
MODELLING COMPOSITIONS OF MODULAR EMBEDDED SOFTWARE
PRODUCT LINES

Wolfgang Friess
AUDI AG

wolfgang.friess@audi.de

Julio Sincero
University Erlangen-Nuernberg

sincero@informatik.uni-erlangen.de

Wolfgang Schroeder-Preikschat
University Erlangen-Nuernberg

wosch@informatik.uni-erlangen.de

ABSTRACT
Coping with lots of variants is a challenging task in the field
of embedded software development. Due to the restricted
hardware resources in this domain, it is essential for the
embedded system software to be highly adaptable to the
specific needs of the application and no unused function-
ality is implemented. Configurable system software can
realise this adaption, but it brings the problem of variant
management in this domain. Currently, software product
line methods are in the focus of research to cope with high
amounts of software variants. But current methods lack of
support for systems composed of several subsystems, con-
figured independently. However, such modular systems are
very common in the domain of embedded software. This
paper introduces a concept for modelling compositions of
several software product lines, like the composition of an
application software product line and an operating system
product line, for example. With this concept, it is pos-
sible to model not only single software product lines but
also compositions of several ones. This supports the devel-
opment of modular software systems with high variability.
After that, an implementation of a tool for verifying com-
positions based on this concept is presented.

KEY WORDS
Software product lines, Embedded systems, Reusability,
Software Tools

1 Introduction

Embedded systems are becoming more and more complex
and distributed. The embedded software of a modern car
for example is distributed over a large number of electronic
control units and the running code size is up to many mega
bytes. To cope with the increasing cost pressure and shorte-
nend development time, the systems are often composed of
several commercial off-the-shelf software modules, for ex-
ample, an embedded operating system or a network driver.
Because of the restricted hardware ressources due to the
high cost pressure these embedded software modules have
to be optimally adapted to the specific use case to avoid
waste of resources. This adaption is normally done by
static configuration. This means that the adaptions are done
before compile time so that unused functionality is not in-
cluded in the binary file. Examples of static configured off-
the-shelf software modules are the eCos operating system

[11] or any OSEK-compliant operating system [1] in the
automotive domain. Typical configuration parameters for
operating systems are the number and priority of tasks.

To handle the configuration variants, software prod-
uct line methods and especially the usage of feature mod-
elling is very promising. But current feature models lack of
support for describing systems, that are created by the com-
position of several subsystems. Modular systems are very
common in embedded systems and different configurable
modules often come from different vendors. Therefore, de-
scribing modular systems is essential for handling variants
in the embedded domain.

Another example for a modular system is a modern
car. It consists of many embedded subsystems like radio,
navigation system, driver assistance systems, and so on.
Each of this subsystems can be seen as a product line de-
scribed by a feature model. When composing this product
lines into a car, some rules must be fulfilled, like that every
car has only one kind of radio or that a driver assistance
system needs an apropriate way to give information to the
driver. Modelling this kind of composition rules is in focus
of our work.

This paper shows our work on using composition
models in the field of feature modelling and presents a
tool for verifying compositions of different software prod-
uct lines in the embedded domain. In the following sec-
tion, the current state of feature modelling tool support is
shown. After that, composition models to describe modular
systems with variants are introduced. Finally, the usage of
composition models and a tool for composition checking is
demonstrated.

2 Feature modelling - State of Art

Feature modelling is the activity of identifying and organiz-
ing the variable and the common characteristics of a soft-
ware system. The variability is captured in entities called
featureswhich are organized in an hierarchical structure
known as feature model. The graphical representation of
a feature model is calledfeature diagram. The use of fea-
ture models is manifold. It provides an abstract and concise
view of the domain of study, and therefore, it can be applied
in any stage of software design [6]. However, the develop-
ment of a software product line takes advantage on feature
modelling mainly at two stages. First, during thedomain
analysis, the first step of the domain engineering, feature

modelling is of great value as it encompasses all features
identified during the domain study. Second, as far as con-
figuration in software product lines is concerned, the use of
feature models is very beneficial. The variation points of a
software system are clearly identified in the feature model,
which can be used for the instantiation of a specific prod-
uct by the selection of the features. There are available dif-
ferent notations and tools for the representation of feature
models. Although there are several tools discussed in liter-
ature, we will concentrate on two feature modelling tools.
We focused on these tools, because they provide not only
mechanisms for the design of feature models but also sup-
port for a feature-based configuration of software product
lines.

