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ABSTRACT

About 30 years ago the pioneers of family-based software devel-
opment invented very useful models. Today we would describe
them as models that help software engineers to bridge the gap be-
tween variable requirements and the reference architecture of a
product line platform. This is one of the key challenges in prod-
uct line engineering. In this paper we revisit one of these mod-
els, namely the functional hierarchy. The goal is to derive a new
model called a concern hierarchy that also takes today’s knowledge
about crosscutting concerns and aspect-oriented programming into
account. The resulting concern hierarchy model facilitates the de-
sign of aspect-oriented software product lines by supporting the
derivation of class hierarchies, aspects, and their dependency rela-
tions more systematically without being overly complex.

1. INTRODUCTION

The design of a software product line is much more challenging
than the design of a single application. Many application scenar-
ios (configurations) shall be covered by the same software compo-
nents. Therefore, components often have to be designed and imple-
mented in a generic way. Furthermore, instead of defining a fixed
architecture, a reference architecture has to be developed that can
be understood as a set of composition rules for the generic compo-
nents.

A very important issue in this design process are dependencies be-
tween components. If, for instance, a component A depends on a
component B, a composition rule has to be defined that guarantees
that no product line variant can be configured that contains A but
not B. Without such composition rule compile time error messages
or even runtime errors would be the unpleasant consequence. Even
more problematic are cyclic dependencies. If A depends on B, B
on C, and C on A, there is almost no room for configuration. Any
product variant has to contain either none of these components or
all of them.

All these considerations are completely independent of the pro-
gramming language and even independent of programming paradigms
such as object-orientation or functional, imperative, and logical
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programming. They also do not depend on the actual mechanism
that is used for the interaction between the components, such as
local function call, remote procedure call, message passing com-
munication, or even macro expansion.

This was the motivation for the program family pioneers from the
seventies to abstract from all technical issues, when they designed
their systems. The main goal was to get the dependency rela-
tions between the logical “functions” right. These models such as
Parnas’ “uses hierarchies” [16]] or Habermann’s “functional hierar-
chies” [12] are still highly influential. Their simplicity makes them
attractive.

However, computer science made some steps forward during the
last decades. The awareness that crosscutting concerns are a prob-
lem for reusability and extensibility as well as the notion of aspects
that implement crosscutting concerns in a modular way, came up
in the late nineties. Parnas and Habermann did not consider these
problems in their work sufficiently. In our opinion it is necessary
to revisit and update their work, as aspect-oriented product line en-
gineering can hardly be done without these fundamental models.

The following sections are structured as follows: Section [2] will
briefly introduce Habermann’s functional hierarchies and discuss
our experiences with system design based on this model. Section
[l is the main contribution of this paper. It contains an informal
description of the extended functional hierarchy model that we call
“concern hierarchy”. In section ] we will discuss how concern
hierarchies can be used to derive an aspect-oriented class hierarchy
as well as a dependency graph. The paper ends with a discussion
of related work in section[3and our conclusions in section

2. FUNCTIONAL HIERARCHIES

Like many software engineering pioneers Habermann worked on
operating systems. The inherent complexity of these systems —
even in the seventies — almost automatically made computer sci-
entists think about modularization and configurability in general.

2.1 The Famos Structure

Figure [lillustrates the structure of his FAMOS Systen@ as a func-
tional hierarchy. The system is structured in layers. Each layer
consists of functions. The term “function” is used in a very general
sense and abstracts from the actual implementation and interaction
mechanism. Each function knows the functions of its own layer
and the functions from the layers below. This acyclic structure al-
lows the hierarchy to be pruned at any layer and, thus, facilitates the
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Figure 1: Functional hierarchy of the FAMOS operating sys-
tem family

derivation of family members. In the case of the FAMOS operat-
ing system the lowest function represents the elementary operations
provided by the hardware. Based on that are functions which imple-
ment Address Spaces, Process Management, and Synchronization.
On top of Synchronization there is a branch in the hierarchy. With a
“minimal extension”, i.e. Special Device drivers, a Process Control
System variant can be constructed. The other branch, which starts
with dynamic Address Space Creation, is the base for the construc-
tion of a Batch System variant and a Time-Sharing System variant.

2.2 The pure Structure

In the late nineties our research group designed and implemented a
highly configurable operating system for the domain of deeply em-
bedded systems. For this purpose we combined the family-based
design approach known from FAMOS with a C++ implementation.
The result was the PURE operating system family [6l [17]].

