJP_WndProc_1 {
...
template <int I> struct Arg {
typedef void Type;
typedef void ReferredType;

};
template <> struct Arg <0> {

typedef ::HWND Type;
typedef ::HWND ReferredType;

};
...
void **_args;
inline void *arg (int n) {return _args[n];}
template <int I> typename Arg<I>::ReferredType *arg () {

return (typename Arg<I>::ReferredType*)arg (I); }
};

6.3.2 Advice Transformation

Advice code is transformed into a member function of the aspect, which in turn is
transformed to a class. If the advice implementation depends on the JoinPoint type,

20

it is transformed into a template member function and the unique join point class is
passed as a template argument to the advice code. Thus, in this case the advice code
is generic and can access all type definitions (C++ typedefs) inside the join-point
class with JoinPoint::Typename, as described in section 4.4. The following code
fragment shows JoinPoint dependent advice code after its transformation into a
template function.

class ThrowWin32Errors {
// ...
template< class JoinPoint >
void __a0_after(JoinPoint *tjp) {

if(win32::IsErrorResult(*tjp->result())) {
// ...

}
};

6.3.3 Weaving in Regular Code

Weaving of call or execution advice is based on inlined wrapper functions. For in-
stance, in the “Win32 Errorhandling” example the after call advice for BeginPaint()
is implemented by replacing the call expression BeginPaint(NULL,&ps) by
__call_WndProc_1_0(NULL,&ps). The wrapper function calls BeginPaint() first
and invokes the advice afterwards.

inline ::HDC __call_WndProc_1_0 (::HWND arg0 ,
::LPPAINTSTRUCT arg1) {

::HDC result;
void *args_WndProc_1[] = { (void*)&arg0 , (void*)&arg1 };
TJP_WndProc_1 tjp_WndProc_1 = { args_WndProc_1 , &result };
result = ::BeginPaint(arg0 , arg1);
AC::invoke_ThrowWin32Errors_ThrowWin32Errors_a0_after <

TJP_WndProc_1 > (&tjp_WndProc_1);
return (::HDC) result;

}

Although generating a wrapper function seems straightforward, call advice weaving
is a complex transformation. For example, a call can syntactically be expressed in
numerous ways in C++. Specific transformation patterns are needed for unary and
binary operator calls. Even invisible calls by implicitly called conversion functions
have to be considered.

6.3.4 Weaving in Template Code

AspectC++ supports advice for join points associated with individual template
instances. Therefore, the weaver has to perform a full template instantiation anal-
ysis to distinguish template instances and to compare their signatures with match-
expressions. To be able to affect only certain instances on the code generation level,
our weaver uses the explicit template specialization feature of C++. For example, if
advice affects only the instance container<int> the template code of container is
copied, manipulated according to the advice and the instantiation, and declared as a

21

specialization of container for int as shown here: 9

template <class ElementType > class container {
public:
void insert (ElementType elem) {...}

};
...

namespace AC{ typedef int t_container_0; }
template <> class container <AC::t_container_0 > {
public:

inline void __exec_old_insert(AC::t_container_0 elem){...}
void insert (AC::t_container_0 arg0) {

AC::invoke_MyAspect_a0_before ();
this->__exec_old_insert(arg0);

}
};

6.4 Overhead

AspectC++ is an AOP-extension for the C++ language, specifically aimed for the
application of AOP in resource-constrained environments such as embedded systems.
A major goal of AspectC++ is cost efficiency in the generated code. Therefore, the
AspectC++ compiler follows a source-to-source weaving approach with generation
of code patterns that (1) do not use “expensive” C++ language elements (such as
RTTI or exceptions), and (2) can well be optimized by current C++ compilers.

To evaluate the overhead induced by the ac++ generated code for various AspectC++
language features, we conducted a series of µ-benchmarks. The condensed results are
depicted in Table 2. The upper part shows the results of the measurements performed
with g++ as back-end compiler 10 , while we used the even better optimizing Intel
C++ compiler icc 11 for the measurements in the lower part. For every test we
measured the consumed CPU time (clock cycles), dynamic memory consumption
(stack, bytes), and static memory consumption (code/data, the size of the whole test
program in bytes).

