
Interrupt Synchronization in the CiAO Operating System

Experiences from Implementing Low-Level System Policies by AOP

Daniel Lohmann, Jochen Streicher, Olaf Spinczyk
and Wolfgang Schröder-Preikschat

Friedrich-Alexander University Erlangen-Nuremberg
Department of Computer Science 4

{lohmann,streicher, spinczyk,wosch}@cs.fau.de

ABSTRACT
Configurability is a major issue in the domain of embedded sys-
tem software. Existing systems specifically lack good techniques
to implement configurability of architectural OS concerns, such as
the choice of isolation or synchronization policies to use. As such
policies have a very cross-cutting character, aspects should provide
good means to implement them in a configurable way. While our
results show that this is in fact the case, 1) things could have been
easier if additional language features were available, and, 2) addi-
tional means to influence the back-end code generation turned out
to be very important. This paper presents our experiences in using
AspectC++ to design and implement interrupt synchronization as a
configurable property in the CiAO operating system.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design—Real-
time systems and embedded systems; D.3.3 [Programming Lan-
guages]: Language Constructs and Features

General Terms
Languages, Experimentation, Design

Keywords
Aspect-oriented Programming (AOP), AspectC++, CiAO, Config-
urability, Aspect-aware Operating System

1. INTRODUCTION
Configurability is a major issue in the domain of embedded sys-

tem software. System software for this domain has not only to cope
with extremely limited hardware resources, but also with a very
broad variety of functional and non-functional requirements [4].
It has to be special-purpose, that is, tailorable to provide exactly
the functionality required by the intended application, but nothing
more.

The huge diversity of embedded application requirements with
respect to the functional and non-functional properties of the un-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Workshop ACP4IS ’07, March 12, 2007, Vancouver, BC, Canada.
Copyright 2007 ACM 978-1-59593-657-8/07/03 ...$5.00.

derlying OS can also be observed on the system software mar-
ket. While the number of general-purpose operating systems for
PC- and server-like computers has undergone a strong consolida-
tion over the last two decades (eventually resulting in Windows,
Linux, MacOS and a few Unices), embedded application develop-
ers can select among a zoo of probably more than 100 operating
systems, most of them furthermore available as software families
configurable for dozens of variants. Nevertheless, in more than
50% of all embedded applications the OS-functionality is still pro-
prietary, as none of the existing systems seems to be “configurable
enough” to fulfill their particular demands [13]. Existing systems
specifically lack good techniques to implement configurability of
architectural OS concerns, such as the choice of isolation or syn-
chronization policies to use. Configurability of such fundamental
concerns in embedded OS product lines becomes more and more
important. For instance the upcoming automotive standard core
AUTOSAR-OS [2] defines different OS feature sets called confor-
mance classes. In some conformance classes isolation (memory
protection) is a mandatory feature, while in the other it is not avail-
able. Thus, to cover all conformance classes with a single kernel
implementation, the architectural OS concern isolation has to be-
come a configurable feature.

About this Paper
In the 2005 ACP4IS workshop we presented an approach towards
architecture-neutral OS components that provide configurability of
such architectural concerns by AOP [10]. In the paper we sketched
an implementation model to configure the interrupt synchroniza-
tion policy applied to device drivers. The model offers a wide vari-
ety of strategies for this policy, ranging from hard synchronization
(global disabling of IRQs while an IRQ handler is executed) up to
driver threads (IRQ handler execution by independent preemtable
threads).

Meanwhile, we have implemented the suggested model in our
CiAO embedded OS. This was an interesting test case to evaluate
the suitability of our AspectC++ language and weaver for the par-
ticularities of really low-level system code1—a domain AspectC++
is specifically targeted for [11]. While our results show that this is
in fact the case, 1) things could have been easier if additional lan-
guage features were available, and, 2) additional means to influence
the back-end code generation turned out to be very important.

In this paper, we present the design and implementation of inter-
rupt synchronization in CiAO and discuss the lessons we learned
about implementing low-level policies by means of AOP.

1The handling of hardware IRQs can be considered as the lowest
layer of abstraction provided by an OS.

