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Abstract — Model driven development gains more and more relevance for the
development of hard real-time systems as it eases subsequent certification. Whereas
generating the application source code from such models no longer is uncommon
thanks to the research of the last years, targeting a specific operating system with
an application still is done by hand. This significantly restrains flexibility and reuse
within the development of real-time systems, as often assumptions on the underlying
operating system are hard-coded within the application. Consequently we come up
with a compiler-based approach to automatically map real-time applications coded
for a specific operating system to other operating systems offering different abstrac-
tions (e.g. time-triggered vs. event-triggered execution). This compiler-based ap-
proach is enabled by an operating system independent intermediate representation,
which allows to flexibly combine different operating system specific front- and back-
ends.

1 Introduction

In hard real-time systems not only the logical correctness of the results produced is of
importance, but also the accomplishment of timing constraints is demanded for their suc-
cessful operation. Missed deadlines can provoke consequences having an impact equiv-
alent to that of incorrect results. In combination with automatic code generation model
driven development eases the development of such systems a lot, as constraints assured
on the level of the model are also kept by the source code generated from these models.
Therefore, a lot of effort has been put into the research of model driven development pro-
cesses. Due to the rising hardware complexity of real-time systems, so called real-time
operating systems gain more and more popularity. While generating source code from
abstract models no longer is uncommon, mapping the application to such real-time oper-
ating system is done manually most of the time. This paper explains, why this is a serious
drawback for the development of real-time systems.

Thus, we suggest to automate this mapping by a compiler-based tool instead of applying
a hand-crafted mapping. In other words, such a tool expects the source code of a real-
time application (a simple operating system independent program or a program targeting
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an abstract operating system API or even a specific operating system API e.g. OSEK [1]
or OSEKtime [2]) as input and generates a real-time application targeting a different oper-
ating system or even programming language. Interesting combinations are e.g. operating
systems supporting the event-triggered or the time-triggered control paradigm. A tool
like this would result in decoupling the application from the employed system software as
a conventional compiler decouples a programming language and the targeted instruction
set architecture, thus, gaining a similar amount of portability and reusability of real-time
applications across different operating systems as of programming languages across dif-
ferent processors. Some existing real-time system CASE tools' indeed already support
generating code from abstract models targeting a specific operating system. However,
these tools normally support only a single specific operating system and do not benefit
from the opportunities a compiler-based approach offers.

The rest of this paper is organised as follows: In section 2 we present a succinct
overview of the abstraction levels employed in the development of real-time systems,
pointing out the importance of automatically lowering abstraction levels. After that,
Atomic Basic Blocks (ABBs) introduced in [3] are revisited in section 3, because ABBs
are perfectly qualified to constitute an intermediate representation for a compiler-based
tool as outlined above. Section 4 picks up some benefits of such a compiler-based tool
and section 5 discussed its preliminary design. In section 6 we illustrate a possible appli-
cation of this tool within an automotive use case. Finally, section 7 sums up the paper and
gives some prospects to future work.

2 Levels of Abstractions in the Development of Real-Time Systems

In this section abstractions employed in the state-of-the-art development process for real-
time systems are examined. Firstly, the objectives of each abstraction are outlined and
work that has been done on the level of this abstraction is exemplarily cited. Subsequently,
the impact of the availability of transformations lowering abstractions in an automated
fashion is explained and the benefits of a compiler-based transformation are sketched.

Figure 1 gives an overview on the abstraction levels encountered when engineering a
real-time system. The actual level of abstraction decreases from the modelling level down
to the hardware level. The boxes on the right side represent the lowering transformations
mentioned above. Transformations annotated with a check mark can already be carried
out in an automated and generic, i.e. compiler like, fashion, while those marked with a
cross either have to be crafted manually or are only covered by fixed, i.e. non-generic,
transformations.