2.1 FeaturePlugin

FeaturePlugin is a feature modelling and feature-based
configuration plug-in for the Eclipse development plat-
form. It integrates feature modelling into a development
environment, which facilitates the support for modelling
variability in different artifacts [2].

The plug-in implements thecardinality-based feature
modelling[8]. This notation extends the FODA [10] nota-
tion with feature and group cardinalities, feature attributes,
feature diagram references, and user-defined annotations.
Moreover, afeature modelcan be comprised of one or more
feature diagrams.

Besides the ability to design feature models, which
is done by defining feature cardinalities, attributes and an-
notations, the plug-in also offers the possibility to derive
concrete configurations which conform to the feature dia-
gram. During this process, optional and group features can
be selected by means of check boxes. Features with cardi-
nalities, whose upper bound is greater then 1, can beinstan-
tiated, which means that the feature and its entire sub-tree
are replicated. A configuration wizard is also provided as
an alternative configuration mechanism to support the user
during the configuration process. The result of the con-
figuration is supposed to be used either as input for code
generators or used by a system as runtime configuration.

In order to providestaged configuration[7], the plug-
in implements specialization of feature diagrams. With the
specialization of a feature diagram it is possible to make
only a few configuration decisions. The result is a second
feature diagram that represents a subset of the configuration
options denoted by the first one.

In addition to the specifications of feature diagrams,
the activity of feature modelling often requires that other
information like feature priorities, binding times, imple-
mentation status, etc., must also be recorded as anno-
tations and attached to the feature model itself or its
elements. However, this information is very project-
dependent. Therefore, the plug-in implements a user-
extensible meta-model of the feature notation, which al-
lows the user to edit it as any other regular feature model.
However, the system defined features in the meta-model

can not be changed.

2.2 pure::variants

pure::variants is a commercial tool for the variant manage-
ment of software product lines developed by the company
pure::systems1[4]. The tool is an Eclipse plug-in which ex-
tends the Eclipse IDE in order to support the development
and deployment of software product lines.

By using the tool, software product lines are devel-
oped as a set of integrated models [3].Feature Models
are responsible for describing the problem domain,Com-
ponent Family Modelsfor describing the problem solution
andVariant Description Modelsfor specifying individual
products from the product line. According to this approach,
Feature ModelsandComponent Family Modelsare sepa-
rately and independently captured in order to improve the
reusability of models by different projects. The tool uses
the information of the different models (product specifica-
tion) in order to make the correct selection of modules that
must be present in the final product.

pure::variants can be seen as an integrated devel-
opment environment to support the individual phases of
the software product line development process. It is an
open framework that facilitates the integration with other
tools and types of data such as requirements manage-
ment systems, object-oriented modelling tools, configura-
tion management systems, bug tracking systems, code gen-
erators, compilers, UML os SDL descriptions, documenta-
tion, source code, etc.

Both, feature models and family models are hierar-
chical tree structures comprised ofelements(tree nodes).
Elements are typed and may have any number of associ-
ated attributes. Moreover, each element may be guarded
by a number of restrictions. Relations among elements are
also allowed, examples of currently supported relations are:
requires, requires-for, conflicts, recommends, discourages,
cond requiresand influences. Additional information can
be associated to an element by the use ofattributes. An at-
tribute is always typed and named, it is able to represent the
information allowed by its type. The assignment of values
to attributes can be fixed, non-fixed and also calculated by
acalculation expressiondefined in Prolog.