Figure 2l shows the class diagram of the PURE thread management
subsystem. It was derived from a fine-grained functional hierarchy
in order to achieve a very high degree of configurability and thereby
scalability of the memory consumption with the application’s re-
quirements. Each class implements a function from this functional
hierarchy. Due to the duality of Habermann’s incremental design
approach and implementation inheritance in OO, it was natural to
map the edges of the functional hierarchy to inheritance relations
in the class diagram — at least as a rule of thumb. The result was
a very deep class hierarchy that looks a bit like the corresponding
functional hierarchy rotated by 180°. The static configuration of
the system was based on two mechanisms:

1. Application-Driven Configuration: Operating systems for
deeply embedded systems normally have to support only one
specific application. A PURE operating system was used by
applications like an ordinary static C++ class library. Hence,
we could exploit the C++ compiler and linker for the static
system configuration. For example, if the application only
instantiated the class Native, the code of the classes Bundle
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Figure 2: Class diagram of the PURE thread subsystem

and Genius would not be referenced and, thus, not linked into
the final system.

2. Feature-Driven Configuration: In many cases we experi-
enced the need to statically configure the implementation of
a certain layer. For example, each thread object contains
some state information that depends on the thread schedul-
ing strategy. While priority-based strategies require a thread
priority value, a simple FIFO strategy only requires a pointer
to the next thread object. Therefore, a layer was often im-
plemented by a number of classes and a configurable “class
alias” that can be used by the next layers to access the code
and data members of the configurable layer. Technically, a
class alias is a C++ typedef that points to 1 of N classes with
alternative implementations of the same abstract function. In
order to statically configure these class aliases, the variabil-
ity was described by a feature model [9]. A configuration
tool allowed users to select a valid configuration by mark-
ing features. The feature selection was used to generate the
necessary class aliases. For instance, in the class diagram
Informer is a class alias that could be configured to be ei-
ther an Accountant or a Deafimute. Both classes don’t have
to be interface compatible. The only requirement is that all
members that are referenced by the other system layers are
provided. By using this technique configurable and optional



layers were implemented in PureZ

Another experience with PURE was that also in operating systems
there are crosscutting concerns and that it makes sense to imple-
ment them as aspects. For example, based on the AspectC++ lan-
guage [1} [18]we modularized the implementation of interrupt syn-
chronization [15]. The main advantage was that the synchroniza-
tion strategy could much easier be statically configured than in
other systems.

However, it turned out that the step from a variable interrupt syn-
chronization feature to a class hierarchy with aspects was not straight-
forward, because the functional hierarchy model does not provide
any elements to represent crosscutting concerns.

2.3 Lessons Learned

In comparison to other configurable systems such as eCos [2] the
PURE operating system family consists of modules that are much
better to understand and maintain, because no code is needed within
the modules to implement the static configuration. Not a single
#ifdef pollutes the classes and, due to AOP, code that implements
crosscutting concerns is well-separated. For instance, in eCos cross-
cutting concern implementations contribute about 20% of the whole
kernel code [14].

However, on the modeling level we experienced two important prob-
lems that were related to functional hierarchies:

1. no nested hierarchies: highly configurable systems cannot
be represented by a single deep functional hierarchy. The
functions of FAMOS were rather course-grained in compari-
son to the functions of PURE. Therefore, nested class hierar-
chies would have been necessary to cope with the complex-

ity.

2. no crosscutting concerns: on the modeling level functional
hierarchies offer no adequate element to describe crosscut-
ting concerns. That makes it very difficult to derive a class
diagram with aspects in a systematic way.

These problems were the motivation for us to start thinking about
an extension of the functional hierarchy model.

3. THE CONCERN HIERARCHY MODEL

In the functional hierarchy model functions are atomic entities.
This makes the static configuration very easy. No feature-driven
configuration techniques are necessary. However, for product lines
that strive for a high degree of configurability this is not enough.
Therefore, our extension does not only model purely functional
concerns, but also its sub-concerns and crosscutting concerns. We
call this more general and extended model “concern hierarchy”.
The following sections will describe the two extensions in detail.

3.1 Sub-Concern Modeling

Sub-concern modeling is needed to support step-wise refinement
during the modeling process. A complex function is regarded as a
program family within the program family. It is again modeled as a

2 More details on feature-driven configuration can be found in [3]]
and [7]]
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Figure 3: Component code depends on an aspect

concern hierarchy. For convenience the sub-concern hierarchy can
either be visualized in-place or as a separate diagram.