2. IRQ SYNCHRONIZATION IN CIAO

2.1 The CiAO Embedded OS
In the CiAO project (CiAO is Aspect-Oriented), our group has

been developing a family of aspect-aware operating systems for
embedded and deeply embedded applications. The system is
aspect-aware in the sense that it has been developed with the idea
of configurability by aspects from the very beginning. The goal is
to come up with a system design that provides enough join-points to
influence all semantically important transitions by aspects without
compromising on runtime- or memory efficiency. CiAO is aimed
to support a variety of 8-32 bit architectures. Primary develop-
ment platform is the Infineon TriCore, an architecture of 32 bit µ-
controllers mostly used in the automotive industry.

CiAO is designed and implemented as a program family. An em-
bedded system designer configures a concrete CiAO variant accord-
ing to his or her particular requirements. The configuration process
is supported by pure::variants [3], an Eclipse-based graphical tool
for engineering and configuration of software product-lines. De-
pending on the chosen configuration, pure::variants selects the set
of aspects and classes that implement the concrete CiAO variant.

2.2 CiAO IRQ Models
If an IRQ handler needs to access some resource which is cur-

rently in use by some thread (or some other IRQ handler), it cannot
wait for the resource to be released. Therefore, every OS needs
some mechanism to delay the execution of the interrupt code, or at
least of those parts accessing the resource, until it is available. That
mechanism is called interrupt synchronization.

Interrupt service routines in CiAO are explicitly divided into two
parts: The first part, called prologue, is intended for time-critical
tasks and restricted with respect to the resources it may access,
typically only hardware registers. Before termination, the prologue
may request the (potentially delayed) execution of a second part.
The second part, called epilogue, is allowed to access other OS
components, such as the scheduler. Many operating systems use
such an explicit division of the handler code (e.g. Tasklets in Linux
or DPCs in Windows). The general idea is to execute the critical
part immediately on interrupt level and the second part at a later
time when the required resources are available.

CiAO currently provides configurations for three fundamentally
different models of interrupt synchronization: hard synchroniza-
tion, two-phase synchronization and continuation synchronization.
They are all based on well-known techniques that are also used in
other operating systems [10].

Hard synchronization. In this configuration, the two parts are ac-
tually combined into one. If an interrupt occurs, prologue
and epilogue are just executed consecutively on the interrupt
level. Threads accessing shared resources have to disable in-
terrupts. The advantage of this model is its simplicity and
low overhead. However, if interrupts are disabled too long,
latency rises and IRQ signals might be lost.

Two-phase synchronization. The prologue is executed with low
latency at interrupt level. Epilogues are queued until the ker-
nel propagates them for execution, which is the case after all
nested prologues have terminated and before the scheduler is
activated. Epilogues thereby have priority over threads, but
are interruptible by prologues if new IRQ signals come in.
Threads inside the kernel can temporarily disable the propa-
gation of epilogues to access shared resources. In this case,
epilogue propagation is delayed until the thread finishes its

5

4

32

1

6

hw

os::component

os::hwbinding

os::sync

strategy::continuation

Dispatcher

LockerExecutor

Protect

Timer

VIRQ::prologue()

VIRQ::epilogue()

...

Timer_IntSync ..._IntSync

IRQ::hwhandler()

Binder

 Sync

Block

strategy::twophase

strategy::hard

Legend: «aspect»«class»

«advices»

«advices»

«advices»...

«advices»...

«uses»

«advices»

VIRQ::handler()

Mutex

«uses»

how
w
here

w
hat

1

2

3

4

5

Figure 1: CiAO IRQ synchronization architecture

access. Interrupts have only to be disabled, if a thread oper-
ates on prologue-accessible state. If low latencies for critical
handler code are crucial, this is our model of choice, as pro-
logue deferment is very rare and short.

Continuation synchronization. The role of the prologue is the
same as above. If an epilogue is requested, a new contin-
uation (basic thread abstraction in CiAO) is started to be-
gin execution of the epilogue code. The major advantage of
this model is that the execution of a continuation can be de-
layed if a shared resource is currently in use by some other
thread or interrupt. This facilitates fine-grained locking of
kernel components. Interrupts and threads are synchronized
via mutex objects using a priority inheritance protocol.

2.3 Design
An overview of CiAO’s interrupt synchronization architecture is

given by the graphical illustration in Figure 1. This section briefly
describes the fundamental design layers bottom-up. Further imple-
mentation details will then be presented in Section 3.

(1) Interrupt handling starts in the hw-layer, the abstraction of the
underlying hardware, which contains an IRQ class for each
(platform-specific) hardware IRQ. Each IRQ class contains
a static hwhandler() function, which is executed when the
corresponding interrupt occurs2.