Feature models can be constructed using the elements
as explained above. However, the elements of a feature
model are the specificmandatory, optional, or-, alternative
features. Themodel evaluationis responsible for checking
if all relations and restrictions are valid in a variant descrip-
tion and also for calculating attribute values defined by ex-
pressions.

2.3 Problem Analysis

The introduced software product line environments are ex-
amples of feature modelling tools. They offer the possi-

1www.pure-systems.com

bility to model variations of software systems using fea-
ture models. But current tools only have limited support
for modelling compositions of different software product
lines. In order to create modular systems by means of fea-
ture models, the following requirements are necessary:

• model compositions of feature models created by dif-
ferent tools and

• to model compositions of feature models using differ-
ent feature model notations.

Therefore, the following section introduces a concept
for modelling compositions of separate feature models.

3 The Concept of Composition Models

Composition models are used to describe modular software
systems. Different kinds of composition models are used in
software development to describe such systems. For exam-
ple object-oriented or component-based software systems
are often modelled with UML composition models2. The
basic relationships between objects in general are ’uses’
and ’part-of’ relations [5]. These relation types are used
in combination with other information like the cardinality
of the objects to describe the system structure. An example
for a composition rule might be:’One or two A are part of
B’. These relation types are also used in the following.

To model compositions of several software product
lines the following information is necessary:

• which software product lines are composed

• which composition rules have to be fulfilled by the
composition

To describe the composition rules for product lines it
is necessary to consider the variability of different products
of a product line. In the following the term ’instance’ is
used for a single product of a software product line.

It must be possible to specify a group of possible
instances defined by certain conditions that all instances
of the group must fulfill. In software product lines,
the possible instances are identified by the features and
attributes they have. So the features and attributes can be
used to describe a certain group of instances by certain
conditions. In our composition model, these groups are
described by feature configurations.

A feature configuration represents a selected feature
with specified attributes, selected and configured sub-
features.

Figure 1 shows the meta-model of a feature configu-
ration. As a feature configuration can contain other
feature configurations, it is possible to describe all kinds
of structures in a feature model. Every instance, which

2www.uml.org

Figure 1. feature configuration meta-model

fits to this structure is part of the group defined by the
feature configuration. An example for such a nested
feature configuration, consisting of two single feature
configurations, is:’every instance of product line X, which
have the features A and B’. The first feature configuration
belongs to feature A and it contains the second feature
configuration which belongs to feature B.

As in common feature model notations, features are
described more detailed with attributes, it is necessary to
add additional attribute restrictions to a feature configura-
tion. An attribute restriction can define for example that
the value of an integer attribute must be greater than 10. In
that case, not all instances of a product line are part of the
group defined by the feature configuration, but only the in-
stances with an attribute value greater than 10. Depending
on the data type the value of an attribute can have, differ-
ent types of attribute restrictions are possible. Which data
types are possible in a certain case, depends on the used
feature model notation. Common data types are for ex-
ample string, boolean or integer. The attribute restriction
’greater than 10’ for example, would not make sense on a
boolean data type.

With feature configurations and attribute restrictions
it is possible to define groups of instances by describing
specific conditions that every instance of the group must
fulfill. But there are also conditions, not only an instance
but the whole group must fulfill. This conditions are called
’group conditions’. For example,every instance of product
line X with feature A selected, is a description of a group of
instances. A group condition could be:feature A has an at-
tribute NAME and the value of this attribute must be unique
in all instances of the group. This group condition must be
fulfilled by the whole group defined by the conditions de-
scribed by feature configurations and attribute restrictions.

To describe composition rules of software product
lines, these feature configurations, attribute restrictions and
group conditions are combined with the basic relationships
’used’, ’part-of’ and cardinalities.’One instance of product
line A with the feature 1 is part of every instance of prod-
uct line B’, is an example for a composition rule. Figure 2
shows a simplified meta model for composition models.

A composition model consists of feature models and

Figure 2. composition meta-model

relations. Possible relations are ’uses’ and ’part-of’ rela-
tions. For each feature model several instance groups can
be defined by means of feature configurations. Finally, a
cardinality can be defined for each instance group.