As a consequence concern hierarchies don’t have atomic entities.
Every concern can always be refined. This process is continued
until a granularity has been reached that matches the demands on
configurability.

3.2 Crosscutting Concern Modeling

Crosscutting concern modeling is much more complicated than sub-
concern modeling, because the relations between crosscutting con-
cerns and non-crosscutting concerns as well as the relations among
crosscutting concerns are still a field of active research. The follow-
ing parts will describe the authors’ point of view, which is based on
experience with aspect-oriented product line development with As-
pectC++. Our approach is to analyze the relations between aspects
and component code as well as the relations among aspects. This
knowledge is then used to describe relations on the more abstract
concern hierarchy level.

3.2.1 Relations Between Crosscutting Concerns and

Ordinary Concerns

An aspect weaver can be regarded as a generic system monitor [[L0].
Whenever a certain condition becomes true, which is described by
an aspect, some specific instructions (advice code) are executed.
An explicit call is not necessary. There are two possible perspec-
tives on this relationship. On the one hand the aspect code is ac-
tivated by the component code. The activation happens implicitly
by reaching a certain state. On the other hand the aspect code af-
fects the component code, because it modifies the component code
state after activation.

This bidirectional relationship between aspects and component code
does not necessarily mean a dependency in the sense of the func-
tional hierarchy. In many cases aspects can exist in a system even
though their condition never becomes true and, thus, the aspect
code is never activated. At the same time it is often no problem
for component code to be unaffected by aspects. This becomes im-
mediately clear if one considers an aspect for the detection of error
conditions. For developers of software product lines this property
of aspects is very important. It makes it possible to write loosely
coupled aspects that work independently of the system configura-
tion, where some or all target components might be missing.

Besides loose coupling there are also tight coupling scenarios. For
example, some component code implementation might rely on an
affecting aspect. This is illustrated in figure Bl It shows a com-
ponent that implements trigonometric functions and an aspect that
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makes sure that the argument for sin and cos is always in the range
between 0° and 359°. Without this aspect the component would
not conform to its specification.

The dashed line in the figure represents the relation between the
component trigonometry and the aspect period. The filled black
circle on the component side means that the component depends
on this relation. It is a necessary relation.

It is also possible that an aspect depends on the activation in or-
der to work properly. This illustrated in figure [l The scenario is
a database management system that consists of a maintenance and
a query component. An aspect should improve the system’s query
performance by caching result values. This is implemented by ad-
vice for the query component. However, in order to guarantee the
consistency of the cached results, an additional advice for the main-
tenance component is necessary. It is used to monitor all operations
that insert, remove, or modify data.

In this case the mark is on the aspect side. The line that connects
the mark with the advice for the query component means that the
necessary activation would not be necessary without the relation to
the query component.

As buffering, query, and maintenance can also be regarded as con-
cerns in a concern hierarchy, we conclude that we can and should
use the same kinds of relationships for crosscutting and ordinary
concerns in concern hierarchies as well. We also use the same
graphical notations. The main difference between figures ] and
Ml and the corresponding concern hierarchies is that a crosscutting
concern can not always be implemented by an aspect. This depends
on programming language features and the nature of the concern.

Another special property of the relationship between crosscutting
concerns and ordinary concerns is that crosscutting concerns can
affect groups of other concerns. We represent groups in graphical
concern hierarchies by areas with a dashed borderline and a group
name such as group I and group 2 in figure 3

3.2.2  Relations Among Crosscutting Concerns

In languages like Aspect] or AspectC++ aspects have ordinary at-
tributes and member functions. They can be regarded as an exten-
sion of the class concept. Therefore, an aspect can have the same
relations to other aspects as to component code.

More interesting are indirect interactions among crosscutting con-

e / - -
affects /~ [concern 1} [concern 2], ', necessary activation

[ - -~ q

- 1)~ "2 crosscutting
crosscutting groupizy concern 2

concern 1 y !
7 // 4

7’ ’ , 4 .

7 .7 necessarily

-~ -7 affects

,
k
sender )
/
;

s:‘nd ("hello"); (5
\ encryption

receiver '

"hello" or
"H6:rgJ2"?