(2) The os::hwbinding-layer establishes the link from hardware
IRQ abstractions to corresponding software abstractions
(VIRQs) in the os::component-layer (3). The hwhandler()
has to invoke the corresponding VIRQ’s handler(). In
CiAO, this upcall is done statically by the Binder aspects,
nevertheless it is configurable. An example of such an aspect
is also given in the implementation part.

(3) The os::component-layer contains the functionality of the oper-
ating system. It is independent of the interrupt synchroniza-
tion policy and (partly) also from the underlying hardware.
Device drivers, but also other components like the scheduler,
are placed in this layer. Device drivers implement the in-
terrupt service code, which has to meet the common han-
dler model’s requirements, but has neither information nor
any influence on the actual circumstances of its execution.
As a driver may service more than one IRQ, prologue and
epilogue are contained in VIRQs inside the driver. VIRQs
are the operating system’s software abstraction for a hard-
ware IRQ. Depending on the chosen synchronization model,
a VIRQ may also act as a continuation or a queueable ob-
ject.3 Every component used by interrupts is subject to inter-
rupt synchronization and provides an IntSync aspect which
describes its synchronization requirements.

(4) The os::sync-layer is responsible for enforcing the synchro-
nization constraints. The Block aspect enforces disabling of
interrupts when methods are called that operate on prologue-
accessible state. It may be deactivated if we want to com-
bine prologues and epilogues, which means that they are ac-
tually synchronized with the same mechanism. This is the
case with the hard synchronization strategy. The Sync as-
pect enforces protection of all methods that run on epilogue
level. For this distinction, a driver’s methods are assigned to
different synchronization classes. Methods that require syn-
chronization usually belong to the class synchronized. How-
ever, if they access prologue-accessible state, they belong to
the class blocked. If they only perform atomic operations or
use interruption-transparent algorithms, they do not need to
perform any synchronization and belong to the class trans-
parent.

(5) Finally, a strategy-layer implements the chosen model of in-
terrupt synchronization. It provides at least a Locker and
an Executor. Whereas the Locker provides the imple-
mentation of “locking a resource”, the Executor is respon-
sible for the proper execution of prologues and epilogues.
This responsibility includes the necessary transformations of

2When an interrupt is requested by peripheral hardware, the CPU
starts interrupt service as soon as the required conditions are ful-
filled (e.g. interrupts must not be globally disabled). The CPU
saves the current thread’s context and jumps to a predefined ad-
dress, the interrupt table entry, which invokes the corresponding
hwhandler().
3Using two-phase synchronization, several different prologues may
be executed while a thread operates on common data. The possibly
resulting requests for different epilogues are managed by putting
the VIRQs into the epilogue queue.

aspect type # concern

Binder per IRQ upcall (model independent execution)
Executor per model model dependent execution

Sync 1 synchronization (where)
Block 1 synchronization (where)

IntSync per component synchronization (what)

Table 1: concerns of interrupt handling and corresponding as-
pects in CiAO

VIRQs in a way that they are able to act as a continuation or
a queueable object.

In the shown strategy::continuation strategy, the Executor ac-
tivates epilogues as new continuations using the OS thread dis-
patcher. VIRQs have to be equipped with a continuation context
for this purpose; locking is implemented by mutex objects. As the
dispatcher is now also activated from interrupt level, it has to be
protected by disabling IRQ propagation during dispatching. For
this purpose, the strategy implementation contains an additional
Protect aspect that gives advice to the dispatcher.

2.4 Separation of Concerns
The architectural concern of interrupt handling can be divided

into few sub-concerns. The synchronization of critical system
parts deals with the question, which synchronization code (inter-
rupt locks, mutexes, ...) has to be inserted where. The execution
concern deals with the activation of an interrupt service routine as
an entity of its execution model (prologue/epilogue, thread, ...). Al-
though both concerns are obviously not independent of each other,
they are separated in the design above and taken care of by different
layers.

The execution concern is fully located in the strategy layer and
taken care of by the Executor. The synchronization concern is
further divided into three sub-concerns which may be expressed as
the simple questions what, how and where:

What. First, we have the question what has to be synchronized,
i.e. we need a representation for knowledge of the synchro-
nization requirements of each operating system component.
For that purpose, every component provides an IntSync as-
pect. The synchronization requirements are independent of
the synchronization strategy.