2.1 Levels of Abstraction

Modelling The main purpose of modelling is to hide unnecessary details so the devel-
oper can focus on a single aspect of the real-time system, e.g. deployment, functional or
temporal behaviour. Due to the rising complexity of software-based real-time systems it is
very helpful to incorporate modelling approaches into the development of such systems.
Moreover, modelling approaches often offer formal or semi-formal specified syntax and

le.g. Matlab RTW (http://www.mathworks.com), TargetLink (http://www.dspace.com) or Rhapsody
(http://www.ilogix.com)
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Figure 1: Abstraction Levels in the Process of Real-Time Systems Development

semantics, therefore allowing for complex analyses to verify the functional and the tem-
poral correctness of a real-time system. Many of these analyses can hardly be conducted
on lower abstraction levels like the application level. This property becomes more and
more important due to an increasing demand of software-based hard real-time systems
also in safety-critical environments. Lowering models to the application level means im-
plementing these models. This can either be done manually or automatically by means of
code generators.

A widely used kind of model to specify the behaviour of a system are statecharts or
state machines. These models are part of UML [4] and are also used in other modelling
tools like STATEMATE [5], Charon [6], AutoFocus [7], or Matlab/Simulink®. The de-
ployment of software components to the nodes of a distributed system or replication can
be modelled using e.g. SysWeaver [8] or AutoFocus [7], whereas the real-time extension
of UML [9] can be used to explicitly model a real-time system’s timing constraints.

Application The application provides an event-handler, i.e. a task implementation, for
each event to be serviced in a real-time system. The structure of the application is mainly
determined by techniques provided by conventional software engineering and the de-
ployed programming language. The programming paradigm favoured for real-time sys-
tems development is the procedural paradigm (e.g. C, Ada), but object orientation (e.g.
C++, Ada, Java) has gained more attention during the last few years as this paradigm
often is more suitable for complex software systems. Especially for real-time systems it

Zhttp://mathworks.com
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is interesting to provide an explicit notion of time to express timing constraints on the
programming language level. This is particular popular amongst data-flow languages like
LUSTRE [10], the data-flow language described by Faustini et al [11], or time-triggered
programming languages like Giotto [12]. The application either targets the bare hardware
or an underlying run-time or operating system depending on the complexity of the ap-
plication. There already exist some CASE tools, as TargetLink or AutoFocus [7], which
provide source code generators for behavioural and deployment models targeting specific
operating systems. In many cases however, this mapping is hand-crafted, i.e. the devel-
oper splits up the application in several tasks and embeds calls to run-time or operating
system into the application.

Run-Time System A run-time system provides a software infrastructure to implement
tasks, connect them to events and have them executed when the corresponding events
occur, either in a time-triggered or in an event-triggered manner. Such run-time systems
must not to be intermixed with operating systems. In most cases, these run-time systems
provide a much higher level of abstraction than operating systems and are manually im-
plemented on top of an operating system. So, the term middleware might in many cases
be quite appropriate for such systems. Examples are the run-time system that executes
the time-triggered Giotto programming language [12] running on top of RTLinux [13] or
TMO [14] running on top of e.g. eCos [15].

Operating System Operating systems are the interface between the application and the
hardware. The main tasks of an operating system are making available and multiplexing
the resources offered by the hardware. Lowering an operating system to the hardware
level is twofold. On the one hand an operating system is implemented using a program-
ming language like C to an extent as great as possible. The lowering of a C program
to a specific instruction set architecture can be performed by a compiler and, thus, is
automated. On the other hand, the purpose of an operating system is just to hide the com-
plexity of the hardware. So, designing and implementing an operating system also means
dealing with all the peculiarities of the underlying hardware. It is very unlikely that this
ever can be automated in a reasonable way.

Hardware Real-time systems not only comprise software encapsulating the functional
logic of the application and the run-time or the operating system, respectively, but also
the hardware the system runs on. Additionally, customised hardware can be utilised for
special purposes, e.g. implementing special algorithms using a FPGA. This paper, how-
ever, focuses on software-based real-time systems. Hence, hardware is beyond the scope
of this paper and will not be discussed any further.

2.2 The Impact of Automated and Generic Transformations

Transforming higher levels of abstraction into lower ones primarily in an automated fash-
ion means that a manual step in the development process is replaced by a machine-based
one. Naturally, this results in saving time and often also in more efficient transforma-
tion outputs, but maybe most important, the elimination of an additional source of errors.
Moreover, two classes of automated transformation have to be distinguished: generic and
special purpose transformations. Generic transformations decouple different levels of ab-
straction by providing specific front-ends and back-ends that can be combined in a flexible
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way through a common intermediate representation. Special purpose transformations on
the other hand propagate requirements of the front-end down to the back-end and vice
versa because the intermediate representation is omitted. So such transformations cannot
effectively decouple different levels of abstraction. Those transformations provide noth-
ing more than a fixed mapping between inputs and outputs fulfilling these requirements.
For all transformations, however, the targeted level of abstraction has to be expressive
enough to implement all constructs of the higher level of abstraction.