The ground overhead of applying advice to a parameterless function is very low (Ta-
ble 2-a). On a Pentium 3 with g++, advice invocation takes only 2 cycles, independent
from the type of advice (before/after/around), the join-point type (call/execution),
and even the number of aspects giving advice to the join-point (Table 2-b). This is
noticeable, as in AspectJ, for instance, around advice induces significantly higher

9 C++ does not support the explicit specialization for template functions. However, we can
work around this problem by defining a helper template class. Furthermore, some compilers
do not support explicit specialization in non-namespace scope. We handle this problem by
using partial specialization with an extra dummy argument.
10 g++ 3.3.5 (-O3 -mpreferred-stack-boundary=2 -fno-align-functions -fno-align-jumps
-fno-align-loops -fno-align-labels -fno-reorder-blocks -fno-prefetch-loop-arrays)
11 icc 9.0 (-O3)

22

Resource consumption with g++ 3.3.5:

advice
abs

�
abs

�
abs

�
tjp-> abs

�
abs

�
abs

�
tangled 4 0 4128 abs

�
abs

�
abs

�
plain, n=0 5 16 3968

before 6 2 0 0 4128 0 1 6 0 4080 that() 7 2 20 4 3968 0
after 6 2 0 0 4128 0 2 5 -1 0 0 4080 0 target() 8 3 20 4 3968 0
around 6 2 0 0 4128 0 3 6 1 0 0 4096 16 result() 11 6 16 0 3968 0
before 6 2 0 0 4128 0 1 6 0 4096 plain, n=1 13 24 3968
after 6 2 0 0 4128 0 2 5 -1 0 0 4096 0 arg<0>() 13 0 24 0 3968 0
around 6 2 0 0 4128 0 3 6 1 0 0 4096 0 plain, n=2 13 32 3984

arg<1>() 13 0 32 0 3984 0

a) incrementer b) multiaspect c) parameters, jp-api
cycles stack code

as

pe
ct

s cycles stack code cycles

ex
ec

ut
io

n

ex
ec

ut
io

n

in
t B

::b
ar

(..
.)

ca
ll

ca
ll

stack code

Resource consumption with icc 9.0:

advice
abs

�
abs

�
abs

�
tjp-> abs

�
abs

�
abs

�
tangled 0 0 6372 abs

�
abs

�
abs

�
plain, n=0 9 4 6372

before 0 0 0 0 6372 0 1 3 4 6424 that() 8 -1 4 0 6372 0
after 0 0 0 0 6372 0 2 2 -1 4 0 6340 -84 target() 11 2 4 0 6372 0
around 0 0 0 0 6372 0 3 3 0 4 0 6340 0 result() 7 -2 4 0 6372 0
before 3 3 0 0 6356 -16 1 4 0 6324 plain, n=1 14 20 6404
after 3 3 0 0 6356 -16 2 5 1 0 0 6340 16 arg<0>() 14 0 20 0 6404 0
around 3 3 0 0 6356 -16 3 9 4 0 0 6340 0 plain, n=2 17 28 6420

arg<1>() 17 0 28 0 6420 0

ex
ec

ut
io

n

ex
ec

ut
io

n

in
t B

::b
ar

(..
.)

ca
ll

ca
ll

stack codecycles stack code cyclescycles stack code

as

pe
ct

s

a) incrementer b) multiaspect c) parameters, jp-api

a) costs of incrementing a global counter either in the body of a function void f() (tangled)
or by giving advice (before/after/around for call/execution join-points) to the same
function. ∆ denotes the difference to tangled.

b) scaling of costs if 1–3 aspects give around advice to the same call/execution join-point.
∆ denotes the difference to the previous line.

c) costs of a member function call to int B::bar(n) (n = 0–2 int parameters) for which
some advice is given that either does not use the join-point API (plain) or calls a join-point
API function (that(), ...). ∆ denotes the difference to the corresponding plain line.

Table 2
AspectC++ µ-benchmark results

23

costs than before/after advice[10]. The size of the text segment (code) remains also
stable, the increase by 16 bytes in one case was mainly caused by linker alignment
of the affected section.

With the icc compiler the variation of the results is higher, but in the most cases
they are even better than the g++ results. For example, in the simple incrementer
test scenario there are cases in which there is no and sometimes even a “negative
overhead”.

While advice for parameterless functions does not lead to additional stack costs, the
stack space allocated by the compiler to pass call-by-value parameters is actually
doubled. This becomes evident from the plain lines in Table 2-c, which represent the
costs of a member function call with 0–2 int parameters for that some advice was
given (2-c numbers are not directly comparable with those from 2-a and 2-b, as they
include the costs of the method call itself). Each additional 4-byte int parameter
increases the absolute stack costs (by 8 bytes with g++ and 8–16 bytes with icc). The
reason turned out to be a limitation of the inliner/optimizer: Whenever a function is
inlined, the compiler ensures call-by-value semantics by pushing an extra copy of
all function parameters on the stack. In most cases, the parameter passing code is
later replaced by the optimizer with direct register access, but the (now completely
useless) stack reservation remains in the code.