How. The answer to the question how we want to synchronize is
the strategy-dependent part of synchronization and defines
the action to be performed if a method requiring synchro-
nization is called. It is therefore located in the strategy layer.

Where. Finally, we have to ensure, that the synchronization code
is executed at the right points in the control flow. This is an
model-independent task, which is accomplished by the Sync
and Block aspects in the os::sync layer.

As the interrupt synchronization is a system-wide policy of very
crosscutting character, all device interrupts are managed in the
same manner.

The concerns and their corresponding aspects are briefly sum-
marized in Table 1.

3. IMPLEMENTATION
The following parts will take a closer look at the implementation

of CiAO’s interrupt handling architecture using AspectC++ [11].

3.1 Driver Implementation
We adapt the simple device driver for the system timer, intro-

duced in [10], to CiAO’s driver model.

class Timer {
... // state

public:
void init(long time);
long get() const;
void add_event(const EventCallback* cb);

private:
void tick();
void process_events();
class VIRQ {
void handler();
void prologue() {tick();}
void epilogue() {process_events ();}

};
};

By modifying some of the hardware registers, the init() method
arms the timer device to request an interrupt after the specified
time. However, a timer should do this periodically, therefore the
tick() method simply repeats this procedure. This can be consid-
ered time-critical, so it is done in the prologue. Therefore, these
hardware registers belong to prologue-accessible state. Conse-
quently, init() and tick() belong to the synchronization class
blocked. The callback functions which are executed by the epilogue
are registered by add_event() and have to be held in a queue,
which requires synchronization. The get() method simply reads
the timer value atomically and does not need synchronization.

The information about the synchronization requirements is held
by the Timer_IntSync aspect, which defines pointcuts for each
synchronization class:

aspect Timer_IntSync : IntSync {
pointcut virtual pcSynchronized() =

"% Timer::add_event (...)"
|| "% Timer::process_events()";

pointcut virtual pcBlocked() =
"% Timer::init(...)"

|| "% Timer::tick()";
pointcut virtual pcTransparent() = "% Timer::get()";

};

3.2 Hardware Binding
Binder aspects stablish the link from platform-specific hard-

ware IRQs to the plattform-independed VIRQs used by the OS.
A Binder aspect is needed for every IRQ/VIRQ pair, the one for
the timer driver looks like this:

aspect Timer_VIRQ_Binder {
advice execution("% IRQTimer::handler (...)")

: after() {
Timer::VIRQ::handler();

} };

The method IRQTimer::handler() is actually just an inline de-
fined hook especially for this advice and is called by the real hard-
ware handler. It is a workaround, as the real hardware handler must
not be affected by execution advice, because it has interrupt handler
specific compiler attributes, which AspectC++ can not handle.

3.3 Model Implementation
The Locker is simply a type alias to a class which provides meth-

ods to be called in order to protect critical method calls. In case of
hard synchronization that class looks like this:

struct Hard {
static void enter () {ints_disable ();}
static void leave () {ints_enable ();}

};

For the other models, more sophisticated actions are performed by
these two methods.
With respect to configurability, the more interesting part of model
implementation is the Executor aspect, which looks again very
simple in the case of hard synchronization:

aspect Executor_Hard {
advice execution("% ...::VIRQ%::handler (...)")

: after() {
if (JoinPoint::That::prologue())
JoinPoint::That::epilogue();

}
};

If we want to have the two-phase model, the aspect has also to take
care of transforming the VIRQs into queueable objects by introduc-
ing a Queueable base class:

aspect Executor_ProEpi {
advice "...::VIRQ%" : slice class QueueSlice

: public Queueable {};
advice execution("...::VIRQ%::handler (...)")

: after() {
if (JoinPoint::That::prologue()) {

Guard::relay(JoinPoint::That::getInstance ());
} }

};

To be queueable, an actual instance is needed for each VIRQ class,
even though the VIRQ classes contain just static elements. To pro-
vide such instance, VIRQs are always implemented as singletons.
In configurations where the instance is not needed, it is automati-
cally removed by the compiler and linker.