Code generators and compilers provide generic transformations to lower models to the
application level and source code to the hardware level, respectively. The existence of
these tools have a serious impact on the development of real-time systems. The absence
of code generators in model driven development on the one hand would e.g. imply that
it has to be assured manually that the hand-crafted implementation really implements the
model. Otherwise, analyses and proofs performed on those models were completely use-
less. Both, manually implementing the model and manually evidencing the equivalence
of model and implementation, are very time-consuming and also error-prone tasks. High-
level programming languages on the other hand would be completely unusable without
appropriate compilers. If the high-level language constructs had to be lowered to as-
sembly by hand there would be no benefit in using such programming languages at all.
The existence of an appropriate compiler is absolutely vital for the success of a program-
ming language. So code generators decouple the modelling and the application level with
respect to the employed programming language whereas compilers decouple the appli-
cation and the hardware level with respect to the employed programming language and
instruction set architecture.

The major obstacle when decoupling the application from the run-time or operating
system level is to deal with the control paradigm employed by the run-time or operating
system. This can either be a time-triggered or an event-triggered one. These control
paradigms are accompanied by fundamentally different control flow abstractions. While
threads in time-triggered systems expose run-to-completion semantics they may block
due to explicit synchronisation in event-triggered systems. This hampers porting real-
time systems between run-time environments implementing different control-paradigms
a lot and often only a complete redesign and reimplementation is viable. So software
reuse on the level of complete event handlers across different control paradigms on the
application level is very labour intensive due to the complex manual porting.

There are approaches offering a closed tool chain starting at the modelling level down
to the hardware. These tool chains, however, use special purpose transformations when
mapping the application to the run-time environment. The SysWeaver [8], for instance,
explicitly specifies event-triggered semantics already on the modelling level and prop-
agates this property down to the execution environment by targeting an event-triggered
operating system. The time-triggered counterpart, AutoFocus [7], employs a “formal
time-synchronous operational semantics” on the modelling level and, therefore, also tar-
gets a combination of time-triggered operating system and bus system, namely OSEKtime
[2] and FlexRay [16]. Giotto [12] and TDL [17], on the other side, are based on a time-
triggered programming language and demand for a time-triggered execution of the real-
time application. These tool chains require a certain control paradigm on the input level
(this is either the modelling or the application level) and propagate this control paradigm
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to the execution environment. They do not effectively decouple the application level from
the run-time or operating system level with respect to the employed control paradigm.

2.3 Conclusion

In order to alleviate the deficiencies of existing tool chains as outlined above we propose
a compiler-based solution to map applications to run-time environments and thereby de-
couple these abstraction levels. The compiler therefore has to dispose an intermediate
representation of a real-time systems that is

1. independent of any particular control paradigm and

2. expressive enough to describe all relevant properties of an implementation of a real-
time system.

A proper intermediate representation called Atomic Basic Blocks is described in the sub-
sequent section 3.

3 ABBs: An Intermediate Representation for Real-Time Systems

A widely used intermediate representation utilised by compilers are control flow graphs
composed of basic blocks. While such a representation clearly is independent of a particu-
lar control flow abstraction offered by an operating system, it is also not expressive enough
to represent complete real-time applications. Usually the description of a complete real-
time system comprises a forest of control flow graphs connected by data dependencies,
other explicitly enforced dependencies, and mutual exclusion constraints marking criti-
cal sections. These dependencies cannot be expressed within conventional control flow
graphs.