“< | encryptal sent
messages

receive (message); < .

decrypt received
messages

Figure 6: Interactions of crosscutting concerns

cerns. Figure[@lillustrates these interactions with an example. There
are two communicating components sender and receiver. Two as-
pects affect the components. The first aspect is logging. It stores
all transmitted messages in a log file. The second aspect is en-
cryption. It encrypts all messages on the sender side and decrypts
them on the receiver side. Although these two aspects don’t have a
direct dependency, the order in which the advice is activated is cru-
cial in this scenario. If the logging aspect is activated first, the log
file will contain unencrypted messages, otherwise encrypted mes-
sages. This difference might decide over the whole system’s secu-
rity. Therefore, Aspect] and AspectC++ provide special language
elements to control the invocation order of advice code.

Our conclusion is that crosscutting concerns can have order rela-
tions, in some cases even necessary order relations. An example
for a necessary order relation is an encryption concern that extends
all messages, for instance, by a code that describes the encryption
method. If the logging concern relies on this message format, it
would not work properly without the encryption concern’s advice
being executed first. This means that a necessary order relation is
required, because at least one of the aspects would otherwise not
work according to its specification. In the case of a non-necessary
order relation all aspects work properly, but there is a relevant dif-
ference in the system’s behavior and, thus, we would like to apply
an ordering mechanism.

Figure [ shows the graphical notation for normal and necessary
order relations in concern hierarchies. For order relations a dotted
line is used. A necessary relation is again marked by a filled circle.

4. TOWARDS A DOMAIN DESIGN

The previous sections described the relations of crosscutting con-
cerns with other ordinary and crosscutting concerns. These re-
lations shall be used in concern hierarchies. Modeling them ex-
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plicitely facilitates the derivation of a detailed design. As concern
hierarchies are completely independent of the applied program-
ming paradigm and, of course, also independent of the program-
ming language, they can be used for any project and any design
model. As an example, the following sections will discuss how
an aspect-oriented class hierarchy can be derived from a concern
hierarchy.

4.1 Ordinary Concern Modeling

As described earlier in section[2.2] ordinary concerns can be imple-
mented by classes. The dependency relations between these con-
cerns can be expressed by inheritance. If a concern is too com-
plicated to be implemented by a single class, it has to be refined
by sub-concern modeling on the concern hierarchy level. If a con-
cern is not complex enough to be implemented by a class, it often
makes sense to group a number of concerns from the same layer of
the concern hierarchy into one class.

4.2 Crosscutting Concern Modeling

Crosscutting concerns are most naturally implemented by aspects.
However, there are cases in which the aspect-oriented program-
ming language is not powerful enough to express the crosscutting
concern in a modular way and a scattered implementation is un-
avoidable. Nevertheless, even in this case the explicit separation of
crosscutting concerns in concern hierarchies is beneficial, because
the developers are now aware of the problem and can mark the
scattered code fragments. This allows them to configure these con-
cerns statically, for instance with text-based transformation tools,
or to remove the code automatically as soon as better AOP support
is available.

4.3 Sub-Concern Modeling

Concern hierarchy modeling can be applied recursively. Each con-
cern can be described by another, more detailed, sub-concern hi-
erarchy. The classes and aspects from the sub-concern hierarchy
can either be grouped by using UML elements like “components”
or they can simply be merged with the classes and aspects from the
main concern hierarchy.

The motivation for the design of a sub-concern hierarchy is the need
to implement a certain concern in a configurable manner. This typ-
ically means that a component that uses the resulting configurable
components has to be developed against a common interface. A
very simple approach to decouple client code from configurable
service classes is a “class alias”.

Class aliases are the best choice if a sub-concern hierarchy models a
family that implements an alternative feature from a feature model
and if the feature binding time is compile time. It statically connects
clients with 1 of N classes.

3 Note that grouping functions into one class might increase the
memory footprint of the system in some configurations if the de-
velopment tool chain does not support “function-level linking”.

If the binding time is runtime, a strategy design pattern [11]] has to
be applied. Here the clients use an abstract strategy class to access
the classes of the sub-concern hierarchy. The project-specific ap-
plication code then has to connect the client classes with the right
instance of a concrete strategy implementation. It is important to
understand that the abstract and concrete strategy classes belong
to the client code and not the sub-concern hierarchy’s classes. In
contrast to pure OO design, a class hierarchy that is derived from a
concern hierarchy never starts with an abstract class. The goal is to
avoid dynamic dispatching wherever possible.