The realization of epilogues as continuations requires a thread
context the Executor may switch to:

aspect Executor_Continuation {
advice "...::VIRQ%" : slice class {
static Continuation ctx;
static char *stack[cfIRQ_EPISTACK];
static void cfHAL_STARTFUNC_ATTRIBUTES entry() {
// invoke (usually inlined) epilogue
epilogue();

}
};

advice execution("...::VIRQ%::handler (...)")
: after() {

typedef JoinPoint::That VIRQ;
...
if (VIRQ::prologue()) {
// save current context, start new continuation
Continuation::getActive()->saveAndStart(

&VIRQ::stack[cfIRQ_EPISTACK],
VIRQ::entry , &VIRQ::ctx);

} ... }
};

No object instance for the VIRQ is needed in this case as all mem-
bers can be static.

3.4 The os::sync layer
To accomplish the task of combining what, how and where, the

aspects of this layer use virtual pointcuts for synchronization ad-
vice, which are overridden by the component-specific IntSync as-
pects. The pcExclude() pointcut protects synchronized but magic
code (for example the epilogue itself) from being affected by ad-
vice:

aspect Sync : Locker {

pointcut virtual pcSynchronized() = 0;
pointcut pcToSync() = call(pcSynchronized()

&& !pcExclude())
&& !within(pcSynchronized ());

advice pcToSync() : around() {
enter();
tjp->proceed();
leave();

}
};

For fine-grained locking as used by the continuation synchro-
nization strategy, every component has to be synchronized in-
dependently. This is achieved by the fact that an own instan-
tiation of the whole synchronization hierarchy is performed for
each (component-specific) IntSync aspect, resulting in an own
Mutex per component. The Sync aspect instruments all calls into
“foreign” synchronization domains to obtain/release the respective
Mutex instance around the call.

With coarse-grained locking as used by the hard and two-phase
strategies, all components share a single synchronization domain.
This is achieved by combining all component-specific IntSync
aspects with their definitions of the virtual pcSynchronized(),
pcBlocked(), and pcTransparent() pointcuts into one single as-
pect.

3.5 Preliminary Evaluation
Table 2 shows first results from our on-going evaluation. It

presents the elapsed time [ns] from the begin of the hardware inter-
rupt handler to the first prologue instruction, epilogue instruction,
and until interrupt termination (iret)4. The numbers represent the
latency in the optimal case: no other control flow is in the kernel
that blocks or delays the execution of prologues and epilogues. It
is therefore not surprising that hard synchronization performs best
in this optimal case as this model involves the lowest ground over-
head. With two phase synchronization the prologue-activation time
is identical, however the potentially delayed execution of the epi-
logue causes some overhead. As expected, the overhead is highest
in the case of continuation synchronization. For the later context
switch out of interrupt state, additional CPU registers have to be
modified before entering the prologue, causing the higher latency
for its activation. The context switch to activate the epilogue itself
comes at a price, too, even though 1200 ns (= 60 clock ticks) can
still be considered as a fairly small overhead for the gained flexibil-
ity of fine-grained locking.

Even though preliminary, these numbers compare well to those
achieved by other embedded OS on this platform. This is shown by
the last row, which lists the interrupt handler (prologue) activation
latency we measured on a commercial embedded OS widely used
in German automotive industry5. Hence, an overhead induced by
using aspects to apply interrupt synchronization is not observable.

4. DISCUSSION
The presented aspect-oriented design and implementation facili-

tates a good separation of the what, how and where of interrupt syn-
chronization in CiAO. As a result, very different policies can easily
and transparently be applied to device drivers and other kernel com-
ponents. In the following, we discuss some of the interesting issues
of the approach.
4On a TC1796b running at 50MHz clock speed. Code was com-
piled with tricore-gcc 3.3 using -O3 optimizations and executed
from internal no-wait-state RAM. Measurements were performed
with a hardware trace analyzer (Lauterbach). All results were mea-
sured (and turned out to be stable) over 10 iterations.
5ProOSEK from 3SOFT GmbH, http://www.3soft.com. Same
compiler settings and setup as above. ProOSEK does not provide
similar means to split an IRQ handler into prologue and epilogue,
so the numbers can be compared only with those of the hard syn-
chronization strategy in CiAO.

[ns] tprologue tepilogue t iret

hard 160 160 320
two-phase 160 800 1200

continuation 320 1200 2160

ProOSEK ISR-1 240 (240) 400

Table 2: Latencies for non-delayed interrupts in CiAO and
ProOSEK.