The prerequisite to capitalising on such an intermediate representation is, that a real-
time application can be mapped to this representation. So it is not very promising to
support arbitrary applications, and we demand for real-time applications having a struc-
ture as illustrated in figure 2. In short, we assume that real-time systems are assembled
from one or more tasks. The execution of a task always is initiated by an event, whether
the event should be serviced in an event-triggered or a time-triggered fashion does not
matter here. A task consists of at least one sub-task and may fork further sub-tasks (1).
Each sub-task constitutes an own event handler for a particular event, i.e. a single event
can be handled by different sub-tasks each of them computing its own results. Deadlines
can be specified for complete tasks, thus applying for all sub-tasks forked by the task, for
single sub-tasks, or combinations of tasks and sub-tasks. Furthermore, in order to capture
directed dependencies, two or more sub-tasks can join into one common sub-task. These
joins can either have or (2) or and (3) semantics.

In [3] we already came up with an extension to conventional basic blocks called atomic
basic blocks (ABBs) that exactly allow for specifying the dependencies listed at the begin-
ning of this section. As conventional basic blocks, ABBs can be distinguished in minimal
and maximal ABBs. Minimal ABBs are identical to minimal basic blocks while maximal
ABBs aggregate one or more basic blocks. The criteria for grouping one or more basic
blocks into one maximal ABBs are as follows:

1. A maximal ABB always starts at the end of the preceding ABB in the control flow
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graph and continues to an appropriate termination of the ABB.
2. Appropriate terminations of ABBs are:

— a sub-task forks another sub-task

— asub-task joins another sub-task due to data dependencies (sub-task 7 defines
a variable sub-task 75 reads) or other explicitly modelled dependencies (e.g.
unilateral synchronisation or temporal dependencies)

— asub-task is joined by another sub-task for the same reasons as stated above

3. Critical sections form an exception regarding these rules: a critical section always is
enclosed by one maximal ABB.

Maximal ABBs can be split into non-maximal or minimal ABBs except those ABBs
that enclose critical sections. This is also the origin of the term Afomic Basic Blocks
— ABBs enclosing critical section cannot be split and are therefore atomic on the level
of ABBs. Figure 3 illustrates some possible relations among different ABBs. The white
boxes emblematise ABBs, the different types of edges depict different relations among
ABBs: control flow (solid edges), data flow (dashed edges) and explicit dependency edges
(control flow edges connected with an arc). Mutual exclusion relations among ABBs
enclosing critical section are captured using bidirectional edges.

With respect to the given definition of ABBs and the required structure of real-time
systems stated above, a real-time system now is described as a forest of control flow
graphs consisting of ABBs. Dependencies among different sub-tasks can be modelled
using joins either having and or or semantics, mutual exclusion constraints are covered
by ABBs enclosing critical sections that are related by an undirected graph.

We are quite confident that real-time systems can be described by the means stated
above, as such systems fulfil some assumptions that are not kept by arbitrary programs:

1. For successfully building and running a real-time system lots of a-priori knowledge
has to be gathered to validate the timing constraints in such systems. This a-priori
knowledge comprises e.g. detailed characterisation of the events to be serviced or
dependencies between the sub-tasks implementing the handlers for these events.

2. For the sake of being statically analysable, often certain programming language con-
structs are abandoned especially in safety-critical real-time system, as these con-
structs might destroy this property. An example for such programming language
constructs are virtual function calls.
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These assumptions ease the static analysis a lot and usually do not apply to arbitrary
programs. It is e.g. rather unlikely that arbitrary functions are called through a func-
tion pointer in safety critical real-time systems, whereas this is not unusual in normal
programs. Therefore, we are not convinced that arbitrary programs can be transformed
into ABBs as described in this section. Beyond that, we doubt that it is possible to au-
tomatically map arbitrary programs to arbitrary run-time or operating systems. So the
idea presented here has not to be intermixed with the various approaches of automatically
generating multi-threaded programs by the help of an optimising compiler.

4 Benefits of a Compiler-Based Approach

The major benefit of a tool employing an intermediate representation as sketched above
definitely is that it decouples the application from the run-time environment with respect
to the particular control paradigm. ABBs are an extension of conventional basic blocks
and depend neither on a time-triggered nor an event-triggered execution environment,
therefore, ABBs can be mapped to control flow abstractions of both control paradigms.
The decision for one of these real-time architectures can be postponed until it is clear
what kind of events have to be serviced in the particular real-time system, thus enabling
the reuse of complete event-handlers across different real-time systems also employing
different real-time architectures.