The composition models for software product lines
combine variability with the basic relationships ’used’ and
’part-of’. In the following section, the usage of the compo-
sition models is shown in a tool for checking compositions
of instances of several software product lines.

4 Implementation of a Composition Checker

To get more experience with compositions of software
product lines, a prototype implementing the introduced
composition model notation was developed. The prototype
allows to create composition models and checks if a given
set of instances satisfies the composition rules defined in
the composition model. The composition checker is im-
plemented in JAVA with a Prolog3 evaluation core. The
benefit of using a prolog engine for evaluating the compo-
sition rules is the extendability. For example, if the neces-
sity arises to add some additional group conditions this can
be done easily by adding new prolog clauses to the compo-
sition checker.

The feature models and the instances are described by
an intermediate format to allow compositions of different
feature model notations and tools. This is necessary to al-
low checking compositions of software product lines from
different tools working with different feature model nota-
tions. The intermediate format for a feature model is called
’concept interface’ and is a list of all possible features in

3www.swi-prolog.org

the feature model stored in a XML file. Listing 1 shows an
example of such a concept interface.

Listing 1. feature model description

<?xml ve rs i on=” 1 .0” encod ing =” UTF−8” ?>
<c o n c e p t i n t e r f a c e name=” TASK” ve rs i on=” 0 .1

” a u t h o r =” User”>
< f e a t u r e name=” T a s k S e t t i n g s”>

<a t t r i b u t e name=” P r i o” t ype =” i n t ”>< /
a t t r i b u t e>

<a t t r i b u t e name=” Name” t ype =” s t r i n g”>
< / a t t r i b u t e>

<a t t r i b u t e name=” S t a c k s i z e” t ype =” i n t
”>< / a t t r i b u t e>

<a t t r i b u t e name=” A c t i v a t i o n ” t ype =”
i n t ”>< / a t t r i b u t e>

< / f e a t u r e>
< f e a t u r e name=” Type” />
< f e a t u r e name=” Bas ic” />
< f e a t u r e name=” Extended” />
< f e a t u r e name=” Schedu le” />
< f e a t u r e name=” F u l l ” />
< f e a t u r e name=” None” />

< / c o n c e p t i n t e r f a c e>

The intermediate format of an instance on the other
side is a list of all the selected features with the attributes
extended by an attribute value. This intermediate format is
also stored in a XML file.

As the evaluation core is prolog-based, the feature
configurations and the composition rules are represented
by prolog clauses. Listing 2 shows an example for such a
composition rule.

Listing 2. example for composition rule

f c (’ f c0 ’ , ’ OS’ , [’ f c1 ’] , []) .
f c c a r d (’ f c0 ’ , 1 , 1) .
f c (’ f c1 ’ , ’ OS−CC−BCC1’ , [] , []) .
f c (’ f c2 ’ , ’ TASK ’ , [’ f c3 ’] , []) .
f c c a r d (’ f c2 ’ , 0 , 0) .
f c (’ f c3 ’ , ’ TASK−Extended’ , [] , []) .
p a r t−of (’ f c1 ’ , ’ f c2 ’) .

This rule consists of two nested feature configurations
’fc0’/’fc1’ and ’fc2’/’fc3’. The meaning of this rule is,
that each instance of ’OS’ with the feature ’OS-CC-BCC1’
must not include an instance of ’TASK’ with the feature
’TASK-Extended’.

The group conditions are also described by prolog
clauses. Listing 3 shows two examples for group conditions
already implemented in the composition checker. The first
one is the uniqueness condition mentioned in the previous
section. The second one checks if the sum of the values of
the attribute STACK of all instances in the defined instance
group is smaller than 150.

Listing 3. examples for group conditions

u n i q u e n e s s (’ OS’ , ’ Name’) .

sum (’ f c1 ’ , ’ S t a c k s i z e’ , < , 150) .