4.4 Derivation of a Dependency Model and

Tailoring

Concern hierarchies contain various kinds of concern relations that
were not known in functional hierarchies. The dependency rela-
tions in functional hierarchies are very useful, because they help
the developer to find a module structure that can be tailored by us-
ing only application-driven configuration mechanisms. Our next
step is to discuss the new kinds of concern relations with respect
to concern dependencies in order to systematically derive a depen-
dency model for the product line components.

If a crosscutting concern affects an ordinary concern, this relation
does not necessarily imply a dependency relation. For example, a
tracing concern does not depend on the existence of any specific
target component, nor do the system components depend on the
tracing concern. This kind of relation can be completely ignored in
a dependency graph. However, the situation is different with neces-
sary relations, which are marked by a filled circle in our graphical
notation. In this case the dependency is directed from the marked
concern to the other concern. Bidirectional dependencies have to be

L%Voided, because the dependency graph is cycle-free by definition

For order relations the situation is quite similar. Normal order re-
lations are merely implementation guidelines. They do not affect
the system’s configurability. Once again this is different for neces-
sary order relations. The dependency is directed from the marked
crosscutting concern to its counterpart.

As an example figure[§lillustrates the dependency model derivation.
The relation of crosscutting concern 1 and group I can be ignored,
because it is not a necessary relation. Concern 2 and 3 have to
be affected by crosscutting concern 3. Therefore, the dependency
model contains an edge from concern 3 to crosscutting concern
3. As concern 2 also depends on concern 3, it is not necessary
to explicitly mark its dependency of crosscutting concern 3. The
dependency relation is transitive. Crosscutting concern 2 has to
affect group 2. Otherwise it would not work properly. This means
that a dependency edge from crosscutting concern 2 to concern 2
is needed.

The result of this mapping is a graph that precisely describes pos-
sible system configurations if each concern is implemented by a
separate module. As separation of concerns and the modular im-
plementation of crosscutting concerns are the main goals of aspect-
oriented programming, the model is an ideal design aid for devel-
opers of aspect-oriented software product lines.

4 Habermann describes a technique called “sandwiching” to get rid
of this problem [12].



——— necessarily
g ____ affects
concern 3 \\vlr‘f\\
P N RN

. oo

y 7 ~
,” |concern1 | |concern 2
!

affects
<n- -
crosscutting |-
concern 1

\
", ' necessary activation

| ) =~ .
T T group 1\, - group2 , crosscutting
A /T A concern 2
7 //
N ’ ’
<

crosscutting
concern 2

concern 3

|:> crosscutting
concern 1
concern 4

crosscutting
concern 3

Figure 8: Derivation of the dependency model from a concern hierarchy

5. RELATED WORK

This work is related to all product line engineering methodologies
such as FODA [13]] or DEMRAL [9]]. The unique feature of our
approach is that we explicitly try to support developers of aspect-
oriented product lines by modeling ordinary and crosscutting con-
cerns during early design steps. In this sense it is similar to the-
me/UML [8]], but the class and dependency model derivation are
different. Furthermore, our approach is not based on UML, but ex-
tends the model of functional hierarchies. GenVoca architectures
and Feature-Oriented Programming [4} [3] are another product line
design approach that has its roots in Parnas’ and Habermann’s work
in the seventies. In a GenVoca architecture systems also have a lay-
ered structure that are also intended to be implemented as “object-
oriented virtual machines”. However, crosscutting concerns in the
sense of dynamic crosscutting (as supported by Aspect] and As-
pectC++) have not been considered by this approach, yet.

6. CONCLUSIONS AND FUTURE WORK

In our own ongoing product line development activities concern hi-
erarchies have already been very useful. We use them after describ-
ing the variability of the domain with a feature model[9]. While
feature models are typically used to describe a problem space, con-
cern hierarchies complement feature models, because they are used
to design a solution space. A concern hierarchy can therefore be re-
garded as the description of the relations of features in the context
of a planned solution space.

Concern hierarchies are a pragmatic extension of functional hierar-
chies that was necessary to cope with a modern aspect-oriented im-
plementation technology. By modeling crosscutting concerns very
early we can systematically derive a detailed design model, e.g. an
aspect-oriented class hierarchy, and a module dependency model.
We feel that this is a unique and very promising approach, which
we should share with other developers in this particular area.

The model description in this paper was informal and based on ex-
amples. Our intention was to address a broad audience.

Concerning future work, we plan to analyze and incorporate the
feedback on this paper. Our goal is to develop a more precise and
formal description of the model and the related development pro-
cess.
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