Besides that, a compiler-based approach has more advantages. Some of these advan-

tages already haven been discussed in [18], a few of them should be picked up here ex-
emplarily:
Improved construction of time-triggered schedules Most conventional tool chains
map rather coarse grained components to the run-time environment. The mapping in a
compiler, by contrast, can take place on the level of the control flow graph. This is very
helpful when e.g. computing static schedules for the cyclic executive model [19]. Such
a scheduler demands the execution of a sub-task to fit in a slot of predefined temporal
length. In the worst case, i.e. a sub-task does not fit into such a slot, a sub-task has to be
split up in several pieces that are distributed to appropriate slots manually. A control flow
graph, on the other hand, can be split up and mapped to these slots by a compiler in such
a way that these slots are entirely occupied by ABBs without manual intervention.

Global Optimisation Optimisation techniques like constant, copy or value range prop-
agation offered by conventional compilers can be supported by the a-priori knowledge
about the events a real-time system has to service. Thereby, these techniques can be
exploited to perform global optimisation much more aggressive than it is possible for
existing tools that just offer a fixed mapping between the application and the run-time
environment. Examples for such optimisations at global scope are e.g. elimination of
unnecessary thread synchronisation or context switches.

Support for Legacy Software A compiler-base approach could also provide support
for existing software by providing an appropriate front-end for transforming these imple-
mentations into ABBs. This is not possible for tool chains that only accept input at the
modelling level.



TOWARDS A REAL-TIME SYSTEMS COMPILER

5 Design of the Real-Time Systems Compiler

In this section we present and discuss the preliminary design of a tool based on the inter-
mediate representation provided by ABBs. Due to the disposed intermediate representa-
tion and the ability to combine different front-ends and back-ends such tool is very close
to a traditional compiler, hence we call it the Real-Time Systems Compiler (RTSC). First
we have a look on the overall structure of the real-time systems compiler, then the inputs
expected, the outputs generated by this tool and its building blocks are discussed.

In earlier work [3] we had in mind to extend the GCC for this purpose, but it soon be-
came evident that the Low-Level Virtual Machine (LLVM) [20] is much better suited for
this project. The LLVM provides a generic and modular compiler framework that uses the
Low-level Virtual Instruction Set Architecture (LLVA) [21] as intermediate representation
which will serve as base for the implementation of ABBs. The main design objectives of
LLVM/LLVA are to provide an intermediate language expressive enough to allow high-
level analysis and optimisation in combination with easy lowering to machine code, thus
enabling efficient global analysis and optimisation. A tool like the RTSC could benefit
from these features. Mapping a real-time application to a run-time or operating system
yields several problems that have to be tackled at a global scope like thread synchronisa-
tion or inter-thread communication.

5.1 Overall Design

Figure 4 gives an overview over the structure of the RTSC tool. First the tasks of the real-
time system are imported from some kind of implementation by a Front-End that always is
programming language specific and run-time or operating system aware if necessary. The
Front-End generates the intermediate ABB-representation from these tasks. In the fol-
lowing step the WCETs of the single ABBs are determined and provided to a combined
Analyser/Composer. Tasks are analysed with respect to logical (explicitly defined depen-
dencies or data dependencies) and temporal dependencies and are subsequently mapped
to the control flow abstractions offered by the targeted operating system preserving all
these dependencies. The generated real-time system then is fed into a Checker perform-
ing schedulability analysis along with the WCETsS of the various ABBs. If all the timing
constraints are satisfied, the Back-End emits the final implementation of the real-time sys-
tem. In case the Checker fails to verify one or more deadlines, the Composer/Analyser
is informed to search for a more accurate mapping with respect to the hints given by the
Checker (e.g. a deadline is missed and the corresponding task has been blocked due to a
resource conflict).

5.2 Inputs

The description of the relevant events are stored in task databases. These databases char-
acterise the relevant events (e.g. periodic vs. aperiodic vs. sporadic events, period, dead-
line, ...) and establish a mapping between these events and the corresponding event
handlers (i.e. implementations of sub-tasks). For every event stored in the Source Task
Database an appropriate event handler exists in the Source Implementations. A subset of
these events is selected and stored in the Target Task Database together with the mapping
to the event handlers provided by the Source Implementations. These events are those
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Figure 4: Overall RTSC Design

to be serviced in the target real-time system. The properties of the underlying run-time
or operating system employed in the source and the target real-time system are encapsu-
lated in OS Specifications. Such a specification e.g. comprises the syntactic and semantic
specification of the operating system API or the employed scheduler. Furthermore, a
specification of the target hardware (instruction set, processor pipeline and caches, ...) is
needed for the timing analysis.