When starting the evaluation, the composition
checker generates a knowledge-base representing the in-
formation from the composition model and the given set of
instances. This knowledge-base represents an instanciated
feature diagram of the overall composition. That means,
if three instances of product line X are part of the compo-
sition, three subtrees representing the three instances are
integrated into the instanciated feature diagram. For ev-
ery different set of instances, a different knowledge-base
will be generated. So the instanciated feature diagram is
an exact representation of the composition defined by the
given set of instances. After that, the evaluation core tries
to prove the correctness of the composition rules defined in
the composition model with the generated knowledge-base.
In case a rule was broken, the evaluation will fail. Figure 3
shows the logical architecture of composition checker.

Figure 3. architecture of the composition checker

The evaluation output is a log file describing either
which rule made the evaluation fail or true if the evaluation
was successful.

5 Related Works

Another approach for verifying composition of modular
embedded systems comes from the PECOS project [9]. It
supports the construction of software systems out of several
modules and includes a component meta-model capable to
add composition rules to the components. As this approach
is based on component technology, it offers less capability
to model variants than an approach based on feature mod-
els.

An approach for a formalized description of rules in
feature models is described in [12]. It uses the Object Con-
straint Language (OCL) to decribe complex constraints be-
tween features and feature attributes. This constraints can
be used for verifying a single variant of the feature model.
This approach offers a formalized way to describe rules but
does not support composition of several feature models.

6 Conclusion and Outlook

Modelling modular systems with variabilities is essential
for using software product line methods in scenarios where
many different companies supply software modules which
will be integrated into a software system. The development
of electronic control units in the automotive industry is an
example for such a scenario. The composition models in-
troduced in this paper allow to model such modular systems
and are a step towards using software product line methods
for embedded systems.

The next step in our project is using the composition
checker to evaluate and to improve the usage of composi-
tion models on real-world use cases. Furthermore, we work
on improving the usability of the composition checker by
adding a graphical user-interface. We also plan to integrate
the composition of cardinality-based feature models in the
next version of the composition checker.

References

[1] OSEK/VDX Operating System Specification 2.2.3.
www.osek-vdx.org, Februar 2005.

[2] M. Antkiewicz and K. Czarnecki. Featureplugin: feature
modeling plug-in for eclipse. Ineclipse ’04: Proceedings
of the 2004 OOPSLA workshop on eclipse technology eX-
change, pages 67–72, New York, NY, USA, 2004. ACM
Press.

[3] D. Beuche. Composition and Construction of Embedded
Software Families. PhD thesis, Otto-von-Guericke Univer-
sit Magdeburg, 2003.

[4] D. Beuche. Variant management with pure::variants. Tech-
nical report, pure-systems GmbH, 2003. http://www.pure-
systems.com/.

[5] G. Booch.Objektorientierte Analyse und Design - Mit prak-
tischen Anwendungsbeispielen. Addison-Wesley, 1994.

[6] K. Czarnecki. Generative Programming: Principles and
Techniques of Software Engineering Based on Automated
Configuration and Fragment-Based Component Models.
PhD thesis, Computer Science Department, Technical Uni-
versity of Ilmenau, 1998.

[7] K. Czarnecki, S. Helsen, and U. W. Eisenecker. Staged con-
figuration using feature models. InSPLC, pages 266–283,
2004.

[8] K. Czarnecki, S. Helsen, and U. W. Eisenecker. Formalizing
cardinality-based feature models and their specialization.
Software Process: Improvement and Practice, 10(1):7–29,
2005.

[9] T. Genssler and C. Zeidler. Rule-driven component com-
position for embedded systems. In4th ICSE Workshop on
Component-Based Software Engineering: Component Cer-
tification and System Prediction, 2001.

[10] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S.
Peterson. Feature-oriented domain analysis (FODA) feasi-
bility study. Technical report, Carnegie Mellon University,
Software Engineering Institute, 1990.

[11] A. Massa. Embedded Software Development with eCos.
Prentice Hall Professional Technical Reference, 2002.

[12] D. Streitferdt, M. Riebisch, and I. Philippow. Details of
formalized relations in feature models using ocl. InECBS,
pages 297–304, 2003.