4.1 Aspect-aware OS Design
Configurability of fundamental OS concerns like interrupt syn-

chronization often requires a high amount of configurability in
other parts of the system as well. Due to a new strategy that exe-
cutes epilogues as threads, for instance, it became “suddenly” nec-
essary to protect the dispatcher on the interrupt level. Aspects are in
general well suited to apply such cross-cutting extra functionality
to foreign components. This requires, however, the availability of
suitable join-points aspects can bind to. From the work of Åberg et.
al. on integrating the Bossa scheduling framework with the Linux
scheduler by means of AOP [1], we could learn that this can not
be taken for granted. Their paper points out that the particularities
of the Linux scheduler implementation made it necessary to come
up with a (sophisticated) problem-specific AOP approach for Linux
kernel code instead of using a general purpose aspect weaver. The
scheduler state transitions required by Bossa could not be retrieved
by typical pointcut functions such as call, execution, or cflow
as they where too hidden in the kernel implementation.

Hence, aspect-awareness of kernel components is not reached as
a side effect, it has to be handled as its own, global design goal.

Explicit Join-Points I
One way this is taken into account in CiAO is by providing explicit
join-points for all important transitions. An explicit join-point is
given as an (usually) empty hook-function that has the only pur-
pose to be advised by aspects. The CiAO dispatcher, for instance,
defines four explicit join-points:

class Continuation {
...

// explicit join-points, to be execution-advised
void before_CPURelease(Continuation*& to) {}
void before_LastCPURelease(Continuation*& to) {}
void after_CPUReceive() {}
void after_FirstCPUReceive() {}

};

The before_...() hooks are guaranteed to be invoked by the dis-
patcher in the context of the leaving thread immediately before re-
leasing the CPU, and the after_...() hooks are guaranteed to be
executed in the context of the receiving thread immediately after
the CPU has been assigned. Thereby, the explicit hooks offer a
concise and platform-independent semantics for control-flow tran-
sitions that would be difficult to reach by giving advice directly to
the (platform-dependent) dispatcher functions. As the hook func-
tions can be inlined, this even does not induce an overhead.

Separation of What, How, and Where
While the separation of the how and where of interrupt synchro-
nization into separate aspects works quite well, the current ap-
proach to implement the what by component-specific IntSync as-
pects is fragile. Assignment of methods to synchronization classes
has to be done manually by listing them in named pointcuts. A bet-
ter solution would be to “tag” methods directly in the component
code by means of an annotation mechanism. Currently, neither C++

nor AspectC++ provide support for this. We think, however, that
on the long term such feature is crucial for the scalability of the
approach.

4.2 Aspects for Near-Hardware Code
A recurring challenge for the implementation was the fact that

fundamental low-level OS abstractions, such as the invocation of
an interrupt handler or dispatching between different control flows,
require an amount of control over the resulting machine code that is
generally not guaranteed by the semantics of C/C++. A hardware
interrupt handler, for instance, has to make sure that all registers
are saved and restored and has to be terminated with a specific end-
of-interrupt instruction. The typical solution for such cases is to
use either assembler or non-standard compiler- and language ex-
tensions (such as __attribute__(interrupt) in gcc) which en-
sure that the resulting machine code fulfills the hardware-specific
constraints. Join-point shadows in assembler code, however, are
just not visible for a high-level-language weaver like the static As-
pectC++ weaver ac++. The alternative is to use either a binary-
level weaver or to rely on the mentioned compiler-extensions that
make it (mostly) unnecessary to program larger parts in assembler.
In either case, however, the code has to be considered as fragile;
transformations performed by the aspect weaver may easily break
the platform-specific constraints.

Explicit Join-Points II
A pragmatic solution is to use, again, explicit hook functions that
are safe to be advised and invoked by the fragile parts when the
execution context is no longer constrained. As shown in section
3.1, hardware IRQ classes in CiAO provide an empty handler()
function for the sole purpose of providing a hook that advice can
bind to. Depending on the platform-specific constraints and com-
piler support, the handler() function and all advice given to it can
even be inlined into the real interrupt handler, resulting in a safe,
but very efficient upcall mechanism for IRQs.