5.3 Outputs

The output of the RTSC tool is a real-time application providing event handlers for all
events specified in the Target Task Database. The application targets a run-time or oper-
ating system specified by the Target OS Specification (cf. 5.2) that is supposed to provide
the necessary infrastructure to execute these tasks, i.e. the generation of driver code is
not treated so far. Nevertheless, it is possible that the source and the target run-time sys-
tem offer very different semantics with respect to their real-time architecture (e.g. polling
vs. callbacks). In this case references of such drivers have to be identified and properly
mapped to the corresponding driver of the target run-time or operating system. Yet, we
assume that the semantics of the driver can be adequately hidden by the source and the
target run-time system so no such conversion is needed.

5.4 Components

Front-End The Front-End is a compiler front-end that is programming language spe-
cific and, if necessary, operating system aware. Its main purpose is to transform the Source
Implementation into the intermediate ABB representation.

Timing Analysis The Timing Analysis is of crucial importance for the whole RTSC tool,
as neither the Analyser/Composer nor the Checker can do without timing information. It
is not surprising that schedulability analysis is not possible without the necessary timing
information, but this information is also essential for the Analyser/Composer. A time-
triggered target operating system, for example, requires the provision of pre-computed
schedule tables. Without knowing the WCET of the implementation such a schedule
table could not be constructed.
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While the retrieval of flow-facts (e.g. loop bounds, cf. [22]) should not be more diffi-
cult than for the LLVA than other instruction set architectures, the provision of a proper
execution time model will be very difficult in the RTSC tool. The result of the RTSC is a
real-time application targeting some kind of run-time or operating system, i.e. the RTSC
is a source code transformation system producing e.g. C code. This C code is then com-
piled to machine code by a C-compiler. For a given basic block on the level of the LLVA,
therefore, it is hard to predict what the generated machine code finally will look like. A
possible solution to compute the WCET of an ABB would be to look up the WCET of
every LLVA instruction for the specific target architecture in a database and enforcing
a static mapping of LLVA instructions to machine code similar to RT-SYN [23]. This,
however, would prohibit any optimisation performed during the machine code generation
and yield very inefficient code. Another solution would be to emit machine code for the
entire real-time system and to determine the WCET of the basic blocks directly on the ma-
chine code level. This, however, demands for a difficult transformation of the flow-facts,
due to the complex translation process, as the optimisations performed by the C-compiler
might also result in an altered control flow graph. So it might be a good compromise to
emit machine code for a single ABB and to determine the WCET of this ABB either by
measurement (i.e. executing the ABB on a physical processor) or static analysis. In com-
bination with the gathered flow-facts the overall WCET could be computed. The outcome
is a WCET less pessimistic than the WCET yielded by the method using a database that
is computed in a less complex way than proposed in the second approach.

Analyser/Composer The Analyser component examines data dependencies and depen-
dencies resulting from mutual exclusion. Exploiting the information from the Target Task
Database and the timing information provided by the timing analyses, the Analyser tries
to ensure analytically that these dependencies are always preserved. A task T1, for in-
stance, is activated by the occurrence of an event E1 and produces data that another task
T2, activated by an event E2, consumes. There is no need to establish this dependency
explicitly, if it can be assured that the producer T1 produces a piece of data no later than
100ms after the occurrence of E1, and E2 always occurs at least 500ms after E1.

Mapping the task implementations to abstractions offered by the target operating sys-
tem is the duty of the Composer. Mutual exclusion constraints as well as explicit or
implicit dependencies among different task have to be ensured by appropriate synchro-
nisation mechanisms deployed by the target operating system as long as they cannot be
ensured analytically. It is worth mentioning that this composition is a lot more than just
aggregating procedure calls into or mapping software components to a single thread, as
the composition takes place at global scope using the ABB-based representation yielded
by the RTSC front-end. The mapping generated by the Composer might also demand
transformations of the control flow graph and consequently also influences the WCET of
the emitted code. Therefore, timing analysis and composition have to be accomplished in
an incremental and closely related manner.