The overhead to retrieve join-point specific context is quite low. Compared to
plain advice, only 0-6 extra cycles are consumed to provide access to context with
g++ and even less with icc. Accessing context which is implicitly available at the
join-point (such as argument and result values) does furthermore not induce any
additional stack costs. The required join-point context data generated for this purpose,
such as the array of argument references (see section 6.3.3), is later replaced by
the optimizer with direct access to the referenced parameters. Only “extra” context,
such as the pointer to the affected instance (tjp->that()) or the pointer to the target
of the call (tjp->target()), requires additional stack space (4 bytes).
The results show furthermore the benefits of the context tailoring performed by
ac++. The additional 4 stack bytes to store the pointer returned by tjp->that(), for
instance, are only consumed if the advice code actually uses tjp->that().

Overall, AOP with AspectC++ does not lead to an extra overhead that makes it per se
unacceptable even for resource constrained environments such as deeply embedded
systems or system software. In combination with an optimizing C++ compiler,
the static AspectC++ weaver ac++ generates efficient code. In µ-benchmarks, the
overhead of simple before/after/around-advice for call() and execution() join-
points is practically null, the overhead for accessing advice context is very low, even
though in some cases the stack overhead turned out to be higher than necessary. To
get such results the compiler needs to provide some basic optimization capabilites.
The most important are (1) embedding of functions explicitly marked as inline and
(2) performing a local alias analysis to detect and remove unnecessary parameter

24

copies. Without any optimization (especially function embedding), the resulting
code would be much worse. This is, however, a quite unrealistic scenario, as such
basic optimizations are available and used with almost every C++ compiler.

7 Summary and Conclusions

In this paper, we described our work on the design and development of AspectC++,
an AOP language extension and weaver for C++. We motivated our work with the
ongoing significance of C++ in software industry. Research and tool development
for C++ is hard. We examined, from the perspective of an AOP language designer,
some of the major peculiarities of C++ and categorized them into a conceptual level
(language) and a technical level (tools).
On the conceptual level, we emphasized that an AOP extension for C++ has to fit
into the philosophy of C++. Multi-paradigm programming, the focus on static typing
and compile-time genericity, as well as backward compatibility to existing code
are the fundamental elements of this philosophy. In AspectC++, this is addressed
in many places, but particularly by the match expression language, the (static) join
point API and the code generated by the weaver. AspectC++ thereby integrates AOP
well into the C++ language, which was also demonstrated in the examples.
On the technical level, we discussed some of the major difficulties regarding tool
development for C++. We pointed out that an aspect weaver benefits from a fully-
fledged syntax/semantics analysis, which is, however, a very tedious task to imple-
ment. The complexity of the language and the (anachronistic) translation model
put a heavy burden on the weaver implementation. We presented some details of
the implementation and demonstrated, how the weaver transforms AspectC++ code
into C++ code. The overhead of AspectC++ code in comparison with “tangled”
implementations is minimal.

Today, AspectC++ is already used by researchers from academia and industry.
Currently, 163 people, most of them from companies in the telecommunications
or embedded systems area, are subscribed on the ac++ user mailing list. The most
prominent academic applications can be found in the domain of tailorable embedded
databases [25], namely the Berkeley DB, and operating systems, which is our main
field of research. We use AspectC++ in our PURE and CiAO operating system product
lines [20,23].

Regarding future work, we will continue working on the template support. This
has evolved a lot over the last months, however, is still considered “experimental”.
We also plan to extend weaver in order to support plain C applications 12 . Weaving
in macro-generated code is another feature that will be addressed in near future.

12 Actually, ac++ is already able to weave in C code, but the generated code has always to
be compiled with a C++ compiler.

25

However, AspectC++ is almost feature-complete. We are convinced that it is now
ready for a broad adoption.

References

[1] A. Alexandrescu. Modern C++ Design: Generic Programming and Design Patterns
Applied. AW, 2001.

[2] O. S. Bagge, K. T. Kalleberg, M. Haveraaen, and E. Visser. Design of the CodeBoost
transformation system for domain-specific optimisation of C++ programs. In D. Binkley
and P. Tonella, editors, Third International Workshop on Source Code Analysis and
Manipulation (SCAM 2003), pages 65–75. IEEE, Sept. 2003.

[3] L. Bergmans. Composing Concurrent Objects. PhD thesis, University of Twente, 1994.

[4] S. Chiba. Metaobject Protocol for C++. In 10th ACM Conf. on OOP, Systems,
Languages, and Applications (OOPSLA ’95), pages 285–299, Oct. 1995.

[5] Y. Coady and G. Kiczales. Back to the future: A retroactive study of aspect evolution in
operating system code. In M. Akşit, editor, 2nd Int. Conf. on Aspect-Oriented Software
Development (AOSD ’03), pages 50–59, Boston, MA, USA, Mar. 2003. ACM.