Forced Inlining
The ac++ weaver transforms advice definitions into inline mem-
ber functions. The C++ inline keyword is, however, only a sug-
gestion for the compiler; its interpretation depends on compiler-
internal heuristics, optimization flags and so on. In general, this
is a good thing—modern compilers are a lot better than the aver-
age programmer in deciding when it is really beneficial to embed
some function into another. On near-hardware level, however, in-
lining might be critical for the correctness of the code. Consider
a KernelStack aspect that implements a strategy to execute in-
terrupt handlers on an own, dedicated kernel stack. In this case,
the before-advice which performs the actual stack switch has to be
embedded into the interrupt handler, as no function call must take
place before the stack has been switched.

In CiAO, we currently solve this issue by translation-unit specific
compiler options for the back-end gcc-compiler. For all source
files that may be targeted by such critical advice, gcc is “forced”
by specific options to interpret the inline keyword literally. How-
ever, this is only a workaround: Like other C++ compilers, gcc
provides language means to declare a function as to be inlined un-
der all circumstances (__attribute__((always_inline))). A
better solution would therefore be to extend the AspectC++ gram-
mar in a way that such back-end-compiler specific declarators can
be given to advice definitions as well and are used in the ac++ gen-
erated code.

Join-Point Restrictions
While explicit join-points provide a pragmatic alternative for ad-
vising fragile parts of the code, they do not actually prevent it.
Aspect developers can still intentionally or accidentally formulate
pointcut expressions which include fragile elements. It would be
beneficial, if the aspect language would provide means to specify
certain join-point shadows as non-available, thereby causing them
to be implicitly excluded from any pointcut evaluation.

5. RELATED WORK
A lot of related work has been conducted in the field of applying

AOP to operating system kernels such as Linux [14, 7, 1], FreeBSD
[5], NetBSD [6] or eCos [9]. An interesting difference with respect
to CiAO is that in most of this work AOP is applied as an ex post
mechanism to existing kernels. Bossa [1] and C4 [7], for instance,
advocate for special-purpose AOP languages to deal with the par-
ticularities of existing kernel code, while CiAO aims to come up
with an aspect-aware kernel design that provides ideal support for
existing AOP language concepts.

Other related work targets infrastructure software for embedded
systems in a broader sense, namely aspects of middleware [15, 8]
and quality of service in embedded real time database applications
[12].

6. SUMMARY AND CONCLUSIONS
The goal of the CiAO project is an aspect-aware embedded

OS that provides easy configurability of fundamental architectural
properties by aspects. By a set of aspects, interrupt synchroniza-
tion was implemented as a configurable strategy, providing a good
separation of the what, how, and where of synchronization issues.
The available implementations cover a range of coarse- and fine-
grained synchronization approaches, each providing specific ad-
vantages and disadvantages. Depending on the actual application
scenario, an embedded system developer can choose the strategy
implementation that fits best. First evaluation results show that this
extra flexibility does not come at the price of efficiency. However,
interrupt synchronization should not remain the only configurable
architectural OS property. Currently, we are working on the mem-
ory protection concern.

While the implementation with AspectC++ was successful, we
also learned that applying AOP to such low-level concerns implies
some very specific difficulties that are not ideally addressed by the
current aspect languages we are aware of. Near-hardware program-
ming requires additional control over the resulting machine code
semantics, giving advice to fragile C/C++ code may easily break
it. Additional means to use back-end-compiler specific declarators
or attributes with advice code might reduce this problem. The pos-
sibility to hide “dangerous” join-point shadows from the process
of pointcut evaluation, as well as an annotation concept, would at
least be very helpful. We are working on appropriate extensions for
AspectC++.

7. ACKNOWLEDGMENTS
The authors would like to thank the anonymous reviewers for

their helpful comments. We especially appreciate the extraordinary
effort taken by the first reviewer, whose suggestions led to signifi-
cant improvements on content, language and style of this paper.

This work was partly supported by the German Research Coun-
cil (DFG) under grant no. SCHR 603/4 and SP 968/2-1. Daniel
Lohmann was supported by the German Academic Exchange
Council (DAAD) under grant no. D/06/40386.

8. REFERENCES
[1] R. A. Åberg, J. L. Lawall, M. Südholt, G. Muller, and

A.-F. L. Meur. On the automatic evolution of an OS kernel
using temporal logic and AOP. In Proceedings of the 18th
IEEE International Conference on Automated Software
Engineering (ASE ’03), pages 196–204, Montreal, Canada,
Mar. 2003. IEEE Computer Society Press.