Checker The Checker finally performs a schedulability analysis on the real-time system
generated by the Composer. The algorithm to be used for the analysis is determined by
the targeted operating system. If the Checker fails to verify that all deadlines are met
within the generated real-time system, the Composer is informed to generate a different
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variant of the system. Thereby, the Composer is guided by hints of the Checker, e.g. a
certain deadline might be missed due to blocking a higher priority task resulting from a
resource conflict.

Back-End Finally, the Back-End translates the real-time system generated and verified
in the foregoing steps into an application targeting the desired run-time or operating sys-
tem.

6 An Automotive Use Case

A sector, with demand of both time-triggered and event-driven systems is the automotive
industry. With the introduction of the FlexRay bus [16] network and communication
architecture of cars has a new time-triggered element. FlexRay is a relatively new TDMA-
based bus system and should solve the demand for a faster and dependable communication
bus between the Electronic Control Units (ECU) in a car. Another well established bus
system is the event-driven, priority-based CAN bus.

The first FlexRay-ECUs are existing, well-engineered ECUs, that were formerly con-
nected via CAN. So ECUs (and the applications running on them) formerly communi-
cating through a priority-based network are now, if the ECU is part of a FlexRay cluster,
connected with a time-triggered bus system. This migration should, of course, take place
with as less as possible new development.

The simplest way of migrating an application to this new bus system is just to adjust
the calls to the communication module and to put some kind of buffering adaptor between
the application and the FlexRay communication system. The FlexRay driver thus reads
the message from that adaptor, when it is time for sending. A task servicing periodic
events can finish with filling the send-buffer and triggering the communication-system
to send the message. The problem is, that it is not known how much time it will take
till the message is really sent. This can be nearly immediate, if the slot for sending this
message is ahead. But it can also take a multiple of the FlexRay cycle-time, depending
on the FlexRay schedule, the use of slot-multiplexing and the point in time, when the
transmission is requested. So the originally periodic events now come with a big jitter.

One way to lower the jitter is to use oversampling when planning the FlexRay schedul-
ing. Another, bandwidth-saving way is to migrate the whole system to a time-triggered
system. Here the timing of the event, the threads servicing it and the FlexRay bus can
be synchronised. Among other things the RT'SC can help doing this in an automatic way.
On the one hand it can map the applications to the time-triggered run-time system. Just
generating schedule tables might work with other tools, too. However, if no valid sched-
ule can be found, maybe because the WCET of one thread is too long and that very (or
some other) thread has to be split up manually? The RTSC will handle these conflicts au-
tomatically. The timing information gathered by the timing analysis component enables
the RTSC tool to map the ABBs to threads in such a way that the threads exactly fit into
the pre-allocated time slots of the schedule table (cf. section 4).

7 Summary

At first we revealed two chain links that are missing to provide a closed tool chain for
the development of real-time systems that is capable of automatically lowering high-level
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models down to low-level implementations in a generic way by effectively decoupling
the employed abstraction levels. The first one is the mapping of real-time applications
to appropriate run-time or operating systems. The second one is the development of
appropriate run-time and operating systems for different hardware targets itself.

After that, we introduced and discussed the preliminary design of the RTSC tool that
could provide the first missing chain link mentioned above. The RTSC tool exploits an
intermediate representation called ABBs, that are based on control flow graphs. This
intermediate representation is independent of the control flow abstractions employed by a
run-time or operating system and therefore allows for a flexible combination of front-ends
and back-ends importing and targeting different kinds of run-time and operating systems.
We identified the timing analysis as the most challenging component of the RTSC. On the
one hand the timing analysis is the requirement for many analyses, optimisations and the
generation of time-triggered real-time applications. On the other hand it is very difficult
to provide an accurate execution time model for the LLVA within the RTSC tool due to
the complex translation process.

Subsequently, we illustrated how such a tool can support the migration from event-
triggered CAN-based applications to time-triggered FlexRay-based applications in the
automotive area.

Currently, an early prototype of a front-end transforming plain C programs into the
ABB-based intermediate representation exists. The next steps will be to finish the imple-
mentation of this front-end, tackle the timing analysis problem and develop a back-end
for the OSEK [1] as well as the OSEKtime [2] operating system.
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