[6] Y. Coady, G. Kiczales, M. Feeley, and G. Smolyn. Using AspectC to improve the
modularity of path-specific customization in operating system code. In ESEC/FSE ’01,
2001.

[7] K. Czarnecki, L. Dominick, and U. W. Eisenecker. Aspektorientierte Programmierung
in C++, Teil 1–3. iX, Magazin für professionelle Informationstechnik, 8–10, 2001.

[8] K. Czarnecki and U. W. Eisenecker. Generative Programming. Methods, Tools and
Applications. AW, May 2000.

[9] C. Diggins. Aspect-Oriented Programming & C++. Dr. Dobb’s, 408(8), Aug. 2004.

[10] B. Dufour, C. Goard, L. Hendren, C. Verbrugge, O. de Moor, and G. Sittampalam.
Measuring the dynamic behaviour of AspectJ programs. In 19th ACM Conf. on OOP,
Systems, Languages, and Applications (OOPSLA ’04), pages 150–169, New York, NY,
USA, 2004. ACM.

[11] T. Elrad, R. E. Filman, and A. Bader. Aspect-oriented programming. CACM, pages
29–32, Oct. 2001.

[12] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. AW, 1995.

[13] J. Hannemann and G. Kiczales. Design pattern implementation in Java and AspectJ. In
17th ACM Conf. on OOP, Systems, Languages, and Applications (OOPSLA ’02), pages
161–173, New York, NY, USA, 2002. ACM.

26

[14] W. Harrison and H. Ossher. Subject-oriented programming—a critique of pure objects.
In 8th ACM Conf. on OOP, Systems, Languages, and Applications (OOPSLA ’93),
pages 411–428, Sept. 1993.

[15] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold. Getting
started with AspectJ. CACM, pages 59–65, Oct. 2001.

[16] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold. An
overview of AspectJ. In J. L. Knudsen, editor, 15th Eur. Conf. on OOP (ECOOP ’01),
volume 2072 of LNCS, pages 327–353. Springer, June 2001.

[17] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and
J. Irwin. Aspect-oriented programming. In M. Aksit and S. Matsuoka, editors, 11th
Eur. Conf. on OOP (ECOOP ’97), volume 1241 of LNCS, pages 220–242. Springer,
June 1997.

[18] K. J. Lieberherr. Adaptive Object-Oriented Software: the Demeter Method with
Propagation Patterns. PWS, 1996.

[19] D. Lohmann, G. Blaschke, and O. Spinczyk. Generic advice: On the combination of
AOP with generative programming in AspectC++. In G. Karsai and E. Visser, editors,
3rd Int. Conf. on Generative Programming and Component Engineering (GPCE ’04),
volume 3286 of LNCS, pages 55–74. Springer, Oct. 2004.

[20] D. Lohmann and O. Spinczyk. Architecture-neutral operating system components.
23rd ACM Symp. on OS Principles (SOSP ’03), Oct. 2003. WiP presentation.

[21] S. Schupp, D. Gregor, D. R. Musser, and S.-M. Liu. Semantic and behavioral library
transformations. Information and Software Technology, 44(13):797–810, 2002.

[22] O. Spinczyk, A. Gal, and W. Schröder-Preikschat. AspectC++: An aspect-oriented
extension to C++. In 40th Int. Conf. on Technology of OO Languages and Systems
(TOOLS Pacific ’02), pages 53–60, Sydney, Australia, Feb. 2002.

[23] O. Spinczyk and D. Lohmann. Using AOP to develop architecture-neutral operating
system components. In 11th SIGOPS European W’shop, pages 188–192, New York,
NY, USA, Sept. 2004. ACM.

[24] A. Tešanović, D. Nyström, J. Hansson, and C. Norström. Aspects and components
in real-time system development: Towards reconfigurable and reusable software.
Embedded Computing, Feb. 2004.

[25] A. Tešanović, K. Sheng, and J. Hansson. Application-tailored database systems: a case
of aspects in an embedded database. In 8th Int. Database Engineering and Applications
Symp. (IDEAS ’04), Coimbra, Portugal, July 2004. IEEE.

27

	Motivation
	Technical Level
	Conceptual Level
	Our Contribution

	Related Work
	Aspect Languages
	Early AOP Approaches.
	AOP in Pure C++
	Other C++ Language Extensions

	AspectC++ Goals and Rationale
	Primary Design Goals
	Design Rationale

	The Language
	Overview and Terminology
	AspectC++ Grammar Extensions
	The Join Point Model
	Join Point API
	Language Summary

	Examples
	Reusable Observer
	Win32 Errorhandling
	Examples Summary

	The Weaver
	Translation Process
	Architecture and Implementation
	Code Generation
	Overhead

	Summary and Conclusions
	References