[2] AUTOSAR. Requirements on operating system (version
2.0.1). Technical report, Automotive Open System
Architecture GbR, June 2006.

[3] D. Beuche. Variant management with pure::variants.
Technical report, pure-systems GmbH, 2003.
http://www.pure-systems.com/.

[4] D. Beuche, A. Guerrouat, H. Papajewski,
W. Schröder-Preikschat, O. Spinczyk, and U. Spinczyk. The
PURE family of object-oriented operating systems for deeply
embedded systems. In Proceedings of the 2nd IEEE
International Symposium on Object-Oriented Real-Time
Distributed Computing (ISORC ’99), pages 45–53, St Malo,
France, May 1999.

[5] Y. Coady and G. Kiczales. Back to the future: A retroactive
study of aspect evolution in operating system code. In
M. Akşit, editor, Proceedings of the 2nd International
Conference on Aspect-Oriented Software Development
(AOSD ’03), pages 50–59, Boston, MA, USA, Mar. 2003.
ACM Press.

[6] M. Engel and B. Freisleben. TOSKANA: a toolkit for
operating system kernel aspects. In A. Rashid and M. Aksit,
editors, Transactions on AOSD II, number 4242 in Lecture
Notes in Computer Science, pages 182–226.
Springer-Verlag, 2006.

[7] M. Fiuczynski, R. Grimm, Y. Coady, and D. Walker. patch
(1) considered harmful. In Proceedings of the 10th Workshop
on Hot Topics in Operating Systems (HotOS ’05). USENIX
Association, 2005.

[8] F. Hunleth and R. Cytron. Footprint and feature management
using aspect-oriented programming techniques. In
Proceedings of the 2002 Joint Conference on Languages,
Compilers and Tools for Embedded Systems & Soft. and
Compilers for Embedded Systems (LCTES/SCOPES ’02),
pages 38–45, Berlin, Germany, June 2002. ACM Press.

[9] D. Lohmann, F. Scheler, R. Tartler, O. Spinczyk, and
W. Schröder-Preikschat. A quantitative analysis of aspects in
the eCos kernel. In Proceedings of the EuroSys 2006
Conference (EuroSys ’06), pages 191–204. ACM Press, Apr.
2006.

[10] D. Lohmann, O. Spinczyk, and W. Schröder-Preikschat. On
the configuration of non-functional properties in operating
system product lines. In Proceedings of the 4th AOSD
Workshop on Aspects, Components, and Patterns for
Infrastructure Software (AOSD-ACP4IS ’05), pages 19–25,
Chicago, IL, USA, Mar. 2005. Northeastern University,
Boston (NU-CCIS-05-03).

[11] O. Spinczyk and D. Lohmann. The design and
implementation of AspectC++. In Journal on
Knowledge-Based Systems, Special Issue on Creative
Software Design. Elsevier North-Holland, Inc., 2007. (to
appear).

[12] A. Tešanović, M. Amirijoo, and J. Hansson. Providing
configurable QoS management in real-time systems with
QoS aspect packages. In A. Rashid and M. Aksit, editors,
Transactions on AOSD II, number 4242 in Lecture Notes in

Computer Science, pages 256–288. Springer-Verlag, 2006.
[13] C. Walls. The Perfect RTOS. Keynote at embedded world

’04, Nuremberg, Germany, 2004.
[14] Y. Yanagisawa, K. Kourai, S. Chiba, and R. Ishikawa. A

dynamic aspect-oriented system for OS kernels. In
Proceedings of the 5th International Conference on
Generative Programming and Component Engineering
(GPCE ’06). Springer-Verlag, Oct. 2006. (to appear).

[15] C. Zhang and H.-A. Jacobsen. Quantifying aspects in
middleware platforms. In Proceedings of the 2nd
International Conference on Aspect-Oriented Software
Development (AOSD ’03), pages 130–139, New York, NY,
USA, 2003. ACM Press.

	Introduction
	IRQ Synchronization in CiAO
	The CiAO Embedded OS
	CiAO IRQ Models
	Design
	Separation of Concerns

	Implementation
	Driver Implementation
	Hardware Binding
	Model Implementation
	The os::sync layer
	Preliminary Evaluation

	Discussion
	Aspect-aware OS Design
	Aspects for Near-Hardware Code

	Related Work
	Summary and Conclusions
	Acknowledgments
	References

